1 # -*- encoding: utf-8 -*-
4 # Copyright (C) 2002-2011 Jörg Lehmann <joergl@users.sourceforge.net>
5 # Copyright (C) 2003-2006 Michael Schindler <m-schindler@users.sourceforge.net>
6 # Copyright (C) 2002-2011 André Wobst <wobsta@users.sourceforge.net>
8 # This file is part of PyX (http://pyx.sourceforge.net/).
10 # PyX is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
15 # PyX is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
20 # You should have received a copy of the GNU General Public License
21 # along with PyX; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
25 import mathutils
, path
, trafo
, unit
26 import bbox
as bboxmodule
29 # use new style classes when possible
34 ################################################################################
36 # specific exception for normpath-related problems
37 class NormpathException(Exception): pass
39 # invalid result marker
42 """invalid result marker class
44 The following norm(sub)path(item) methods:
51 return list of result values, which might contain the invalid instance
52 defined below to signal points, where the result is undefined due to
53 properties of the norm(sub)path(item). Accessing invalid leads to an
54 NormpathException, but you can test the result values by "is invalid".
58 raise NormpathException("invalid result (the requested value is undefined due to path properties)")
59 __str__
= __repr__
= __neg__
= invalid1
61 def invalid2(self
, other
):
63 __cmp__
= __add__
= __iadd__
= __sub__
= __isub__
= __mul__
= __imul__
= __div__
= __truediv__
= __idiv__
= invalid2
67 ################################################################################
69 # global epsilon (default precision of normsubpaths)
71 # minimal relative speed (abort condition for tangent information)
74 def set(epsilon
=None, minrelspeed
=None):
77 if epsilon
is not None:
79 if minrelspeed
is not None:
80 _minrelspeed
= minrelspeed
83 ################################################################################
85 ################################################################################
87 class normsubpathitem
:
89 """element of a normalized sub path
91 Various operations on normsubpathitems might be subject of
92 approximitions. Those methods get the finite precision epsilon,
93 which is the accuracy needed expressed as a length in pts.
95 normsubpathitems should never be modified inplace, since references
96 might be shared between several normsubpaths.
99 def arclen_pt(self
, epsilon
):
100 """return arc length in pts"""
103 def _arclentoparam_pt(self
, lengths_pt
, epsilon
):
104 """return a tuple of params and the total length arc length in pts"""
107 def arclentoparam_pt(self
, lengths_pt
, epsilon
):
108 """return a tuple of params"""
111 def at_pt(self
, params
):
112 """return coordinates at params in pts"""
115 def atbegin_pt(self
):
116 """return coordinates of first point in pts"""
120 """return coordinates of last point in pts"""
124 """return bounding box of normsubpathitem"""
128 """return control box of normsubpathitem
130 The control box also fully encloses the normsubpathitem but in the case of a Bezier
131 curve it is not the minimal box doing so. On the other hand, it is much faster
136 def curvature_pt(self
, params
):
137 """return the curvature at params in 1/pts
139 The result contains the invalid instance at positions, where the
140 curvature is undefined."""
143 def curveradius_pt(self
, params
):
144 """return the curvature radius at params in pts
146 The curvature radius is the inverse of the curvature. Where the
147 curvature is undefined, the invalid instance is returned. Note that
148 this radius can be negative or positive, depending on the sign of the
152 def intersect(self
, other
, epsilon
):
153 """intersect self with other normsubpathitem"""
156 def modifiedbegin_pt(self
, x_pt
, y_pt
):
157 """return a normsubpathitem with a modified beginning point"""
160 def modifiedend_pt(self
, x_pt
, y_pt
):
161 """return a normsubpathitem with a modified end point"""
164 def _paramtoarclen_pt(self
, param
, epsilon
):
165 """return a tuple of arc lengths and the total arc length in pts"""
169 """return pathitem corresponding to normsubpathitem"""
172 """return reversed normsubpathitem"""
175 def rotation(self
, params
):
176 """return rotation trafos (i.e. trafos without translations) at params"""
179 def segments(self
, params
):
180 """return segments of the normsubpathitem
182 The returned list of normsubpathitems for the segments between
183 the params. params needs to contain at least two values.
187 def trafo(self
, params
):
188 """return transformations at params"""
190 def transformed(self
, trafo
):
191 """return transformed normsubpathitem according to trafo"""
194 def outputPS(self
, file, writer
):
195 """write PS code corresponding to normsubpathitem to file"""
198 def outputPDF(self
, file, writer
):
199 """write PDF code corresponding to normsubpathitem to file"""
203 class normline_pt(normsubpathitem
):
205 """Straight line from (x0_pt, y0_pt) to (x1_pt, y1_pt) (coordinates in pts)"""
207 __slots__
= "x0_pt", "y0_pt", "x1_pt", "y1_pt"
209 def __init__(self
, x0_pt
, y0_pt
, x1_pt
, y1_pt
):
216 return "normline_pt(%g, %g, %g, %g)" % (self
.x0_pt
, self
.y0_pt
, self
.x1_pt
, self
.y1_pt
)
218 def _arclentoparam_pt(self
, lengths_pt
, epsilon
):
219 # do self.arclen_pt inplace for performance reasons
220 l_pt
= math
.hypot(self
.x0_pt
-self
.x1_pt
, self
.y0_pt
-self
.y1_pt
)
221 return [length_pt
/l_pt
for length_pt
in lengths_pt
], l_pt
223 def arclentoparam_pt(self
, lengths_pt
, epsilon
):
224 """return a tuple of params"""
225 return self
._arclentoparam
_pt
(lengths_pt
, epsilon
)[0]
227 def arclen_pt(self
, epsilon
):
228 return math
.hypot(self
.x0_pt
-self
.x1_pt
, self
.y0_pt
-self
.y1_pt
)
230 def at_pt(self
, params
):
231 return [(self
.x0_pt
+(self
.x1_pt
-self
.x0_pt
)*t
, self
.y0_pt
+(self
.y1_pt
-self
.y0_pt
)*t
)
234 def atbegin_pt(self
):
235 return self
.x0_pt
, self
.y0_pt
238 return self
.x1_pt
, self
.y1_pt
241 return bboxmodule
.bbox_pt(min(self
.x0_pt
, self
.x1_pt
), min(self
.y0_pt
, self
.y1_pt
),
242 max(self
.x0_pt
, self
.x1_pt
), max(self
.y0_pt
, self
.y1_pt
))
246 def curvature_pt(self
, params
):
247 return [0] * len(params
)
249 def curveradius_pt(self
, params
):
250 return [invalid
] * len(params
)
252 def intersect(self
, other
, epsilon
):
253 if isinstance(other
, normline_pt
):
254 a_deltax_pt
= self
.x1_pt
- self
.x0_pt
255 a_deltay_pt
= self
.y1_pt
- self
.y0_pt
257 b_deltax_pt
= other
.x1_pt
- other
.x0_pt
258 b_deltay_pt
= other
.y1_pt
- other
.y0_pt
260 det
= 1.0 / (b_deltax_pt
* a_deltay_pt
- b_deltay_pt
* a_deltax_pt
)
261 except ArithmeticError:
264 ba_deltax0_pt
= other
.x0_pt
- self
.x0_pt
265 ba_deltay0_pt
= other
.y0_pt
- self
.y0_pt
267 a_t
= (b_deltax_pt
* ba_deltay0_pt
- b_deltay_pt
* ba_deltax0_pt
) * det
268 b_t
= (a_deltax_pt
* ba_deltay0_pt
- a_deltay_pt
* ba_deltax0_pt
) * det
270 # check for intersections out of bound
271 # TODO: we might allow for a small out of bound errors.
