2 # -*- coding: ISO-8859-1 -*-
5 # Copyright (C) 2003-2004 Michael Schindler <m-schindler@users.sourceforge.net>
7 # This file is part of PyX (http://pyx.sourceforge.net/).
9 # PyX is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 2 of the License, or
12 # (at your option) any later version.
14 # PyX is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with PyX; if not, write to the Free Software
21 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
25 from math
import pi
, sin
, cos
, atan2
, tan
, hypot
, acos
, sqrt
26 import path
, unit
, mathutils
, normpath
28 from math
import radians
, degrees
30 # fallback implementation for Python 2.1 and below
31 def radians(x
): return x
*pi
/180
32 def degrees(x
): return x
*180/pi
35 #########################
37 #########################
39 class connector_pt(normpath
.normpath
):
41 def omitends(self
, box1
, box2
):
42 """intersects a path with the boxes' paths"""
44 # cut off the start of self
45 # XXX how can decoration of this box1.path() be handled?
46 sp
= self
.intersect(box1
.path())[0]
48 self
.normsubpaths
= self
.split(sp
[-1:])[1].normsubpaths
50 # cut off the end of self
51 sp
= self
.intersect(box2
.path())[0]
53 self
.normsubpaths
= self
.split(sp
[:1])[0].normsubpaths
55 def shortenpath(self
, dists
):
56 """shortens a path by the given distances"""
58 # XXX later, this should be done by extended boxes instead of intersecting with circles
59 # cut off the start of self
60 center
= self
.atbegin_pt()
61 cutpath
= path
.circle_pt(center
[0], center
[1], dists
[0])
63 cutpath
= cutpath
.normpath()
64 except normpath
.NormpathException
:
67 sp
= self
.intersect(cutpath
)[0]
68 self
.normsubpaths
= self
.split(sp
[-1:])[1].normsubpaths
70 # cut off the end of self
71 center
= self
.atend_pt()
72 cutpath
= path
.circle_pt(center
[0], center
[1], dists
[1])
74 cutpath
= cutpath
.normpath()
75 except normpath
.NormpathException
:
78 sp
= self
.intersect(cutpath
)[0]
79 self
.normsubpaths
= self
.split(sp
[:1])[0].normsubpaths
87 class line_pt(connector_pt
):
89 def __init__(self
, box1
, box2
, boxdists
=[0,0]):
94 connector_pt
.__init
__(self
,
95 [path
.normsubpath([path
.normline_pt(*(self
.box1
.center
+self
.box2
.center
))], closed
=0)])
97 self
.omitends(box1
, box2
)
98 self
.shortenpath(boxdists
)
101 class arc_pt(connector_pt
):
103 def __init__(self
, box1
, box2
, relangle
=45,
104 absbulge
=None, relbulge
=None, boxdists
=[0,0]):
106 # the deviation of arc from the straight line can be specified:
107 # 1. By an angle between a straight line and the arc
108 # This angle is measured at the centers of the box.
109 # 2. By the largest normal distance between line and arc: absbulge
110 # or, equivalently, by the bulge relative to the length of the
111 # straight line from center to center.
112 # Only one can be used.
