corrected some weird spacing problems in message handlers
[PyX/mjg.git] / pyx / box.py
blob1b3c2e486b77315eb757204e4d2249e62a9d9f25
1 #!/usr/bin/env python
2 # -*- coding: ISO-8859-1 -*-
5 # Copyright (C) 2002-2003 Jörg Lehmann <joergl@users.sourceforge.net>
6 # Copyright (C) 2002-2003 André Wobst <wobsta@users.sourceforge.net>
8 # This file is part of PyX (http://pyx.sourceforge.net/).
10 # PyX is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
15 # PyX is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with PyX; if not, write to the Free Software
22 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 import types, math
26 import bbox, path, unit, trafo, helper
29 class BoxCrossError(Exception): pass
31 class _polygon:
33 def __init__(self, corners=None, center=None):
34 self.corners = corners
35 self.center = center
36 if self.center is None:
37 self._ensurecenter()
39 def _ensurecenter(self):
40 if self.center is None:
41 self.center = [0,0]
42 for corn in self.corners:
43 self.center = [self.center[0] + corn[0], self.center[1] + corn[1]]
44 self.center = [self.center[0]/len(self.corners), self.center[1]/len(self.corners)]
46 def path(self, centerradius=None, bezierradius=None, beziersoftness=1):
47 pathels = []
48 if centerradius is not None and self.center is not None:
49 r = unit.topt(unit.length(centerradius, default_type="v"))
50 pathels.append(path._arc(self.center[0], self.center[1], r, 0, 360))
51 pathels.append(path.closepath())
52 if bezierradius is None:
53 pathels.append(path._moveto(self.corners[0][0], self.corners[0][1]))
54 for x, y in self.corners[1:]:
55 pathels.append(path._lineto(x, y))
56 pathels.append(path.closepath())
57 else:
58 # curved box plotting by Michael Schindler
59 l = len(self.corners)
60 if helper.issequence(beziersoftness):
61 if not (len(beziersoftness) == l): raise ValueError
62 else:
63 beziersoftness = [float(beziersoftness)]*l
64 if helper.issequence(bezierradius):
65 r = list(bezierradius)
66 if len(bezierradius) == l:
67 for oner, i in zip(r, range(l)):
68 if helper.issequence(oner):
69 if len(oner) == 2:
70 r[i] = [unit.topt(oner[0]), unit.topt(oner[1])]
71 else: raise ValueError
72 else:
73 r[i] = [unit.topt(oner)]*2
74 else: raise ValueError
75 else:
76 r = [[unit.topt(bezierradius)]*2]*l
77 for i in range(l):
78 c = self.corners[i]
79 def normed(*v):
80 n = math.sqrt(v[0] * v[0] + v[1] * v[1])
81 return v[0] / n, v[1] / n
82 d1 = normed(self.corners[(i - 1 + l) % l][0] - c[0],
83 self.corners[(i - 1 + l) % l][1] - c[1])
84 d2 = normed(self.corners[(i + 1 + l) % l][0] - c[0],
85 self.corners[(i + 1 + l) % l][1] - c[1])
86 dc = normed(d1[0] + d2[0], d1[1] + d2[1])
87 f = 0.3192 * beziersoftness[i]
88 g = (15.0 * f + math.sqrt(-15.0*f*f + 24.0*f))/12.0
89 f1 = c[0] + f * d1[0] * r[i][0], c[1] + f * d1[1] * r[i][0]
90 f2 = c[0] + f * d2[0] * r[i][1], c[1] + f * d2[1] * r[i][1]
91 g1 = c[0] + g * d1[0] * r[i][0], c[1] + g * d1[1] * r[i][0]
92 g2 = c[0] + g * d2[0] * r[i][1], c[1] + g * d2[1] * r[i][1]
93 d1 = c[0] + d1[0] * r[i][0], c[1] + d1[1] * r[i][0]
94 d2 = c[0] + d2[0] * r[i][1], c[1] + d2[1] * r[i][1]
95 e = 0.5 * (f1[0] + f2[0]), 0.5 * (f1[1] + f2[1])
96 if i:
97 pathels.append(path._lineto(*d1))
98 else:
99 pathels.append(path._moveto(*d1))
100 pathels.append(path._curveto(*(g1 + f1 + e)))
101 pathels.append(path._curveto(*(f2 + g2 + d2)))
102 pathels.append(path.closepath())
103 return path.path(*pathels)
105 def transform(self, *trafos):
106 for trafo in trafos:
107 if self.center is not None:
108 self.center = trafo._apply(*self.center)
109 self.corners = [trafo._apply(*point) for point in self.corners]
111 def reltransform(self, *trafos):
112 if self.center is not None:
113 trafos = ([trafo._translate(-self.center[0], -self.center[1])] +
114 list(trafos) +
115 [trafo._translate(self.center[0], self.center[1])])
116 self.transform(*trafos)
118 def successivepointnumbers(self):
119 return [i and (i - 1, i) or (len(self.corners) - 1, 0) for i in range(len(self.corners))]
121 def successivepoints(self):
122 return [(self.corners[i], self.corners[j]) for i, j in self.successivepointnumbers()]
124 def _circlealignlinevector(self, a, dx, dy, ex, ey, fx, fy, epsilon=1e-10):
125 cx, cy = self.center
126 gx, gy = ex - fx, ey - fy # direction vector
127 if gx*gx + gy*gy < epsilon: # zero line length
128 return None # no solution -> return None
129 rsplit = (dx*gx + dy*gy) * 1.0 / (gx*gx + gy*gy)
130 bx, by = dx - gx * rsplit, dy - gy * rsplit
131 if bx*bx + by*by < epsilon: # zero projection
132 return None # no solution -> return None
133 if bx*gy - by*gx < 0: # half space
134 return None # no solution -> return None
135 sfactor = math.sqrt((dx*dx + dy*dy) / (bx*bx + by*by))
136 bx, by = a * bx * sfactor, a * by * sfactor
137 alpha = ((bx+cx-ex)*dy - (by+cy-ey)*dx) * 1.0 / (gy*dx - gx*dy)
138 if alpha > 0 - epsilon and alpha < 1 + epsilon:
139 beta = ((ex-bx-cx)*gy - (ey-by-cy)*gx) * 1.0 / (gx*dy - gy*dx)
140 return beta*dx, beta*dy # valid solution -> return align tuple
141 # crossing point at the line, but outside a valid range
142 if alpha < 0:
143 return 0 # crossing point outside e
144 return 1 # crossing point outside f
146 def _linealignlinevector(self, a, dx, dy, ex, ey, fx, fy, epsilon=1e-10):
147 cx, cy = self.center
148 gx, gy = ex - fx, ey - fy # direction vector
149 if gx*gx + gy*gy < epsilon: # zero line length
150 return None # no solution -> return None
151 if gy*dx - gx*dy < -epsilon: # half space
152 return None # no solution -> return None
153 if dx*gx + dy*gy > epsilon or dx*gx + dy*gy < -epsilon:
154 if dx*gx + dy*gy < 0: # angle bigger 90 degree
155 return 0 # use point e
156 return 1 # use point f
157 # a and g are othorgonal
158 alpha = ((a*dx+cx-ex)*dy - (a*dy+cy-ey)*dx) * 1.0 / (gy*dx - gx*dy)
159 if alpha > 0 - epsilon and alpha < 1 + epsilon:
160 beta = ((ex-a*dx-cx)*gy - (ey-a*dy-cy)*gx) * 1.0 / (gx*dy - gy*dx)
161 return beta*dx, beta*dy # valid solution -> return align tuple
162 # crossing point at the line, but outside a valid range
163 if alpha < 0:
164 return 0 # crossing point outside e
165 return 1 # crossing point outside f
167 def _circlealignpointvector(self, a, dx, dy, px, py, epsilon=1e-10):
168 if a*a < epsilon:
169 return None
170 cx, cy = self.center
171 p = 2 * ((px-cx)*dx + (py-cy)*dy)
172 q = ((px-cx)*(px-cx) + (py-cy)*(py-cy) - a*a)