272 if not (0<=a_t
<=1 and 0<=b_t
<=1):
275 # return parameters of intersection
278 return [(s_t
, o_t
) for o_t
, s_t
in other
.intersect(self
, epsilon
)]
280 def modifiedbegin_pt(self
, x_pt
, y_pt
):
281 return normline_pt(x_pt
, y_pt
, self
.x1_pt
, self
.y1_pt
)
283 def modifiedend_pt(self
, x_pt
, y_pt
):
284 return normline_pt(self
.x0_pt
, self
.y0_pt
, x_pt
, y_pt
)
286 def _paramtoarclen_pt(self
, params
, epsilon
):
287 totalarclen_pt
= self
.arclen_pt(epsilon
)
288 arclens_pt
= [totalarclen_pt
* param
for param
in params
+ [1]]
289 return arclens_pt
[:-1], arclens_pt
[-1]
292 return path
.lineto_pt(self
.x1_pt
, self
.y1_pt
)
295 return normline_pt(self
.x1_pt
, self
.y1_pt
, self
.x0_pt
, self
.y0_pt
)
297 def rotation(self
, params
):
298 return [trafo
.rotate(math
.degrees(math
.atan2(self
.y1_pt
-self
.y0_pt
, self
.x1_pt
-self
.x0_pt
)))]*len(params
)
300 def segments(self
, params
):
302 raise ValueError("at least two parameters needed in segments")
306 xr_pt
= self
.x0_pt
+ (self
.x1_pt
-self
.x0_pt
)*t
307 yr_pt
= self
.y0_pt
+ (self
.y1_pt
-self
.y0_pt
)*t
308 if xl_pt
is not None:
309 result
.append(normline_pt(xl_pt
, yl_pt
, xr_pt
, yr_pt
))
314 def trafo(self
, params
):
315 rotate
= trafo
.rotate(math
.degrees(math
.atan2(self
.y1_pt
-self
.y0_pt
, self
.x1_pt
-self
.x0_pt
)))
316 return [trafo
.translate_pt(*at_pt
) * rotate
317 for param
, at_pt
in zip(params
, self
.at_pt(params
))]
319 def transformed(self
, trafo
):
320 return normline_pt(*(trafo
.apply_pt(self
.x0_pt
, self
.y0_pt
) + trafo
.apply_pt(self
.x1_pt
, self
.y1_pt
)))
322 def outputPS(self
, file, writer
):
323 file.write("%g %g lineto\n" % (self
.x1_pt
, self
.y1_pt
))
325 def outputPDF(self
, file, writer
):
326 file.write("%f %f l\n" % (self
.x1_pt
, self
.y1_pt
))
329 class normcurve_pt(normsubpathitem
):
331 """Bezier curve with control points x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt (coordinates in pts)"""
333 __slots__
= "x0_pt", "y0_pt", "x1_pt", "y1_pt", "x2_pt", "y2_pt", "x3_pt", "y3_pt"
335 def __init__(self
, x0_pt
, y0_pt
, x1_pt
, y1_pt
, x2_pt
, y2_pt
, x3_pt
, y3_pt
):
346 return "normcurve_pt(%g, %g, %g, %g, %g, %g, %g, %g)" % (self
.x0_pt
, self
.y0_pt
, self
.x1_pt
, self
.y1_pt
,
347 self
.x2_pt
, self
.y2_pt
, self
.x3_pt
, self
.y3_pt
)
349 def _midpointsplit(self
, epsilon
):
350 """split curve into two parts
352 Helper method to reduce the complexity of a problem by turning
353 a normcurve_pt into several normline_pt segments. This method
354 returns normcurve_pt instances only, when they are not yet straight
355 enough to be replaceable by normcurve_pt instances. Thus a recursive
356 midpointsplitting will turn a curve into line segments with the
357 given precision epsilon.
360 # first, we have to calculate the midpoints between adjacent
362 x01_pt
= 0.5*(self
.x0_pt
+ self
.x1_pt
)
363 y01_pt
= 0.5*(self
.y0_pt
+ self
.y1_pt
)
364 x12_pt
= 0.5*(self
.x1_pt
+ self
.x2_pt
)
365 y12_pt
= 0.5*(self
.y1_pt
+ self
.y2_pt
)
366 x23_pt
= 0.5*(self
.x2_pt
+ self
.x3_pt
)
367 y23_pt
= 0.5*(self
.y2_pt
+ self
.y3_pt
)
369 # In the next iterative step, we need the midpoints between 01 and 12
370 # and between 12 and 23
371 x01_12_pt
= 0.5*(x01_pt
+ x12_pt
)
372 y01_12_pt
= 0.5*(y01_pt
+ y12_pt
)
373 x12_23_pt
= 0.5*(x12_pt
+ x23_pt
)
374 y12_23_pt
= 0.5*(y12_pt
+ y23_pt
)
376 # Finally the midpoint is given by
377 xmidpoint_pt
= 0.5*(x01_12_pt
+ x12_23_pt
)
378 ymidpoint_pt
= 0.5*(y01_12_pt
+ y12_23_pt
)
380 # Before returning the normcurves we check whether we can
381 # replace them by normlines within an error of epsilon pts.
382 # The maximal error value is given by the modulus of the
383 # difference between the length of the control polygon
384 # (i.e. |P1-P0|+|P2-P1|+|P3-P2|), which consitutes an upper
385 # bound for the length, and the length of the straight line
386 # between start and end point of the normcurve (i.e. |P3-P1|),
387 # which represents a lower bound.