117 tangent
= (self
.box2
.center
[0] - self
.box1
.center
[0],
118 self
.box2
.center
[1] - self
.box1
.center
[1])
119 distance
= hypot(*tangent
)
120 tangent
= tangent
[0] / distance
, tangent
[1] / distance
122 if relbulge
is not None or absbulge
is not None:
123 # usage of bulge overrides the relangle parameter
125 if absbulge
is not None:
127 if relbulge
is not None:
128 bulge
+= relbulge
*distance
130 # otherwise use relangle, which should be present
131 bulge
= 0.5 * distance
* math
.tan(0.5*radians(relangle
))
133 if abs(bulge
) < normpath
._epsilon
:
134 # fallback solution for too straight arcs
135 connector_pt
.__init
__(self
,
136 [path
.normsubpath([path
.normline_pt(*(self
.box1
.center
+self
.box2
.center
))], closed
=0)])
138 radius
= abs(0.5 * (bulge
+ 0.25 * distance
**2 / bulge
))
139 centerdist
= mathutils
.sign(bulge
) * (radius
- abs(bulge
))
140 center
= (0.5 * (self
.box1
.center
[0] + self
.box2
.center
[0]) + tangent
[1]*centerdist
,
141 0.5 * (self
.box1
.center
[1] + self
.box2
.center
[1]) - tangent
[0]*centerdist
)
142 angle1
= atan2(self
.box1
.center
[1] - center
[1], self
.box1
.center
[0] - center
[0])
143 angle2
= atan2(self
.box2
.center
[1] - center
[1], self
.box2
.center
[0] - center
[0])
146 connectorpath
= path
.path(path
.moveto_pt(*self
.box1
.center
),
147 path
.arcn_pt(center
[0], center
[1], radius
, degrees(angle1
), degrees(angle2
)))
148 connector_pt
.__init
__(self
, connectorpath
.normpath().normsubpaths
)
150 connectorpath
= path
.path(path
.moveto_pt(*self
.box1
.center
),
151 path
.arc_pt(center
[0], center
[1], radius
, degrees(angle1
), degrees(angle2
)))
152 connector_pt
.__init
__(self
, connectorpath
.normpath().normsubpaths
)
154 self
.omitends(box1
, box2
)
155 self
.shortenpath(boxdists
)
158 class curve_pt(connector_pt
):
160 def __init__(self
, box1
, box2
,
161 relangle1
=45, relangle2
=45,
162 absangle1
=None, absangle2
=None,
163 absbulge
=0, relbulge
=0.39, boxdists
=[0,0]):
165 # The deviation of the curve from a straight line can be specified:
166 # A. By an angle at each center
167 # These angles are either absolute angles with origin at the positive x-axis
168 # or the relative angle with origin at the straight connection line
169 # B. By the (expected) largest normal distance between line and arc: absbulge
170 # and/or by the (expected) bulge relative to the length of the
171 # straight line from center to center.
172 # Here, we need both informations.
174 # a curve with relbulge=0.39 and relangle1,2=45 leads
175 # approximately to the arc with angle=45
180 rel
= (self
.box2
.center
[0] - self
.box1
.center
[0],
181 self
.box2
.center
[1] - self
.box1
.center
[1])
182 distance
= hypot(*rel
)
183 # absolute angle of the straight connection
184 dangle
= atan2(rel
[1], rel
[0])
186 # calculate the armlength and absolute angles for the control points:
187 # absolute and relative bulges are added
188 bulge
= abs(distance
*relbulge
+ absbulge
)
190 if absangle1
is not None:
191 angle1
= radians(absangle1
)
193 angle1
= dangle
+ radians(relangle1
)
194 if absangle2
is not None:
195 angle2
= radians(absangle2
)
197 angle2
= dangle
+ radians(relangle2
)
199 # get the control points
200 control1
= (cos(angle1
), sin(angle1
))
201 control2
= (cos(angle2
), sin(angle2
))
202 control1
= (self
.box1
.center
[0] + control1
[0] * bulge
, self
.box1
.center
[1] + control1
[1] * bulge
)
203 control2
= (self
.box2
.center
[0] - control2
[0] * bulge
, self
.box2
.center
[1] - control2
[1] * bulge
)
205 connector_pt
