1 \chapter{Module trafo: linear transformations
}
5 With the
\verb|trafo| module
\PyX\ supports linear transformations, which can
6 then be applied to canvases, B\'ezier paths and other objects. It consists
7 of the main class
\verb|trafo| representing a general linear
8 transformation and subclasses thereof, which provide special operations
9 like translation, rotation, scaling, and mirroring.
13 The
\verb|trafo| class represents a general linear
14 transformation, which is defined for a vector $
\vec{x
}$ as
16 \vec{x
}' =
\mathsf{A
}\,
\vec{x
} +
\vec{b
}\ ,
18 where $
\mathsf{A
}$ is the transformation matrix and $
\vec{b
}$ the
19 translation vector. The transformation matrix must not be singular,
20 \textit{i.e.
} we require $
\det \mathsf{A
} \ne 0$.
24 Multiple
\verb|trafo| instances can be multiplied, corresponding to a
25 consecutive application of the respective transformation. Note that
26 \verb|trafo1*trafo2| means that
\verb|trafo1| is applied after
27 \verb|trafo2|,
\textit{i.e.
} the new transformation is given
28 by $
\mathsf{A
} =
\mathsf{A
}_1
\mathsf{A
}_2$ and
29 $
\vec{b
} =
\mathsf{A
}_1
\vec{b
}_2 +
\vec{b
}_1$. Use the
\verb|trafo|
30 methods described below, if you prefer thinking the other way round.
31 The inverse of a transformation can be obtained via the
\verb|trafo|
32 method
\verb|inverse()|, defined by the inverse $
\mathsf{A
}^
{-
1}$ of
33 the transformation matrix and the translation vector
34 $-
\mathsf{A
}^
{-
1}\vec{b
}$.
36 The methods of the
\verb|trafo| class are summarized in the following
40 \begin{tableii
}{l|l
}{textrm
}{\texttt{trafo
} method
}{function
}
41 \lineii{\texttt{\_\_init\_\_(matrix=((
1,
0),(
0,
1)), vector=(
0,
0)):
}}{create new
\texttt{trafo
} instance with transformation
\texttt{matrix
} and
\texttt{vector
}.
}
42 \lineii{\texttt{apply(x, y)
}}{apply
\texttt{trafo
} to point vector $(
\mathtt{x
},
\mathtt{y
})$.
}
43 \lineii{\texttt{inverse()
}}{returns inverse transformation of
\texttt{trafo
}.
}
44 \lineii{\texttt{mirrored(angle)
}}{returns
\texttt{trafo
} followed by mirroring at line through $(
0,
0)$ with direction
\texttt{angle
} in degrees.
}
45 \lineii{\texttt{rotated(angle, x=None, y=None)
}}{returns
\texttt{trafo
} followed by rotation by
\texttt{angle
} degrees around point $(
\mathtt{x
},
\mathtt{y
})$, or $(
0,
0)$, if not given.
}
46 \lineii{\texttt{scaled(sx, sy=None, x=None, y=None)
}}{returns
\texttt{trafo
} followed by scaling with scaling factor
\texttt{sx
} in $x$-direction,
\texttt{sy
} in $y$-direction ($
\mathtt{sy
}=
\mathtt{sx
}$, if not given) with scaling center $(
\mathtt{x
},
\mathtt{y
})$, or $(
0,
0)$, if not given.
}
47 \lineii{\texttt{translated(x, y)
}}{returns
\texttt{trafo
} followed by translation by vector $(
\mathtt{x
},
\mathtt{y
})$.
}
48 \lineii{\texttt{slanted(a, angle=
0, x=None, y=None)
}}{returns
\texttt{trafo
} followed by XXX
}
54 \section{Subclasses of trafo
}
56 The
\verb|trafo| module provides a number of subclasses of
57 the
\verb|trafo| class, each of which corresponds to one
\verb|trafo|
58 method. They are listed in the following table:
61 \begin{tableii
}{l|l
}{textrm
}{\texttt{trafo
} subclass
}{function
}
62 \lineii{\texttt{mirror(angle)
}}{mirroring at line through $(
0,
0)$ with direction
\texttt{angle
} in degrees.
}
63 \lineii{\texttt{rotate(angle, x=None, y=None)
}}{rotation by
\texttt{angle
} degrees around point $(
\mathtt{x
},
\mathtt{y
})$, or $(
0,
0)$, if not given.
}
64 \lineii{\texttt{scale(sx, sy=None, x=None, y=None)
}}{scaling with scaling factor
\texttt{sx
} in $x$-direction,
\texttt{sy
} in $y$-direction ($
\mathtt{sy
}=
\mathtt{sx
}$, if not given) with scaling center $(
\mathtt{x
},
\mathtt{y
})$, or $(
0,
0)$, if not given.
}
65 \lineii{\texttt{translate(x, y)
}}{translation by vector $(
\mathtt{x
},
\mathtt{y
})$.
}
66 \lineii{\texttt{slant(a, angle=
0, x=None, y=None)
}}{XXX
}
77 %%% TeX-master: "manual.tex"