388 l0_pt
= math
.hypot(xmidpoint_pt
- self
.x0_pt
, ymidpoint_pt
- self
.y0_pt
)
389 l1_pt
= math
.hypot(x01_pt
- self
.x0_pt
, y01_pt
- self
.y0_pt
)
390 l2_pt
= math
.hypot(x01_12_pt
- x01_pt
, y01_12_pt
- y01_pt
)
391 l3_pt
= math
.hypot(xmidpoint_pt
- x01_12_pt
, ymidpoint_pt
- y01_12_pt
)
392 if l1_pt
+l2_pt
+l3_pt
-l0_pt
< epsilon
:
393 a
= _leftnormline_pt(self
.x0_pt
, self
.y0_pt
, xmidpoint_pt
, ymidpoint_pt
, l1_pt
, l2_pt
, l3_pt
)
395 a
= _leftnormcurve_pt(self
.x0_pt
, self
.y0_pt
,
397 x01_12_pt
, y01_12_pt
,
398 xmidpoint_pt
, ymidpoint_pt
)
400 l0_pt
= math
.hypot(self
.x3_pt
- xmidpoint_pt
, self
.y3_pt
- ymidpoint_pt
)
401 l1_pt
= math
.hypot(x12_23_pt
- xmidpoint_pt
, y12_23_pt
- ymidpoint_pt
)
402 l2_pt
= math
.hypot(x23_pt
- x12_23_pt
, y23_pt
- y12_23_pt
)
403 l3_pt
= math
.hypot(self
.x3_pt
- x23_pt
, self
.y3_pt
- y23_pt
)
404 if l1_pt
+l2_pt
+l3_pt
-l0_pt
< epsilon
:
405 b
= _rightnormline_pt(xmidpoint_pt
, ymidpoint_pt
, self
.x3_pt
, self
.y3_pt
, l1_pt
, l2_pt
, l3_pt
)
407 b
= _rightnormcurve_pt(xmidpoint_pt
, ymidpoint_pt
,
408 x12_23_pt
, y12_23_pt
,
410 self
.x3_pt
, self
.y3_pt
)
414 def _arclentoparam_pt(self
, lengths_pt
, epsilon
):
415 a
, b
= self
._midpointsplit
(epsilon
)
416 params_a
, arclen_a_pt
= a
._arclentoparam
_pt
(lengths_pt
, epsilon
)
417 params_b
, arclen_b_pt
= b
._arclentoparam
_pt
([length_pt
- arclen_a_pt
for length_pt
in lengths_pt
], epsilon
)
419 for param_a
, param_b
, length_pt
in zip(params_a
, params_b
, lengths_pt
):
420 if length_pt
> arclen_a_pt
:
421 params
.append(b
.subparamtoparam(param_b
))
423 params
.append(a
.subparamtoparam(param_a
))
424 return params
, arclen_a_pt
+ arclen_b_pt
426 def arclentoparam_pt(self
, lengths_pt
, epsilon
):
427 """return a tuple of params"""
428 return self
._arclentoparam
_pt
(lengths_pt
, epsilon
)[0]
430 def arclen_pt(self
, epsilon
):
431 a
, b
= self
._midpointsplit
(epsilon
)
432 return a
.arclen_pt(epsilon
) + b
.arclen_pt(epsilon
)
434 def at_pt(self
, params
):
435 return [( (-self
.x0_pt
+3*self
.x1_pt
-3*self
.x2_pt
+self
.x3_pt
)*t
*t
*t
+
436 (3*self
.x0_pt
-6*self
.x1_pt
+3*self
.x2_pt
)*t
*t
+
437 (-3*self
.x0_pt
+3*self
.x1_pt
)*t
+
439 (-self
.y0_pt
+3*self
.y1_pt
-3*self
.y2_pt
+self
.y3_pt
)*t
*t
*t
+
440 (3*self
.y0_pt
-6*self
.y1_pt
+3*self
.y2_pt
)*t
*t
+
441 (-3*self
.y0_pt
+3*self
.y1_pt
)*t
+
445 def atbegin_pt(self
):
446 return self
.x0_pt
, self
.y0_pt
449 return self
.x3_pt
, self
.y3_pt
452 xmin_pt
, xmax_pt
= path
._bezierpolyrange
(self
.x0_pt
, self
.x1_pt
, self
.x2_pt
, self
.x3_pt
)
453 ymin_pt
, ymax_pt
= path
._bezierpolyrange
(self
.y0_pt
, self
.y1_pt
, self
.y2_pt
, self
.y3_pt
)
454 return bboxmodule
.bbox_pt(xmin_pt
, ymin_pt
, xmax_pt
, ymax_pt
)
457 return bboxmodule
.bbox_pt(min(self
.x0_pt
, self
.x1_pt
, self
.x2_pt
, self
.x3_pt
),
458 min(self
.y0_pt
, self
.y1_pt
, self
.y2_pt
, self
.y3_pt
),
459 max(self
.x0_pt
, self
.x1_pt
, self
.x2_pt
, self
.x3_pt
),
460 max(self
.y0_pt
, self
.y1_pt
, self
.y2_pt
, self
.y3_pt
))
462 def curvature_pt(self
, params
):
464 # see notes in rotation
465 approxarclen
= (math
.hypot(self
.x1_pt
-self
.x0_pt
, self
.y1_pt
-self
.y0_pt
) +
466 math
.hypot(self
.x2_pt
-self
.x1_pt
, self
.y2_pt
-self
.y1_pt
) +
467 math
.hypot(self
.x3_pt
-self
.x2_pt
, self
.y3_pt
-self
.y2_pt
))
469 xdot
= ( 3 * (1-param
)*(1-param
) * (-self
.x0_pt
+ self
.x1_pt
) +
470 6 * (1-param
)*param
* (-self
.x1_pt
+ self
.x2_pt
) +
471 3 * param
*param
* (-self
.x2_pt
+ self
.x3_pt
) )
472 ydot
= ( 3 * (1-param
)*(1-param
) * (-self
.y0_pt
+ self
.y1_pt
) +
473 6 * (1-param
)*param
* (-self
.y1_pt
+ self
.y2_pt
) +
474 3 * param
*param
* (-self
.y2_pt
+ self
.y3_pt
) )
475 xddot
= ( 6 * (1-param
) * (self
.x0_pt
- 2*self
.x1_pt
+ self
.x2_pt
) +
476 6 * param
* (self
.x1_pt
- 2*self
.x2_pt
+ self
.x3_pt
) )
477 yddot
= ( 6 * (1-param
) * (self
.y0_pt
- 2*self
.y1_pt
+ self
.y2_pt
) +
478 6 * param
* (self
.y1_pt
- 2*self
.y2_pt
+ self
.y3_pt
) )
480 hypot
= math
.hypot(xdot
, ydot
)
481 if hypot
/approxarclen
> _minrelspeed
:
482 result
.append((xdot
*yddot
- ydot
*xddot
) / hypot
**3)
484 result
.append(invalid
)
487 def curveradius_pt(self
, params