.__init
__(self
,
206 [path
.normsubpath([path
.normcurve_pt(*(self
.box1
.center
+
208 control2
+ self
.box2
.center
))], 0)])
210 self
.omitends(box1
, box2
)
211 self
.shortenpath(boxdists
)
214 class twolines_pt(connector_pt
):
216 def __init__(self
, box1
, box2
,
217 absangle1
=None, absangle2
=None,
218 relangle1
=None, relangle2
=None, relangleM
=None,
219 length1
=None, length2
=None,
220 bezierradius
=None, beziersoftness
=1,
224 # The connection with two lines can be done in the following ways:
225 # 1. an angle at each box-center
226 # 2. two armlengths (if they are long enough)
227 # 3. angle and armlength at the same box
228 # 4. angle and armlength at different boxes
229 # 5. one armlength and the angle between the arms
231 # Angles at the box-centers can be relative or absolute
232 # The angle in the middle is always relative
233 # lengths are always absolute
238 begin
= self
.box1
.center
239 end
= self
.box2
.center
240 rel
= (self
.box2
.center
[0] - self
.box1
.center
[0],
241 self
.box2
.center
[1] - self
.box1
.center
[1])
242 distance
= hypot(*rel
)
243 dangle
= atan2(rel
[1], rel
[0])
245 # find out what arguments are given:
246 if relangle1
is not None: relangle1
= radians(relangle1
)
247 if relangle2
is not None: relangle2
= radians(relangle2
)
248 if relangleM
is not None: relangleM
= radians(relangleM
)
249 # absangle has priority over relangle:
250 if absangle1
is not None: relangle1
= dangle
- radians(absangle1
)
251 if absangle2
is not None: relangle2
= math
.pi
- dangle
+ radians(absangle2
)
253 # check integrity of arguments
254 no_angles
, no_lengths
=0,0
255 for anangle
in (relangle1
, relangle2
, relangleM
):
256 if anangle
is not None: no_angles
+= 1
257 for alength
in (length1
, length2
):
258 if alength
is not None: no_lengths
+= 1
260 if no_angles
+ no_lengths
!= 2:
261 raise NotImplementedError, "Please specify exactly two angles or lengths"
263 # calculate necessary angles and armlengths
264 # always length1 and relangle1
266 # the case with two given angles
267 # use the "sine-theorem" for calculating length1
269 if relangle1
is None: relangle1
= math
.pi
- relangle2
- relangleM
270 elif relangle2
is None: relangle2
= math
.pi
- relangle1
- relangleM
271 elif relangleM
is None: relangleM
= math
.pi
- relangle1
- relangle2
272 length1
= distance
* abs(sin(relangle2
)/sin(relangleM
))
273 middle
= self
._middle
_a
(begin
, dangle
, length1
, relangle1
)
274 # the case with two given lengths
275 # uses the "cosine-theorem" for calculating length1
276 elif no_lengths
== 2:
277 relangle1
= acos((distance
**2 + length1
**2 - length2
**2) / (2.0*distance
*length1
))
278 middle
= self
._middle
_a
(begin
, dangle
, length1
, relangle1
)
279 # the case with one length and one angle
281 if relangle1
is not None:
282 if length1
is not None:
283 middle
= self
._middle
_a
(begin
, dangle
, length1
, relangle1
)
284 elif length2
is not None:
285 length1
= self
._missinglength
(length2
, distance
, relangle1
)
286 middle
= self
._middle
_a
(begin
, dangle
, length1
, relangle1
)
287 elif relangle2
is not None:
288 if length1
is not None:
289 length2
= self
._missinglength
(length1
, distance
, relangle2
)
290 middle
= self
._middle
_b
(end
, dangle
, length2
, relangle2
)
291 elif length2
is not None:
292 middle
= self
._middle
_b
(end
, dangle
, length2
, relangle2
)
293 elif relangleM
is not None:
294 if length1
is not None:
295 length2
= self
._missinglength
(distance
, length1
, relangleM
)
296 relangle1
= acos((distance