173 if p*p/4 - q < 0:
174 return None
175 if a > 0:
176 alpha = - p / 2 + math.sqrt(p*p/4 - q)
177 else:
178 alpha = - p / 2 - math.sqrt(p*p/4 - q)
179 return alpha*dx, alpha*dy
181 def _linealignpointvector(self, a, dx, dy, px, py):
182 cx, cy = self.center
183 beta = (a*dx+cx-px)*dy - (a*dy+cy-py)*dx
184 return a*dx - beta*dy - px + cx, a*dy + beta*dx - py + cy
186 def _alignvector(self, a, dx, dy, alignlinevector, alignpointvector):
187 n = math.sqrt(dx * dx + dy * dy)
188 dx, dy = dx / n, dy / n
189 linevectors = map(lambda (p1, p2), self=self, a=a, dx=dx, dy=dy, alignlinevector=alignlinevector:
190 alignlinevector(a, dx, dy, *(p1 + p2)), self.successivepoints())
191 for linevector in linevectors:
192 if type(linevector) is types.TupleType:
193 return linevector
194 for i, j in self.successivepointnumbers():
195 l1, l2 = linevectors[i], linevectors[j]
196 if (l1 is not None or l2 is not None) and (l1 == 1 or l1 is None) and (l2 == 0 or l2 is None):
197 return alignpointvector(a, dx, dy, *self.successivepoints()[j][0])
198 return a*dx, a*dy
200 def _circlealignvector(self, a, dx, dy):
201 return self._alignvector(a, dx, dy, self._circlealignlinevector, self._circlealignpointvector)
203 def _linealignvector(self, a, dx, dy):
204 return self._alignvector(a, dx, dy, self._linealignlinevector, self._linealignpointvector)
206 def circlealignvector(self, a, dx, dy):
207 return map(unit.t_pt, self._circlealignvector(unit.topt(a), dx, dy))
209 def linealignvector(self, a, dx, dy):
210 return map(unit.t_pt, self._linealignvector(unit.topt(a), dx, dy))
212 def _circlealign(self, *args):
213 self.transform(trafo._translate(*self._circlealignvector(*args)))
214 return self
216 def _linealign(self, *args):
217 self.transform(trafo._translate(*self._linealignvector(*args)))
218 return self
220 def circlealign(self, *args):
221 self.transform(trafo.translate(*self.circlealignvector(*args)))
222 return self
224 def linealign(self, *args):
225 self.transform(trafo.translate(*self.linealignvector(*args)))
226 return self
228 def _extent(self, dx, dy):
229 n = math.sqrt(dx * dx + dy * dy)
230 dx, dy = dx / n, dy / n
231 oldcenter = self.center
232 if self.center is None:
233 self.center = 0, 0
234 x1, y1 = self._linealignvector(0, dx, dy)
235 x2, y2 = self._linealignvector(0, -dx, -dy)
236 self.center = oldcenter
237 return (x1-x2)*dx + (y1-y2)*dy
239 def extent(self, dx, dy):
240 return unit.t_pt(self._extent(dx, dy))
242 def _pointdistance(self, x, y):
243 result = None
244 for p1, p2 in self.successivepoints():
245 gx, gy = p2[0] - p1[0], p2[1] - p1[1]
246 if gx * gx + gy * gy < 1e-10:
247 dx, dy = p1[0] - x, p1[1] - y
248 else:
249 a = (gx * (x - p1[0]) + gy * (y - p1[1])) / (gx * gx + gy * gy)
250 if a < 0:
251 dx, dy = p1[0] - x, p1[1] - y
252 elif a > 1:
253 dx, dy = p2[0] - x, p2[1] - y
254 else:
255 dx, dy = x - p1[0] - a * gx, y - p1[1] - a * gy
256 new = math.sqrt(dx * dx + dy * dy)
257 if result is None or new < result:
258 result = new
259 return result
261 def pointdistance(self, x, y):
262 return unit.t_pt(self._pointdistance(unit.topt(x), unit.topt(y)))
264 def _boxdistance(self, other, epsilon=1e-10):