):
489 # see notes in rotation
490 approxarclen
= (math
.hypot(self
.x1_pt
-self
.x0_pt
, self
.y1_pt
-self
.y0_pt
) +
491 math
.hypot(self
.x2_pt
-self
.x1_pt
, self
.y2_pt
-self
.y1_pt
) +
492 math
.hypot(self
.x3_pt
-self
.x2_pt
, self
.y3_pt
-self
.y2_pt
))
494 xdot
= ( 3 * (1-param
)*(1-param
) * (-self
.x0_pt
+ self
.x1_pt
) +
495 6 * (1-param
)*param
* (-self
.x1_pt
+ self
.x2_pt
) +
496 3 * param
*param
* (-self
.x2_pt
+ self
.x3_pt
) )
497 ydot
= ( 3 * (1-param
)*(1-param
) * (-self
.y0_pt
+ self
.y1_pt
) +
498 6 * (1-param
)*param
* (-self
.y1_pt
+ self
.y2_pt
) +
499 3 * param
*param
* (-self
.y2_pt
+ self
.y3_pt
) )
500 xddot
= ( 6 * (1-param
) * (self
.x0_pt
- 2*self
.x1_pt
+ self
.x2_pt
) +
501 6 * param
* (self
.x1_pt
- 2*self
.x2_pt
+ self
.x3_pt
) )
502 yddot
= ( 6 * (1-param
) * (self
.y0_pt
- 2*self
.y1_pt
+ self
.y2_pt
) +
503 6 * param
* (self
.y1_pt
- 2*self
.y2_pt
+ self
.y3_pt
) )
505 hypot
= math
.hypot(xdot
, ydot
)
506 if hypot
/approxarclen
> _minrelspeed
:
507 result
.append(hypot
**3 / (xdot
*yddot
- ydot
*xddot
))
509 result
.append(invalid
)
512 def intersect(self
, other
, epsilon
):
513 # There can be no intersection point if the control boxes do not
514 # overlap. Note that we use the control box instead of the bounding
515 # box here, because the former can be calculated more efficiently for
517 if not self
.cbox().intersects(other
.cbox()):
519 a
, b
= self
._midpointsplit
(epsilon
)
520 # To improve the performance in the general case we alternate the
521 # splitting process between the two normsubpathitems
522 return ( [(a
.subparamtoparam(a_t
), o_t
) for o_t
, a_t
in other
.intersect(a
, epsilon
)] +
523 [(b
.subparamtoparam(b_t
), o_t
) for o_t
, b_t
in other
.intersect(b
, epsilon
)] )
525 def modifiedbegin_pt(self
, x_pt
, y_pt
):
526 return normcurve_pt(x_pt
, y_pt
,
527 self
.x1_pt
, self
.y1_pt
,
528 self
.x2_pt
, self
.y2_pt
,
529 self
.x3_pt
, self
.y3_pt
)
531 def modifiedend_pt(self
, x_pt
, y_pt
):
532 return normcurve_pt(self
.x0_pt
, self
.y0_pt
,
533 self
.x1_pt
, self
.y1_pt
,
534 self
.x2_pt
, self
.y2_pt
,
537 def _paramtoarclen_pt(self
, params
, epsilon
):
538 arclens_pt
= [segment
.arclen_pt(epsilon
) for segment
in self
.segments([0] + list(params
) + [1])]
539 for i
in range(1, len(arclens_pt
)):
540 arclens_pt
[i
] += arclens_pt
[i
-1]
541 return arclens_pt
[:-1], arclens_pt
[-1]
544 return path
.curveto_pt(self
.x1_pt
, self
.y1_pt
, self
.x2_pt
, self
.y2_pt
, self
.x3_pt
, self
.y3_pt
)
547 return normcurve_pt(self
.x3_pt
, self
.y3_pt
, self
.x2_pt
, self
.y2_pt
, self
.x1_pt
, self
.y1_pt
, self
.x0_pt
, self
.y0_pt
)
549 def rotation(self
, params
):
551 # We need to take care of the case of tdx_pt and tdy_pt close to zero.
552 # We should not compare those values to epsilon (which is a length) directly.
553 # Furthermore we want this "speed" in general and it's abort condition in
554 # particular to be invariant on the actual size of the normcurve. Hence we
555 # first calculate a crude approximation for the arclen.
556 approxarclen
= (math
.hypot(self
.x1_pt
-self
.x0_pt
, self
.y1_pt
-self
.y0_pt
) +
557 math
.hypot(self
.x2_pt
-self
.x1_pt
, self
.y2_pt
-self
.y1_pt
) +
558 math
.hypot(self
.x3_pt
-self
.x2_pt
, self
.y3_pt
-self
.y2_pt
))
560 tdx_pt
= (3*( -self
.x0_pt
+3*self
.x1_pt
-3*self
.x2_pt
+self
.x3_pt
)*param
*param
+
561 2*( 3*self
.x0_pt
-6*self
.x1_pt
+3*self
.x2_pt
)*param
+
562 (-3*self
.x0_pt
+3*self
.x1_pt
))
563 tdy_pt
= (3*( -self
.y0_pt
+3*self
.y1_pt
-3*self
.y2_pt
+self
.y3_pt
)*param
*param
+
564 2*( 3*self
.y0_pt
-6*self
.y1_pt
+3*self
.y2_pt
)*param
+
565 (-3*self
.y0_pt
+3*self
.y1_pt
))
566 # We scale the speed such the "relative speed" of a line is 1 independend of
567 # the length of the line. For curves we want this "relative speed" to be higher than
569 if math
.hypot(tdx_pt
, tdy_pt
)/approxarclen
> _minrelspeed
:
570 result
.append(trafo
.rotate(math
.degrees(math
.atan2(tdy_pt
, tdx_pt
))))
572 # Note that we can't use the rule of l'Hopital here, since it would
573 # not provide us with a sign for the tangent. Hence we wouldn't
574 # notice whether the sign changes (which is a typical case at cusps).
