textboxes (experimental)
[PyX/mjg.git] / pyx / box.py
blob8e804e107402ff41d964b6e2e5fa3d6085283a38
1 #!/usr/bin/env python
2 # -*- coding: ISO-8859-1 -*-
5 # Copyright (C) 2002-2004 Jörg Lehmann <joergl@users.sourceforge.net>
6 # Copyright (C) 2003-2004 Michael Schindler <m-schindler@users.sourceforge.net>
7 # Copyright (C) 2002-2004 André Wobst <wobsta@users.sourceforge.net>
9 # This file is part of PyX (http://pyx.sourceforge.net/).
11 # PyX is free software; you can redistribute it and/or modify
12 # it under the terms of the GNU General Public License as published by
13 # the Free Software Foundation; either version 2 of the License, or
14 # (at your option) any later version.
16 # PyX is distributed in the hope that it will be useful,
17 # but WITHOUT ANY WARRANTY; without even the implied warranty of
18 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 # GNU General Public License for more details.
21 # You should have received a copy of the GNU General Public License
22 # along with PyX; if not, write to the Free Software
23 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 import types, math
27 import bbox, path, unit, trafo, helper
30 class BoxCrossError(Exception): pass
32 class polygon_pt:
34 def __init__(self, corners=None, center=None):
35 self.corners = corners
36 self.center = center
37 if self.center is None:
38 self._ensurecenter()
40 def _ensurecenter(self):
41 if self.center is None:
42 self.center = [0,0]
43 for corn in self.corners:
44 self.center = [self.center[0] + corn[0], self.center[1] + corn[1]]
45 self.center = [self.center[0]/len(self.corners), self.center[1]/len(self.corners)]
47 def path(self, centerradius=None, bezierradius=None, beziersoftness=1):
48 pathels = []
49 if centerradius is not None and self.center is not None:
50 r = unit.topt(unit.length(centerradius, default_type="v"))
51 pathels.append(path.arc_pt(self.center[0], self.center[1], r, 0, 360))
52 pathels.append(path.closepath())
53 if bezierradius is None:
54 pathels.append(path.moveto_pt(self.corners[0][0], self.corners[0][1]))
55 for x, y in self.corners[1:]:
56 pathels.append(path.lineto_pt(x, y))
57 pathels.append(path.closepath())
58 else:
59 # curved box plotting by Michael Schindler
60 l = len(self.corners)
61 # make beziersoftnes a list of length l
62 if helper.issequence(beziersoftness):
63 if not (len(beziersoftness) == l): raise ValueError
64 else:
65 beziersoftness = [float(beziersoftness)]*l
66 # make bezierradius a list (lenght l) of 2-tuples
67 if helper.issequence(bezierradius):
68 r = list(bezierradius)
69 if len(bezierradius) == l:
70 for oner, i in zip(r, range(l)):
71 if helper.issequence(oner):
72 if len(oner) == 2:
73 r[i] = [unit.topt(oner[0]), unit.topt(oner[1])]
74 else: raise ValueError
75 else:
76 r[i] = [unit.topt(oner)]*2
77 else: raise ValueError
78 else:
79 r = [[unit.topt(bezierradius)]*2]*l
80 for i in range(l):
81 c = self.corners[i]
82 def normed(*v):
83 n = math.sqrt(v[0] * v[0] + v[1] * v[1])
84 return v[0] / n, v[1] / n
85 d1 = normed(self.corners[(i - 1 + l) % l][0] - c[0],
86 self.corners[(i - 1 + l) % l][1] - c[1])
87 d2 = normed(self.corners[(i + 1 + l) % l][0] - c[0],
88 self.corners[(i + 1 + l) % l][1] - c[1])
89 dc = normed(d1[0] + d2[0], d1[1] + d2[1])
90 f = 0.3192 * beziersoftness[i]
91 g = (15.0 * f + math.sqrt(-15.0*f*f + 24.0*f))/12.0