**2 + length1
**2 - length2
**2) / (2.0*distance
*length1
))
297 middle
= self
._middle
_a
(begin
, dangle
, length1
, relangle1
)
298 elif length2
is not None:
299 length1
= self
._missinglength
(distance
, length2
, relangleM
)
300 relangle1
= acos((distance
**2 + length1
**2 - length2
**2) / (2.0*distance
*length1
))
301 middle
= self
._middle
_a
(begin
, dangle
, length1
, relangle1
)
303 raise NotImplementedError, "I found a strange combination of arguments"
305 connectorpath
= path
.path(path
.moveto_pt(*self
.box1
.center
),
306 path
.lineto_pt(*middle
),
307 path
.lineto_pt(*self
.box2
.center
))
308 connector_pt
.__init
__(self
, connectorpath
.normpath().normsubpaths
)
310 self
.omitends(box1
, box2
)
311 self
.shortenpath(boxdists
)
313 def _middle_a(self
, begin
, dangle
, length1
, angle1
):
316 return begin
[0] + length1
*dir[0], begin
[1] + length1
*dir[1]
318 def _middle_b(self
, end
, dangle
, length2
, angle2
):
319 # a = -math.pi + dangle + angle2
320 return self
._middle
_a
(end
, -math
.pi
+dangle
, length2
, -angle2
)
322 def _missinglength(self
, lenA
, lenB
, angleA
):
323 # calculate lenC, where side A and angleA are opposite
324 tmp1
= lenB
* cos(angleA
)
325 tmp2
= sqrt(tmp1
**2 - lenB
**2 + lenA
**2)
326 if tmp1
> tmp2
: return tmp1
- tmp2
333 """a line is the straight connector between the centers of two boxes"""
335 def __init__(self
, box1
, box2
, boxdists
=[0,0]):
336 line_pt
.__init
__(self
, box1
, box2
, boxdists
=map(unit
.topt
, boxdists
))
339 class curve(curve_pt
):
341 """a curve is the curved connector between the centers of two boxes.
342 The constructor needs both angle and bulge"""
345 def __init__(self
, box1
, box2
,
346 relangle1
=45, relangle2
=45,
347 absangle1
=None, absangle2
=None,
348 absbulge
=0, relbulge
=0.39,
350 curve_pt
.__init
__(self
, box1
, box2
,
351 relangle1
=relangle1
, relangle2
=relangle2
,
352 absangle1
=absangle1
, absangle2
=absangle2
,
353 absbulge
=unit
.topt(absbulge
), relbulge
=relbulge
,
354 boxdists
=map(unit
.topt
, boxdists
))
358 """an arc is a round connector between the centers of two boxes.
360 either an angle in (-pi,pi)
361 or a bulge parameter in (-distance, distance)
362 (relbulge and absbulge are added)"""
364 def __init__(self
, box1
, box2
, relangle
=45,
365 absbulge
=None, relbulge
=None, boxdists
=[0,0]):
366 if absbulge
is not None:
367 absbulge
= unit
.topt(absbulge
)
368 arc_pt
.__init
__(self
, box1
, box2
,
370 absbulge
=absbulge
, relbulge
=relbulge
,
371 boxdists
=map(unit
.topt
, boxdists
))
374 class twolines(twolines_pt
):
376 """a twolines is a connector consisting of two straight lines.
377 The construcor takes a combination of angles and lengths:
378 either two angles (relative or absolute)
380 or one length and one angle"""
382 def __init__(self
, box1
, box2
,
383 absangle1
=None, absangle2
=None,
384 relangle1
=None, relangle2
=None, relangleM
=None,
385 length1
=None, length2
=None,
386 bezierradius
=None, beziersoftness
=1,
389 if length1
is not None:
390 length1
= unit
.topt(length1
)
391 if length2
is not None:
392 length2
= unit
.topt(length2
)
393 if bezierradius
is not None:
394 bezierradius
= unit
.topt(bezierradius
)
395 if arcradius
is not None:
396 arcradius
= unit
.topt(arcradius
)
397 twolines_pt
.__init
__(self
, box1
, box2
,
398 absangle1
=absangle1
, absangle2
=absangle2
,
399 relangle1
=relangle1
, relangle2
=relangle2
,
401 length1
=length1
, length2
=length2
,
402 bezierradius
=bezierradius
, beziersoftness
=1,
404 boxdists
=map(unit
.topt
, boxdists
))