575 result
.append(invalid
)
578 def segments(self
, params
):
580 raise ValueError("at least two parameters needed in segments")
582 # first, we calculate the coefficients corresponding to our
583 # original bezier curve. These represent a useful starting
584 # point for the following change of the polynomial parameter
587 a1x_pt
= 3*(-self
.x0_pt
+self
.x1_pt
)
588 a1y_pt
= 3*(-self
.y0_pt
+self
.y1_pt
)
589 a2x_pt
= 3*(self
.x0_pt
-2*self
.x1_pt
+self
.x2_pt
)
590 a2y_pt
= 3*(self
.y0_pt
-2*self
.y1_pt
+self
.y2_pt
)
591 a3x_pt
= -self
.x0_pt
+3*(self
.x1_pt
-self
.x2_pt
)+self
.x3_pt
592 a3y_pt
= -self
.y0_pt
+3*(self
.y1_pt
-self
.y2_pt
)+self
.y3_pt
596 for i
in range(len(params
)-1):
602 # the new coefficients of the [t1,t1+dt] part of the bezier curve
603 # are then given by expanding
604 # a0 + a1*(t1+dt*u) + a2*(t1+dt*u)**2 +
605 # a3*(t1+dt*u)**3 in u, yielding
607 # a0 + a1*t1 + a2*t1**2 + a3*t1**3 +
608 # ( a1 + 2*a2 + 3*a3*t1**2 )*dt * u +
609 # ( a2 + 3*a3*t1 )*dt**2 * u**2 +
612 # from this values we obtain the new control points by inversion
614 # TODO: we could do this more efficiently by reusing for
615 # (x0_pt, y0_pt) the control point (x3_pt, y3_pt) from the previous
618 x0_pt
= a0x_pt
+ a1x_pt
*t1
+ a2x_pt
*t1
*t1
+ a3x_pt
*t1
*t1
*t1
619 y0_pt
= a0y_pt
+ a1y_pt
*t1
+ a2y_pt
*t1
*t1
+ a3y_pt
*t1
*t1
*t1
620 x1_pt
= (a1x_pt
+2*a2x_pt
*t1
+3*a3x_pt
*t1
*t1
)*dt
/3.0 + x0_pt
621 y1_pt
= (a1y_pt
+2*a2y_pt
*t1
+3*a3y_pt
*t1
*t1
)*dt
/3.0 + y0_pt
622 x2_pt
= (a2x_pt
+3*a3x_pt
*t1
)*dt
*dt
/3.0 - x0_pt
+ 2*x1_pt
623 y2_pt
= (a2y_pt
+3*a3y_pt
*t1
)*dt
*dt
/3.0 - y0_pt
+ 2*y1_pt
624 x3_pt
= a3x_pt
*dt
*dt
*dt
+ x0_pt
- 3*x1_pt
+ 3*x2_pt
625 y3_pt
= a3y_pt
*dt
*dt
*dt
+ y0_pt
- 3*y1_pt
+ 3*y2_pt
627 result
.append(normcurve_pt(x0_pt
, y0_pt
, x1_pt
, y1_pt
, x2_pt
, y2_pt
, x3_pt
, y3_pt
))
631 def trafo(self
, params
):
633 for rotation
, at_pt
in zip(self
.rotation(params
), self
.at_pt(params
)):
634 if rotation
is invalid
:
635 result
.append(rotation
)
637 result
.append(trafo
.translate_pt(*at_pt
) * rotation
)
640 def transformed(self
, trafo
):
641 x0_pt
, y0_pt
= trafo
.apply_pt(self
.x0_pt
, self
.y0_pt
)
642 x1_pt
, y1_pt
= trafo
.apply_pt(self
.x1_pt
, self
.y1_pt
)
643 x2_pt
, y2_pt
= trafo
.apply_pt(self
.x2_pt
, self
.y2_pt
)
644 x3_pt
, y3_pt
= trafo
.apply_pt(self
.x3_pt
, self
.y3_pt
)
645 return normcurve_pt(x0_pt
, y0_pt
, x1_pt
, y1_pt
, x2_pt
, y2_pt
, x3_pt
, y3_pt
)
647 def outputPS(self
, file, writer
):
648 file.write("%g %g %g %g %g %g curveto\n" % (self
.x1_pt
, self
.y1_pt
, self
.x2_pt
, self
.y2_pt
, self
.x3_pt
, self
.y3_pt
))
650 def outputPDF(self
, file, writer
):
651 file.write("%f %f %f %f %f %f c\n" % (self
.x1_pt
, self
.y1_pt
, self
.x2_pt
, self
.y2_pt
, self
.x3_pt
, self
.y3_pt
))
654 return ((( self
.x3_pt
-3*self
.x2_pt
+3*self
.x1_pt
-self
.x0_pt
)*t
+
655 3*self
.x0_pt
-6*self
.x1_pt
+3*self
.x2_pt
)*t
+
656 3*self
.x1_pt
-3*self
.x0_pt
)*t
+ self
.x0_pt
658 def xdot_pt(self
, t
):
659 return ((3*self
.x3_pt
-9*self
.x2_pt
+9*self
.x1_pt
-3*self
.x0_pt
)*t
+
660 6*self
.x0_pt
-12*self
.x1_pt
+6*self
.x2_pt
)*t
+ 3*self
.x1_pt
- 3*self
.x0_pt
662 def xddot_pt(self
, t
):
663 return (6*self
.x3_pt
-18*self
.x2_pt
+18*self
.x1_pt
-6*self
.x0_pt
)*t
+ 6*self
.x0_pt
- 12*self
.x1_pt
+ 6*self
.x2_pt
665 def xdddot_pt(self
, t
):
666 return 6*self
.x3_pt
-18*self
.x2_pt
+18*self
.x1_pt
-6*self
.x0_pt
669 return ((( self
.y3_pt
-3*self
.y2_pt
+3*self
.y1_pt
-self
.y0_pt
)*t
+
670 3*self
.y0_pt
-6*self
.y1_pt
+3*self
.y2_pt
)*t
+
671 3*self
.y1_pt
-3*self
.y0_pt
)*t
+ self
.y0_pt
673 def ydot_pt(self
, t
):
674 return ((3*self
.y3_pt
-9*self
.y2_pt
+9*self
.y1_pt
-3*self
.y0_pt
)*t
+
675 6*self
.y0_pt
-12*self
.y1_pt
+6*self
.y2_pt
)*t
+ 3*self
.y1_pt
- 3*self
.y0_pt
677 def yddot_pt(self
, t
):
678 return (6*self
.y3_pt
-18*self
.y2_pt
+18*self
.y1_pt
-6*self
.y0_pt
)*t
+ 6*self
.y0_pt
- 12*self
.y1_pt
+ 6*self
.y2_pt
680 def ydddot_pt(self
, t
):
681 return 6*self
.y3_pt
-18*self
.y2_pt
+18*self
.y1_pt
-6*self
.y0_pt
684 # curve replacements used by midpointsplit:
685 # The replacements are normline_pt and normcurve_pt instances with an
686 # additional subparamtoparam function for proper conversion of the
687 # parametrization. Note that we only one direction (when a parameter
688 # gets calculated), since the other way around direction midpointsplit
689 # is not needed at all