92 f1 = c[0] + f * d1[0] * r[i][0], c[1] + f * d1[1] * r[i][0]
93 f2 = c[0] + f * d2[0] * r[i][1], c[1] + f * d2[1] * r[i][1]
94 g1 = c[0] + g * d1[0] * r[i][0], c[1] + g * d1[1] * r[i][0]
95 g2 = c[0] + g * d2[0] * r[i][1], c[1] + g * d2[1] * r[i][1]
96 d1 = c[0] + d1[0] * r[i][0], c[1] + d1[1] * r[i][0]
97 d2 = c[0] + d2[0] * r[i][1], c[1] + d2[1] * r[i][1]
98 e = 0.5 * (f1[0] + f2[0]), 0.5 * (f1[1] + f2[1])
99 if i:
100 pathels.append(path.lineto_pt(*d1))
101 else:
102 pathels.append(path.moveto_pt(*d1))
103 pathels.append(path.curveto_pt(*(g1 + f1 + e)))
104 pathels.append(path.curveto_pt(*(f2 + g2 + d2)))
105 pathels.append(path.closepath())
106 return path.path(*pathels)
108 def transform(self, *trafos):
109 for trafo in trafos:
110 if self.center is not None:
111 self.center = trafo._apply(*self.center)
112 self.corners = [trafo._apply(*point) for point in self.corners]
114 def reltransform(self, *trafos):
115 if self.center is not None:
116 trafos = ([trafo.translate_pt(-self.center[0], -self.center[1])] +
117 list(trafos) +
118 [trafo.translate_pt(self.center[0], self.center[1])])
119 self.transform(*trafos)
121 def successivepointnumbers(self):
122 return [i and (i - 1, i) or (len(self.corners) - 1, 0) for i in range(len(self.corners))]
124 def successivepoints(self):
125 return [(self.corners[i], self.corners[j]) for i, j in self.successivepointnumbers()]
127 def circlealignlinevector_pt(self, a, dx, dy, ex, ey, fx, fy, epsilon=1e-10):
128 cx, cy = self.center
129 gx, gy = ex - fx, ey - fy # direction vector
130 if gx*gx + gy*gy < epsilon: # zero line length
131 return None # no solution -> return None
132 rsplit = (dx*gx + dy*gy) * 1.0 / (gx*gx + gy*gy)
133 bx, by = dx - gx * rsplit, dy - gy * rsplit
134 if bx*bx + by*by < epsilon: # zero projection
135 return None # no solution -> return None
136 if bx*gy - by*gx < 0: # half space
137 return None # no solution -> return None
138 sfactor = math.sqrt((dx*dx + dy*dy) / (bx*bx + by*by))
139 bx, by = a * bx * sfactor, a * by * sfactor
140 alpha = ((bx+cx-ex)*dy - (by+cy-ey)*dx) * 1.0 / (gy*dx - gx*dy)
141 if alpha > 0 - epsilon and alpha < 1 + epsilon:
142 beta = ((ex-bx-cx)*gy - (ey-by-cy)*gx) * 1.0 / (gx*dy - gy*dx)
143 return beta*dx, beta*dy # valid solution -> return align tuple
144 # crossing point at the line, but outside a valid range
145 if alpha < 0:
146 return 0 # crossing point outside e
147 return 1 # crossing point outside f
149 def linealignlinevector_pt(self, a, dx, dy, ex, ey, fx, fy, epsilon=1e-10):
150 cx, cy = self.center
151 gx, gy = ex - fx, ey - fy # direction vector
152 if gx*gx + gy*gy < epsilon: # zero line length
153 return None # no solution -> return None
154 if gy*dx - gx*dy < -epsilon: # half space
155 return None # no solution -> return None
156 if dx*gx + dy*gy > epsilon or dx*gx + dy*gy < -epsilon:
157 if dx*gx + dy*gy < 0: # angle bigger 90 degree
158 return 0 # use point e
159 return 1 # use point f
160 # a and g are othorgonal
161 alpha = ((a*dx+cx-ex)*dy - (a*dy+cy-ey)*dx) * 1.0 / (gy*dx - gx*dy)
162 if alpha > 0 - epsilon and alpha < 1 + epsilon:
163 beta = ((ex-a*dx-cx)*gy - (ey-a*dy-cy)*gx) * 1.0 / (gx*dy - gy*dx)
164 return beta*dx, beta*dy # valid solution -> return align tuple
165 # crossing point at the line, but outside a valid range
166 if alpha < 0:
167 return 0 # crossing point outside e
168 return 1 # crossing point outside f
