GPL -> Latex license
[PyX/mjg.git] / pyx / box.py
blobd81e386b9ffbbf7ead93d6b3157cb745f8599141
1 #!/usr/bin/env python
4 # Copyright (C) 2002-2003 Jörg Lehmann <joergl@users.sourceforge.net>
5 # Copyright (C) 2002-2003 André Wobst <wobsta@users.sourceforge.net>
7 # This file is part of PyX (http://pyx.sourceforge.net/).
9 # PyX is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 2 of the License, or
12 # (at your option) any later version.
14 # PyX is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with PyX; if not, write to the Free Software
21 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 import types, re, math, string, sys
25 import bbox, path, unit, trafo, helper
28 class BoxCrossError(Exception): pass
30 class _polygon:
32 def __init__(self, corners=None, center=None):
33 self.corners = corners
34 self.center = center
35 if self.center is None:
36 self._ensurecenter()
38 def _ensurecenter(self):
39 if self.center is None:
40 self.center = [0,0]
41 for corn in self.corners:
42 self.center = [self.center[0] + corn[0], self.center[1] + corn[1]]
43 self.center = [self.center[0]/len(self.corners), self.center[1]/len(self.corners)]
45 def path(self, centerradius=None, bezierradius=None, beziersoftness=1):
46 pathels = []
47 if centerradius is not None and self.center is not None:
48 r = unit.topt(unit.length(centerradius, default_type="v"))
49 pathels.append(path._arc(self.center[0], self.center[1], r, 0, 360))
50 pathels.append(path.closepath())
51 if bezierradius is None:
52 pathels.append(path._moveto(self.corners[0][0], self.corners[0][1]))
53 for x, y in self.corners[1:]:
54 pathels.append(path._lineto(x, y))
55 pathels.append(path.closepath())
56 else:
57 # curved box plotting by Michael Schindler
58 l = len(self.corners)
59 if helper.issequence(beziersoftness):
60 if not (len(beziersoftness) == l): raise ValueError
61 else:
62 beziersoftness = [float(beziersoftness)]*l
63 if helper.issequence(bezierradius):
64 r = list(bezierradius)
65 if len(bezierradius) == l:
66 for oner, i in zip(r, range(l)):
67 if helper.issequence(oner):
68 if len(oner) == 2:
69 r[i] = [unit.topt(oner[0]), unit.topt(oner[1])]
70 else: raise ValueError
71 else:
72 r[i] = [unit.topt(oner)]*2
73 else: raise ValueError
74 else:
75 r = [[unit.topt(bezierradius)]*2]*l
76 for i in range(l):
77 c = self.corners[i]
78 def normed(*v):
79 n = math.sqrt(v[0] * v[0] + v[1] * v[1])
80 return v[0] / n, v[1] / n
81 d1 = normed(self.corners[(i - 1 + l) % l][0] - c[0],
82 self.corners[(i - 1 + l) % l][1] - c[1])
83 d2 = normed(self.corners[(i + 1 + l) % l][0] - c[0],
84 self.corners[(i + 1 + l) % l][1] - c[1])
85 dc = normed(d1[0] + d2[0], d1[1] + d2[1])
86 f = 0.3192 * beziersoftness[i]
87 g = (15.0 * f + math.sqrt(-15.0*f*f + 24.0*f))/12.0
88 f1 = c[0] + f * d1[0] * r[i][0], c[1] + f * d1[1] * r[i][0]
89 f2 = c[0] + f * d2[0] * r[i][1], c[1] + f * d2[1] * r[i][1]
90 g1 = c[0] + g * d1[0] * r[i][0], c[1] + g * d1[1] * r[i][0]
91 g2 = c[0] + g * d2[0] * r[i][1], c[1] + g * d2[1] * r[i][1]
92 d1 = c[0] + d1[0] * r[i][0], c[1] + d1[1] * r[i][0]
93 d2 = c[0] + d2[0] * r[i][1], c[1] + d2[1] * r[i][1]
94 e = 0.5 * (f1[0] + f2[0]), 0.5 * (f1[1] + f2[1])