691 class _leftnormline_pt(normline_pt
):
693 __slots__
= "x0_pt", "y0_pt", "x1_pt", "y1_pt", "l1_pt", "l2_pt", "l3_pt"
695 def __init__(self
, x0_pt
, y0_pt
, x1_pt
, y1_pt
, l1_pt
, l2_pt
, l3_pt
):
696 normline_pt
.__init
__(self
, x0_pt
, y0_pt
, x1_pt
, y1_pt
)
701 def subparamtoparam(self
, param
):
703 params
= mathutils
.realpolyroots(self
.l1_pt
-2*self
.l2_pt
+self
.l3_pt
,
704 -3*self
.l1_pt
+3*self
.l2_pt
,
706 -param
*(self
.l1_pt
+self
.l2_pt
+self
.l3_pt
))
707 # we might get several solutions and choose the one closest to 0.5
708 # (we want the solution to be in the range 0 <= param <= 1; in case
709 # we get several solutions in this range, they all will be close to
710 # each other since l1_pt+l2_pt+l3_pt-l0_pt < epsilon)
711 params
.sort(lambda t1
, t2
: cmp(abs(t1
-0.5), abs(t2
-0.5)))
714 # when we are outside the proper parameter range, we skip the non-linear
715 # transformation, since it becomes slow and it might even start to be
716 # numerically instable
720 class _rightnormline_pt(_leftnormline_pt
):
722 __slots__
= "x0_pt", "y0_pt", "x1_pt", "y1_pt", "l1_pt", "l2_pt", "l3_pt"
724 def subparamtoparam(self
, param
):
725 return 0.5+_leftnormline_pt
.subparamtoparam(self
, param
)
728 class _leftnormcurve_pt(normcurve_pt
):
730 __slots__
= "x0_pt", "y0_pt", "x1_pt", "y1_pt", "x2_pt", "y2_pt", "x3_pt", "y3_pt"
732 def subparamtoparam(self
, param
):
736 class _rightnormcurve_pt(normcurve_pt
):
738 __slots__
= "x0_pt", "y0_pt", "x1_pt", "y1_pt", "x2_pt", "y2_pt", "x3_pt", "y3_pt"
740 def subparamtoparam(self
, param
):
744 ################################################################################
746 ################################################################################
750 """sub path of a normalized path
752 A subpath consists of a list of normsubpathitems, i.e., normlines_pt and
753 normcurves_pt and can either be closed or not.
755 Some invariants, which have to be obeyed:
756 - All normsubpathitems have to be longer than epsilon pts.
757 - At the end there may be a normline (stored in self.skippedline) whose
758 length is shorter than epsilon -- it has to be taken into account
759 when adding further normsubpathitems
760 - The last point of a normsubpathitem and the first point of the next
761 element have to be equal.
762 - When the path is closed, the last point of last normsubpathitem has
763 to be equal to the first point of the first normsubpathitem.
764 - epsilon might be none, disallowing any numerics, but allowing for
765 arbitrary short paths. This is used in pdf output, where all paths need
766 to be transformed to normpaths.
769 __slots__
= "normsubpathitems", "closed", "epsilon", "skippedline"
771 def __init__(self
, normsubpathitems
=[], closed
=0, epsilon
=_marker
):
772 """construct a normsubpath"""
773 if epsilon
is _marker
:
775 self
.epsilon
= epsilon
776 # If one or more items appended to the normsubpath have been
777 # skipped (because their total length was shorter than epsilon),
778 # we remember this fact by a line because we have to take it
779 # properly into account when appending further normsubpathitems
780 self
.skippedline
= None
782 self
.normsubpathitems
= []
785 # a test (might be temporary)
786 for anormsubpathitem
in normsubpathitems
:
787 assert isinstance(anormsubpathitem
, normsubpathitem
), "only list of normsubpathitem instances allowed"
789 self
.extend(normsubpathitems
)
794 def __getitem__(self
, i
):
795 """return normsubpathitem i"""
796 return self
.normsubpathitems
[i
]
799 """return number of normsubpathitems"""
800 return len(self
.normsubpathitems
)
803 l
= ", ".join(map(str, self
.normsubpathitems
))
805 return "normsubpath([%s], closed=1)" % l
807 return "normsubpath([%s])" % l
809 def _distributeparams(self
, params
):
810 """return a dictionary mapping normsubpathitemindices to a tuple
811 of a paramindices and normsubpathitemparams.
813 normsubpathitemindex specifies a normsubpathitem containing
814 one or several positions. paramindex specify the index of the
815 param in the original list and normsubpathitemparam is the
816 parameter value in the normsubpathitem.
820 for i
, param
in enumerate(params
):
823 if index
> len(self
.normsubpathitems
) - 1:
824 index
= len(self
.normsubpathitems
) - 1
827 result
.setdefault(index
, ([], []))
828 result
[index
][0].append(i
)
829 result
[index
][1].append(param
- index
)
832 def append(self
, anormsubpathitem
):