265 # XXX: boxes crossing and distance calculation is O(N^2)
266 for p1, p2 in self.successivepoints():
267 for p3, p4 in other.successivepoints():
268 a = (p4[1] - p3[1]) * (p3[0] - p1[0]) - (p4[0] - p3[0]) * (p3[1] - p1[1])
269 b = (p2[1] - p1[1]) * (p3[0] - p1[0]) - (p2[0] - p1[0]) * (p3[1] - p1[1])
270 c = (p2[0] - p1[0]) * (p4[1] - p3[1]) - (p2[1] - p1[1]) * (p4[0] - p3[0])
271 if (abs(c) > 1e-10 and
272 a / c > -epsilon and a / c < 1 + epsilon and
273 b / c > -epsilon and b / c < 1 + epsilon):
274 raise BoxCrossError
275 result = None
276 for x, y in other.corners:
277 new = self._pointdistance(x, y)
278 if result is None or new < result:
279 result = new
280 for x, y in self.corners:
281 new = other._pointdistance(x, y)
282 if result is None or new < result:
283 result = new
284 return result
286 def boxdistance(self, other):
287 return unit.t_pt(self._boxdistance(other))
289 def bbox(self):
290 return bbox._bbox(min([x[0] for x in self.corners]),
291 min([x[1] for x in self.corners]),
292 max([x[0] for x in self.corners]),
293 max([x[1] for x in self.corners]))
296 def _genericalignequal(method, polygons, a, dx, dy):
297 vec = None
298 for p in polygons:
299 v = method(p, a, dx, dy)
300 if vec is None or vec[0] * dx + vec[1] * dy < v[0] * dx + v[1] * dy:
301 vec = v
302 for p in polygons:
303 p.transform(trafo._translate(*vec))
306 def _circlealignequal(polygons, *args):
307 _genericalignequal(_polygon._circlealignvector, polygons, *args)
309 def _linealignequal(polygons, *args):
310 _genericalignequal(_polygon._linealignvector, polygons, *args)
312 def circlealignequal(polygons, a, *args):
313 _circlealignequal(polygons, unit.topt(a), *args)
315 def linealignequal(polygons, a, *args):
316 _linealignequal(polygons, unit.topt(a), *args)
319 def _tile(polygons, a, dx, dy):
320 maxextent = polygons[0]._extent(dx, dy)
321 for p in polygons[1:]:
322 extent = p._extent(dx, dy)
323 if extent > maxextent:
324 maxextent = extent
325 d = 0
326 for p in polygons:
327 p.transform(trafo._translate(d*dx, d*dy))
328 d += maxextent + a
331 def tile(polygons, a, dx, dy):
332 _tile(polygons, unit.topt(a), dx, dy)
335 class polygon(_polygon):
337 def __init__(self, corners=None, center=None, **args):
338 corners = [[unit.topt(x) for x in corner] for corner in corners]
339 if center is not None:
340 center = map(unit.topt, center)
341 _polygon.__init__(self, corners=corners, center=center, **args)
344 class _rect(_polygon):
346 def __init__(self, x, y, width, height, relcenter=(0, 0), abscenter=(0, 0),
347 corners=helper.nodefault, center=helper.nodefault, **args):
348 if corners != helper.nodefault or center != helper.nodefault:
349 raise ValueError
350 _polygon.__init__(self, corners=((x, y),
351 (x + width, y),
352 (x + width, y + height),
353 (x, y + height)),
354 center=(x + relcenter[0] * width + abscenter[0],
355 y + relcenter[1] * height + abscenter[1]),
356 **args)
359 class rect(_rect):
361 def __init__(self, x, y, width, height, relcenter=(0, 0), abscenter=(0, 0), **args):
362 _rect.__init__(self, unit.topt(x), unit.topt(y), unit.topt(width), unit.topt(height),
363 relcenter=relcenter, abscenter=(unit.topt(abscenter[0]), unit.topt(abscenter[1])), **args)