95 if i:
96 pathels.append(path._lineto(*d1))
97 else:
98 pathels.append(path._moveto(*d1))
99 pathels.append(path._curveto(*(g1 + f1 + e)))
100 pathels.append(path._curveto(*(f2 + g2 + d2)))
101 pathels.append(path.closepath())
102 return path.path(*pathels)
104 def transform(self, *trafos):
105 for trafo in trafos:
106 if self.center is not None:
107 self.center = trafo._apply(*self.center)
108 self.corners = [trafo._apply(*point) for point in self.corners]
110 def reltransform(self, *trafos):
111 if self.center is not None:
112 trafos = ([trafo._translate(-self.center[0], -self.center[1])] +
113 list(trafos) +
114 [trafo._translate(self.center[0], self.center[1])])
115 self.transform(*trafos)
117 def successivepointnumbers(self):
118 return [i and (i - 1, i) or (len(self.corners) - 1, 0) for i in range(len(self.corners))]
120 def successivepoints(self):
121 return [(self.corners[i], self.corners[j]) for i, j in self.successivepointnumbers()]
123 def _circlealignlinevector(self, a, dx, dy, ex, ey, fx, fy, epsilon=1e-10):
124 cx, cy = self.center
125 gx, gy = ex - fx, ey - fy # direction vector
126 if gx*gx + gy*gy < epsilon: # zero line length
127 return None # no solution -> return None
128 rsplit = (dx*gx + dy*gy) * 1.0 / (gx*gx + gy*gy)
129 bx, by = dx - gx * rsplit, dy - gy * rsplit
130 if bx*bx + by*by < epsilon: # zero projection
131 return None # no solution -> return None
132 if bx*gy - by*gx < 0: # half space
133 return None # no solution -> return None
134 sfactor = math.sqrt((dx*dx + dy*dy) / (bx*bx + by*by))
135 bx, by = a * bx * sfactor, a * by * sfactor
136 alpha = ((bx+cx-ex)*dy - (by+cy-ey)*dx) * 1.0 / (gy*dx - gx*dy)
137 if alpha > 0 - epsilon and alpha < 1 + epsilon:
138 beta = ((ex-bx-cx)*gy - (ey-by-cy)*gx) * 1.0 / (gx*dy - gy*dx)
139 return beta*dx, beta*dy # valid solution -> return align tuple
140 # crossing point at the line, but outside a valid range
141 if alpha < 0:
142 return 0 # crossing point outside e
143 return 1 # crossing point outside f
145 def _linealignlinevector(self, a, dx, dy, ex, ey, fx, fy, epsilon=1e-10):
146 cx, cy = self.center
147 gx, gy = ex - fx, ey - fy # direction vector
148 if gx*gx + gy*gy < epsilon: # zero line length
149 return None # no solution -> return None
150 if gy*dx - gx*dy < -epsilon: # half space
151 return None # no solution -> return None
152 if dx*gx + dy*gy > epsilon or dx*gx + dy*gy < -epsilon:
153 if dx*gx + dy*gy < 0: # angle bigger 90 degree
154 return 0 # use point e
155 return 1 # use point f
156 # a and g are othorgonal
157 alpha = ((a*dx+cx-ex)*dy - (a*dy+cy-ey)*dx) * 1.0 / (gy*dx - gx*dy)
158 if alpha > 0 - epsilon and alpha < 1 + epsilon:
159 beta = ((ex-a*dx-cx)*gy - (ey-a*dy-cy)*gx) * 1.0 / (gx*dy - gy*dx)
160 return beta*dx, beta*dy # valid solution -> return align tuple
161 # crossing point at the line, but outside a valid range
162 if alpha < 0:
163 return 0 # crossing point outside e
164 return 1 # crossing point outside f
166 def _circlealignpointvector(self, a, dx, dy, px, py, epsilon=1e-10):
167 if a*a < epsilon:
168 return None
169 cx, cy = self.center
170 p = 2 * ((px-cx)*dx + (py-cy)*dy)
171 q = ((px-cx)*(px-cx) + (py-cy)*(py-cy) - a*a)