833 """append normsubpathitem
835 Fails on closed normsubpath.
837 if self
.epsilon
is None:
838 self
.normsubpathitems
.append(anormsubpathitem
)
840 # consitency tests (might be temporary)
841 assert isinstance(anormsubpathitem
, normsubpathitem
), "only normsubpathitem instances allowed"
843 assert math
.hypot(*[x
-y
for x
, y
in zip(self
.skippedline
.atend_pt(), anormsubpathitem
.atbegin_pt())]) < self
.epsilon
, "normsubpathitems do not match"
844 elif self
.normsubpathitems
:
845 assert math
.hypot(*[x
-y
for x
, y
in zip(self
.normsubpathitems
[-1].atend_pt(), anormsubpathitem
.atbegin_pt())]) < self
.epsilon
, "normsubpathitems do not match"
848 raise NormpathException("Cannot append to closed normsubpath")
851 xs_pt
, ys_pt
= self
.skippedline
.atbegin_pt()
853 xs_pt
, ys_pt
= anormsubpathitem
.atbegin_pt()
854 xe_pt
, ye_pt
= anormsubpathitem
.atend_pt()
856 if (math
.hypot(xe_pt
-xs_pt
, ye_pt
-ys_pt
) >= self
.epsilon
or
857 anormsubpathitem
.arclen_pt(self
.epsilon
) >= self
.epsilon
):
859 anormsubpathitem
= anormsubpathitem
.modifiedbegin_pt(xs_pt
, ys_pt
)
860 self
.normsubpathitems
.append(anormsubpathitem
)
861 self
.skippedline
= None
863 self
.skippedline
= normline_pt(xs_pt
, ys_pt
, xe_pt
, ye_pt
)
866 """return arc length in pts"""
867 return sum([npitem
.arclen_pt(self
.epsilon
) for npitem
in self
.normsubpathitems
])
869 def _arclentoparam_pt(self
, lengths_pt
):
870 """return a tuple of params and the total length arc length in pts"""
871 # work on a copy which is counted down to negative values
872 lengths_pt
= lengths_pt
[:]
873 results
= [None] * len(lengths_pt
)
876 for normsubpathindex
, normsubpathitem
in enumerate(self
.normsubpathitems
):
877 params
, arclen
= normsubpathitem
._arclentoparam
_pt
(lengths_pt
, self
.epsilon
)
878 for i
in range(len(results
)):
879 if results
[i
] is None:
880 lengths_pt
[i
] -= arclen
881 if lengths_pt
[i
] < 0 or normsubpathindex
== len(self
.normsubpathitems
) - 1:
882 # overwrite the results until the length has become negative
883 results
[i
] = normsubpathindex
+ params
[i
]
884 totalarclen
+= arclen
886 return results
, totalarclen
888 def arclentoparam_pt(self
, lengths_pt
):
889 """return a tuple of params"""
890 return self
._arclentoparam
_pt
(lengths_pt
)[0]
892 def at_pt(self
, params
):
893 """return coordinates at params in pts"""
894 if not self
.normsubpathitems
and self
.skippedline
:
895 return [self
.skippedline
.atbegin_pt()]*len(params
)
896 result
= [None] * len(params
)
897 for normsubpathitemindex
, (indices
, params
) in self
._distributeparams
(params
).items():
898 for index
, point_pt
in zip(indices
, self
.normsubpathitems
[normsubpathitemindex
].at_pt(params
)):
899 result
[index
] = point_pt
902 def atbegin_pt(self
):
903 """return coordinates of first point in pts"""
904 if not self
.normsubpathitems
and self
.skippedline
:
905 return self
.skippedline
.atbegin_pt()
906 return self
.normsubpathitems
[0].atbegin_pt()
909 """return coordinates of last point in pts"""
911 return self
.skippedline
.atend_pt()
912 return self
.normsubpathitems
[-1].atend_pt()
915 """return bounding box of normsubpath"""
916 if self
.normsubpathitems
:
917 abbox
= self
.normsubpathitems
[0].bbox()
918 for anormpathitem
in self
.normsubpathitems
[1:]:
919 abbox
+= anormpathitem
.bbox()
922 return bboxmodule
.empty()
927 Fails on closed normsubpath.
930 raise NormpathException("Cannot close already closed normsubpath")
931 if not self
.normsubpathitems
:
932 if self
.skippedline
is None:
933 raise NormpathException("Cannot close empty normsubpath")
935 raise NormpathException("Normsubpath too short, cannot be closed")
937 xs_pt
, ys_pt
= self
.normsubpathitems
[-1].atend_pt()
938 xe_pt
, ye_pt
= self
.normsubpathitems
[0].atbegin_pt()
939 self
.append(normline_pt(xs_pt
, ys_pt
, xe_pt
, ye_pt
))
940 self
.flushskippedline()
944 """return copy of normsubpath"""
945 # Since normsubpathitems are never modified inplace, we just
946 # need to copy the normsubpathitems list. We do not pass the
947 # normsubpathitems to the constructor to not repeat the checks
948 # for minimal length of each normsubpathitem.
949 result
= normsubpath(epsilon
=self
.epsilon
)
950 result
.normsubpathitems
= self
.normsubpathitems
[:]
951 result
.closed
= self
.closed
953 # We can share the reference to skippedline, since it is a
954 # normsubpathitem as well and thus not modified in place either.
955 result
.skippedline
= self
.skippedline
959 def curvature_pt(self
, params
):
960 """return the curvature at params in 1/pts
962 The result contain the invalid instance at positions, where the
963 curvature is undefined."""
964 result
= [None] * len(params
)
965 for normsubpathitemindex
, (indices
, params
) in self
._distributeparams
(params
).items():
966 for index
, curvature_pt
in zip(indices
, self
.normsubpathitems
[normsubpathitemindex
].curvature_pt(params
)):
967 result
[index
] = curvature_pt
970 def curveradius_pt(self
, params
):
971 """return the curvature radius at params in pts
973 The curvature radius is the inverse of the curvature. When the
974 curvature is 0, the invalid instance is returned. Note that this radius can be negative
975 or positive, depending on the sign of the curvature."""
976 result
= [None] * len(params
)
977 for normsubpathitemindex
, (indices
, params
) in self
._distributeparams
(params
).items():
978 for index
, radius_pt
in zip(indices
, self
.normsubpathitems
[normsubpathitemindex
].curveradius_pt(params
)):
979 result
[index
] = radius_pt
982 def extend(self
, normsubpathitems
):
983 """extend path by normsubpathitems
985 Fails on closed normsubpath.
987 for normsubpathitem
in normsubpathitems
:
988 self
.append(normsubpathitem
)
990 def flushskippedline(self
):
991 """flush the skippedline, i.e. apply it to the normsubpath
993 remove the skippedline by modifying the end point of the existing normsubpath
995 while self
.skippedline
:
997 lastnormsubpathitem
= self
.normsubpathitems
.pop()
999 raise ValueError("normsubpath too short to flush the skippedline")
1000 lastnormsubpathitem
= lastnormsubpathitem
.modifiedend_pt(*self
.skippedline
.atend_pt())
1001 self
.skippedline
= None
1002 self
.append(lastnormsubpathitem
)
1004 def intersect(self
, other
):
1005 """intersect self with other normsubpath
1007 Returns a tuple of lists consisting of the parameter values
1008 of the intersection points of the corresponding normsubpath.