170 def circlealignpointvector_pt(self, a, dx, dy, px, py, epsilon=1e-10):
171 if a*a < epsilon:
172 return None
173 cx, cy = self.center
174 p = 2 * ((px-cx)*dx + (py-cy)*dy)
175 q = ((px-cx)*(px-cx) + (py-cy)*(py-cy) - a*a)
176 if p*p/4 - q < 0:
177 return None
178 if a > 0:
179 alpha = - p / 2 + math.sqrt(p*p/4 - q)
180 else:
181 alpha = - p / 2 - math.sqrt(p*p/4 - q)
182 return alpha*dx, alpha*dy
184 def linealignpointvector_pt(self, a, dx, dy, px, py):
185 cx, cy = self.center
186 beta = (a*dx+cx-px)*dy - (a*dy+cy-py)*dx
187 return a*dx - beta*dy - px + cx, a*dy + beta*dx - py + cy
189 def alignvector_pt(self, a, dx, dy, alignlinevector, alignpointvector):
190 n = math.sqrt(dx * dx + dy * dy)
191 dx, dy = dx / n, dy / n
192 linevectors = map(lambda (p1, p2), self=self, a=a, dx=dx, dy=dy, alignlinevector=alignlinevector:
193 alignlinevector(a, dx, dy, *(p1 + p2)), self.successivepoints())
194 for linevector in linevectors:
195 if type(linevector) is types.TupleType:
196 return linevector
197 for i, j in self.successivepointnumbers():
198 l1, l2 = linevectors[i], linevectors[j]
199 if (l1 is not None or l2 is not None) and (l1 == 1 or l1 is None) and (l2 == 0 or l2 is None):
200 return alignpointvector(a, dx, dy, *self.successivepoints()[j][0])
201 return a*dx, a*dy
203 def circlealignvector_pt(self, a, dx, dy):
204 return self.alignvector_pt(a, dx, dy, self.circlealignlinevector_pt, self.circlealignpointvector_pt)
206 def linealignvector_pt(self, a, dx, dy):
207 return self.alignvector_pt(a, dx, dy, self.linealignlinevector_pt, self.linealignpointvector_pt)
209 def circlealignvector(self, a, dx, dy):
210 return map(unit.t_pt, self.circlealignvector_pt(unit.topt(a), dx, dy))
212 def linealignvector(self, a, dx, dy):
213 return map(unit.t_pt, self.linealignvector_pt(unit.topt(a), dx, dy))
215 def circlealign_pt(self, *args):
216 self.transform(trafo.translate_pt(*self.circlealignvector_pt(*args)))
217 return self
219 def linealign_pt(self, *args):
220 self.transform(trafo.translate_pt(*self.linealignvector_pt(*args)))
221 return self
223 def circlealign(self, *args):
224 self.reltransform(trafo.translate(*self.circlealignvector(*args)))
225 return self
227 def linealign(self, *args):
228 self.transform(trafo.translate(*self.linealignvector(*args)))
229 return self
231 def extent_pt(self, dx, dy):
232 n = math.sqrt(dx * dx + dy * dy)
233 dx, dy = dx / n, dy / n
234 oldcenter = self.center
235 if self.center is None:
236 self.center = 0, 0
237 x1, y1 = self.linealignvector_pt(0, dx, dy)
238 x2, y2 = self.linealignvector_pt(0, -dx, -dy)
239 self.center = oldcenter
240 return (x1-x2)*dx + (y1-y2)*dy
242 def extent(self, dx, dy):
243 return unit.t_pt(self.extent_pt(dx, dy))
245 def pointdistance_pt(self, x, y):
246 result = None
247 for p1, p2 in self.successivepoints():
248 gx, gy = p2[0] - p1[0], p2[1] - p1[1]
249 if gx * gx + gy * gy < 1e-10:
250 dx, dy = p1[0] - x, p1[1] - y
251 else:
252 a = (gx * (x - p1[0]) + gy * (y - p1[1])) / (gx * gx + gy * gy)
253 if a < 0:
254 dx, dy = p1[0] - x, p1[1] - y
255 elif a > 1:
256 dx, dy = p2[0] - x, p2[1] - y
257 else:
258 dx, dy = x - p1[0] - a * gx, y - p1[1] - a * gy
259 new = math.sqrt(dx * dx + dy * dy)
260 if result is None or new < result:
261 result = new
262 return result
264 def pointdistance(self, x, y):