172 if p*p/4 - q < 0:
173 return None
174 if a > 0:
175 alpha = - p / 2 + math.sqrt(p*p/4 - q)
176 else:
177 alpha = - p / 2 - math.sqrt(p*p/4 - q)
178 return alpha*dx, alpha*dy
180 def _linealignpointvector(self, a, dx, dy, px, py):
181 cx, cy = self.center
182 beta = (a*dx+cx-px)*dy - (a*dy+cy-py)*dx
183 return a*dx - beta*dy - px + cx, a*dy + beta*dx - py + cy
185 def _alignvector(self, a, dx, dy, alignlinevector, alignpointvector):
186 n = math.sqrt(dx * dx + dy * dy)
187 dx, dy = dx / n, dy / n
188 linevectors = map(lambda (p1, p2), self=self, a=a, dx=dx, dy=dy, alignlinevector=alignlinevector:
189 alignlinevector(a, dx, dy, *(p1 + p2)), self.successivepoints())
190 for linevector in linevectors:
191 if type(linevector) is types.TupleType:
192 return linevector
193 for i, j in self.successivepointnumbers():
194 l1, l2 = linevectors[i], linevectors[j]
195 if (l1 is not None or l2 is not None) and (l1 == 1 or l1 is None) and (l2 == 0 or l2 is None):
196 return alignpointvector(a, dx, dy, *self.successivepoints()[j][0])
197 return a*dx, a*dy
199 def _circlealignvector(self, a, dx, dy):
200 return self._alignvector(a, dx, dy, self._circlealignlinevector, self._circlealignpointvector)
202 def _linealignvector(self, a, dx, dy):
203 return self._alignvector(a, dx, dy, self._linealignlinevector, self._linealignpointvector)
205 def circlealignvector(self, a, dx, dy):
206 return map(unit.t_pt, self._circlealignvector(unit.topt(a), dx, dy))
208 def linealignvector(self, a, dx, dy):
209 return map(unit.t_pt, self._linealignvector(unit.topt(a), dx, dy))
211 def _circlealign(self, *args):
212 self.transform(trafo._translate(*self._circlealignvector(*args)))
213 return self
215 def _linealign(self, *args):
216 self.transform(trafo._translate(*self._linealignvector(*args)))
217 return self
219 def circlealign(self, *args):
220 self.transform(trafo.translate(*self.circlealignvector(*args)))
221 return self
223 def linealign(self, *args):
224 self.transform(trafo.translate(*self.linealignvector(*args)))
225 return self
227 def _extent(self, dx, dy):
228 n = math.sqrt(dx * dx + dy * dy)
229 dx, dy = dx / n, dy / n
230 oldcenter = self.center
231 if self.center is None:
232 self.center = 0, 0
233 x1, y1 = self._linealignvector(0, dx, dy)
234 x2, y2 = self._linealignvector(0, -dx, -dy)
235 self.center = oldcenter
236 return (x1-x2)*dx + (y1-y2)*dy
238 def extent(self, dx, dy):
239 return unit.t_pt(self._extent(dx, dy))
241 def _pointdistance(self, x, y):
242 result = None
243 for p1, p2 in self.successivepoints():
244 gx, gy = p2[0] - p1[0], p2[1] - p1[1]
245 if gx * gx + gy * gy < 1e-10:
246 dx, dy = p1[0] - x, p1[1] - y
247 else:
248 a = (gx * (x - p1[0]) + gy * (y - p1[1])) / (gx * gx + gy * gy)
249 if a < 0:
250 dx, dy = p1[0] - x, p1[1] - y
251 elif a > 1:
252 dx, dy = p2[0] - x, p2[1] - y
253 else:
254 dx, dy = x - p1[0] - a * gx, y - p1[1] - a * gy
255 new = math.sqrt(dx * dx + dy * dy)
256 if result is None or new < result:
257 result = new
258 return result
260 def pointdistance(self, x, y):
261 return unit.t_pt(self._pointdistance(unit.topt(x), unit.topt(y)))
263 def _boxdistance(self, other, epsilon=1e-10):
264 # XXX: boxes crossing and distance calculation is O(N^2)
265 for p1, p2 in self.successivepoints():
266 for p3, p4 in other.successivepoints():
267 a = (p4[1] - p3[1]) * (p3[0] - p1[0]) - (p4[0] - p3[0]) * (p3[1] - p1[1])
268 b = (p2[1] - p1[1]) * (p3[0] - p1[0]) - (p2[0] - p1[0]) * (p3[1] - p1[1])
269 c = (p2[0] - p1[0]) * (p4[1] - p3[1]) - (p2[1] - p1[1]) * (p4[0] - p3[0])
270 if (abs(c) > 1e-10 and
271 a / c > -epsilon and a / c < 1 + epsilon and
272 b / c > -epsilon and b / c < 1 + epsilon):
273 raise BoxCrossError
274 result = None
275 for x, y in other.corners:
276 new = self._pointdistance(x, y)
277 if result is None or new < result:
278 result = new
279 for x, y in self.corners:
280 new = other._pointdistance(x, y)
281 if result is None or new < result:
282 result = new
283 return result
285 def boxdistance(self, other):
286 return unit.t_pt(self._boxdistance(other))
288 def bbox(self):
289 return bbox._bbox(min([x[0] for x in self.corners]),
290 min([x[1] for x in self.corners]),
291 max([x[0] for x in self.corners]),
292 max([x[1] for x in self.corners]))
295 def _genericalignequal(method, polygons, a, dx, dy):
296 vec = None
297 for p in polygons:
298 v = method(p, a, dx, dy)
299 if vec is None or vec[0] * dx + vec[1] * dy < v[0] * dx + v[1] * dy:
300 vec = v
301 for p in polygons:
302 p.transform(trafo._translate(*vec))
305 def _circlealignequal(polygons, *args):
306 _genericalignequal(_polygon._circlealignvector, polygons, *args)
308 def _linealignequal(polygons, *args):
309 _genericalignequal(_polygon._linealignvector, polygons, *args)
311 def circlealignequal(polygons, a, *args):
312 _circlealignequal(polygons, unit.topt(a), *args)
314 def linealignequal(polygons, a, *args):
315 _linealignequal(polygons, unit.topt(a), *args)
318 def _tile(polygons, a, dx, dy):
319 maxextent = polygons[0]._extent(dx, dy)
320 for p in polygons[1:]:
321 extent = p._extent(dx, dy)
322 if extent > maxextent:
323 maxextent = extent
324 d = 0
325 for p in polygons:
326 p.transform(trafo._translate(d*dx, d*dy))
327 d += maxextent + a
330 def tile(polygons, a, dx, dy):
331 _tile(polygons, unit.topt(a), dx, dy)
334 class polygon(_polygon):
336 def __init__(self, corners=None, center=None, **args):
337 corners = [[unit.topt(x) for x in corner] for corner in corners]
338 if center is not None:
339 center = map(unit.topt, center)
340 _polygon.__init__(self, corners=corners, center=center, **args)
343 class _rect(_polygon):
345 def __init__(self, x, y, width, height, relcenter=(0, 0), abscenter=(0, 0),
346 corners=helper.nodefault, center=helper.nodefault, **args):
347 if corners != helper.nodefault or center != helper.nodefault:
348 raise ValueError
349 _polygon.__init__(self, corners=((x, y),
350 (x + width, y),
351 (x + width, y + height),
352 (x, y + height)),
353 center=(x + relcenter[0] * width + abscenter[0],
354 y + relcenter[1] * height + abscenter[1]),
355 **args)
358 class rect(_rect):
360 def __init__(self, x, y, width, height, relcenter=(0, 0), abscenter=(0, 0), **args):
361 _rect.__init__(self, unit.topt(x), unit.topt(y), unit.topt(width), unit.topt(height),
362 relcenter=relcenter, abscenter=(unit.topt(abscenter[0]), unit.topt(abscenter[1])), **args)