265 return unit.t_pt(self.pointdistance_pt(unit.topt(x), unit.topt(y)))
267 def boxdistance_pt(self, other, epsilon=1e-10):
268 # XXX: boxes crossing and distance calculation is O(N^2)
269 for p1, p2 in self.successivepoints():
270 for p3, p4 in other.successivepoints():
271 a = (p4[1] - p3[1]) * (p3[0] - p1[0]) - (p4[0] - p3[0]) * (p3[1] - p1[1])
272 b = (p2[1] - p1[1]) * (p3[0] - p1[0]) - (p2[0] - p1[0]) * (p3[1] - p1[1])
273 c = (p2[0] - p1[0]) * (p4[1] - p3[1]) - (p2[1] - p1[1]) * (p4[0] - p3[0])
274 if (abs(c) > 1e-10 and
275 a / c > -epsilon and a / c < 1 + epsilon and
276 b / c > -epsilon and b / c < 1 + epsilon):
277 raise BoxCrossError
278 result = None
279 for x, y in other.corners:
280 new = self.pointdistance_pt(x, y)
281 if result is None or new < result:
282 result = new
283 for x, y in self.corners:
284 new = other.pointdistance_pt(x, y)
285 if result is None or new < result:
286 result = new
287 return result
289 def boxdistance(self, other):
290 return unit.t_pt(self.boxdistance_pt(other))
292 def bbox(self):
293 return bbox._bbox(min([x[0] for x in self.corners]),
294 min([x[1] for x in self.corners]),
295 max([x[0] for x in self.corners]),
296 max([x[1] for x in self.corners]))
299 def genericalignequal_pt(method, polygons, a, dx, dy):
300 vec = None
301 for p in polygons:
302 v = method(p, a, dx, dy)
303 if vec is None or vec[0] * dx + vec[1] * dy < v[0] * dx + v[1] * dy:
304 vec = v
305 for p in polygons:
306 p.transform(trafo.translate_pt(*vec))
309 def circlealignequal_pt(polygons, *args):
310 genericalignequal_pt(polygon_pt.circlealignvector_pt, polygons, *args)
312 def linealignequal_pt(polygons, *args):
313 genericalignequal_pt(polygon_pt.linealignvector_pt, polygons, *args)
315 def circlealignequal(polygons, a, *args):
316 circlealignequal_pt(polygons, unit.topt(a), *args)
318 def linealignequal(polygons, a, *args):
319 linealignequal_pt(polygons, unit.topt(a), *args)
322 def tile_pt(polygons, a, dx, dy):
323 maxextent = polygons[0].extent_pt(dx, dy)
324 for p in polygons[1:]:
325 extent = p.extent_pt(dx, dy)
326 if extent > maxextent:
327 maxextent = extent
328 d = 0
329 for p in polygons:
330 p.transform(trafo.translate_pt(d*dx, d*dy))
331 d += maxextent + a
334 def tile(polygons, a, dx, dy):
335 tile_pt(polygons, unit.topt(a), dx, dy)
338 class polygon(polygon_pt):
340 def __init__(self, corners=None, center=None, **args):
341 corners = [[unit.topt(x) for x in corner] for corner in corners]
342 if center is not None:
343 center = map(unit.topt, center)
344 polygon_pt.__init__(self, corners=corners, center=center, **args)
347 class rect_pt(polygon_pt):
349 def __init__(self, x, y, width, height, relcenter=(0, 0), abscenter=(0, 0),
350 corners=helper.nodefault, center=helper.nodefault, **args):
351 if corners != helper.nodefault or center != helper.nodefault:
352 raise ValueError
353 polygon_pt.__init__(self, corners=((x, y),
354 (x + width, y),
355 (x + width, y + height),
356 (x, y + height)),
357 center=(x + relcenter[0] * width + abscenter[0],
358 y + relcenter[1] * height + abscenter[1]),
359 **args)
362 class rect(rect_pt):
364 def __init__(self, x, y, width, height, relcenter=(0, 0), abscenter=(0, 0), **args):
365 rect_pt.__init__(self, unit.topt(x), unit.topt(y), unit.topt(width), unit.topt(height),
366 relcenter=relcenter,
367 abscenter=(unit.topt(abscenter[0]), unit.topt(abscenter[1])), **args)