1010 intersections_a
= []
1011 intersections_b
= []
1012 epsilon
= min(self
.epsilon
, other
.epsilon
)
1013 # Intersect all subpaths of self with the subpaths of other, possibly including
1014 # one intersection point several times
1015 for t_a
, pitem_a
in enumerate(self
.normsubpathitems
):
1016 for t_b
, pitem_b
in enumerate(other
.normsubpathitems
):
1017 for intersection_a
, intersection_b
in pitem_a
.intersect(pitem_b
, epsilon
):
1018 intersections_a
.append(intersection_a
+ t_a
)
1019 intersections_b
.append(intersection_b
+ t_b
)
1021 # although intersectipns_a are sorted for the different normsubpathitems,
1022 # within a normsubpathitem, the ordering has to be ensured separately:
1023 intersections
= zip(intersections_a
, intersections_b
)
1024 intersections
.sort()
1025 intersections_a
= [a
for a
, b
in intersections
]
1026 intersections_b
= [b
for a
, b
in intersections
]
1028 # for symmetry reasons we enumerate intersections_a as well, although
1029 # they are already sorted (note we do not need to sort intersections_a)
1030 intersections_a
= zip(intersections_a
, range(len(intersections_a
)))
1031 intersections_b
= zip(intersections_b
, range(len(intersections_b
)))
1032 intersections_b
.sort()
1034 # now we search for intersections points which are closer together than epsilon
1035 # This task is handled by the following function
1036 def closepoints(normsubpath
, intersections
):
1037 split
= normsubpath
.segments([0] + [intersection
for intersection
, index
in intersections
] + [len(normsubpath
)])
1039 if normsubpath
.closed
:
1040 # note that the number of segments of a closed path is off by one
1041 # compared to an open path
1043 while i
< len(split
):
1044 splitnormsubpath
= split
[i
]
1046 while not splitnormsubpath
.normsubpathitems
: # i.e. while "is short"
1047 ip1
, ip2
= intersections
[i
-1][1], intersections
[j
][1]
1049 result
.append((ip1
, ip2
))
1051 result
.append((ip2
, ip1
))
1056 splitnormsubpath
= splitnormsubpath
.joined(split
[j
])
1062 while i
< len(split
)-1:
1063 splitnormsubpath
= split
[i
]
1065 while not splitnormsubpath
.normsubpathitems
: # i.e. while "is short"
1066 ip1
, ip2
= intersections
[i
-1][1], intersections
[j
][1]
1068 result
.append((ip1
, ip2
))
1070 result
.append((ip2
, ip1
))
1072 if j
< len(split
)-1:
1073 splitnormsubpath
= splitnormsubpath
.joined(split
[j
])
1079 closepoints_a
= closepoints(self
, intersections_a
)
1080 closepoints_b
= closepoints(other
, intersections_b
)
1082 # map intersection point to lowest point which is equivalent to the
1084 equivalentpoints
= list(range(len(intersections_a
)))
1086 for closepoint_a
in closepoints_a
:
1087 for closepoint_b
in closepoints_b
:
1088 if closepoint_a
== closepoint_b
:
1089 for i
in range(closepoint_a
[1], len(equivalentpoints
)):
1090 if equivalentpoints
[i
] == closepoint_a
[1]:
1091 equivalentpoints
[i
] = closepoint_a
[0]
1093 # determine the remaining intersection points
1094 intersectionpoints
= {}
1095 for point
in equivalentpoints
:
1096 intersectionpoints
[point
] = 1
1100 intersectionpointskeys
= intersectionpoints
.keys()
1101 intersectionpointskeys
.sort()
1102 for point
in intersectionpointskeys
:
1103 for intersection_a
, index_a
in intersections_a
:
1104 if index_a
== point
:
1105 result_a
= intersection_a
1106 for intersection_b
, index_b
in intersections_b
:
1107 if index_b
== point
:
1108 result_b
= intersection_b
1109 result
.append((result_a
, result_b
))
1110 # note that the result is sorted in a, since we sorted
1111 # intersections_a in the very beginning
1113 return [x
for x
, y
in result
], [y
for x
, y
in result
]
1115 def join(self
, other
):
1116 """join other normsubpath inplace
1118 Fails on closed normsubpath. Fails to join closed normsubpath.
1121 raise NormpathException("Cannot join closed normsubpath")
1123 if self
.normsubpathitems
:
1124 # insert connection line
1125 x0_pt
, y0_pt
= self
.atend_pt()
1126 x1_pt
, y1_pt
= other
.atbegin_pt()
1127 self
.append(normline_pt(x0_pt
, y0_pt
, x1_pt
, y1_pt
))
1129 # append other normsubpathitems
1130 self
.extend(other
.normsubpathitems
)
1131 if other
.skippedline
:
1132 self
.append(other
.skippedline
)
1134 def joined(self
, other
):
1135 """return joined self and other
1137 Fails on closed normsubpath. Fails to join closed normsubpath.
1139 result
= self
.copy()
1143 def _paramtoarclen_pt(self
, params
):
1144 """return a tuple of arc lengths and the total arc length in pts"""
1145 if not self
.normsubpathitems
:
1146 return [0] * len(params
), 0
1147 result
= [None] * len(params
)
1149 distributeparams
= self
._distributeparams
(params
)
1150 for normsubpathitemindex
in range(len(self
.normsubpathitems
)):
1151 if distributeparams
.has_key(normsubpathitemindex
):
1152 indices
, params
= distributeparams
[normsubpathitemindex
]
1153 arclens_pt
, normsubpathitemarclen_pt
= self
.normsubpathitems
[normsubpathitemindex
]._paramtoarclen
_pt
(params
, self
.epsilon
)
1154 for index
, arclen_pt
in zip(indices
, arclens_pt
):
1155 result
[index
] = totalarclen_pt
+ arclen_pt
1156 totalarclen_pt
+= normsubpathitemarclen_pt
1158 totalarclen_pt
+= self
.normsubpathitems
[normsubpathitemindex
].arclen_pt(self
.epsilon
)
1159 return result
, totalarclen_pt
1161 def pathitems(self
):
1162 """return list of pathitems"""
1163 if not self
.normsubpathitems
:
1166 # remove trailing normline_pt of closed subpaths
1167 if self
.closed
and isinstance(self
.normsubpathitems
[-1], normline_pt
):
1168 normsubpathitems
= self
.normsubpathitems
[:-1]
1170 normsubpathitems
= self
.normsubpathitems
1172 result
= [path
.moveto_pt(*self
.atbegin_pt())]
1173 for normsubpathitem
in normsubpathitems
:
1174 result
.append(normsubpathitem
.pathitem())
1176 result
.append(path
.closepath())
1180 """return reversed normsubpath"""
1182 for i
in range(len(self
.normsubpathitems
)):
1183 nnormpathitems
.append(self
.normsubpathitems
[-(i
+1)].reversed())
1184 return normsubpath(nnormpathitems
, self
.closed
, self
.epsilon
)
1186 def rotation(self
, params
):
1187 """return rotations at params"""
1188 result
= [None] * len(params
)
1189 for normsubpathitemindex
, (indices
, params
) in self
._distributeparams
(params
).items():
1190 for index
, rotation
in zip(indices
, self
.normsubpathitems
[normsubpathitemindex
].rotation(params
)):
1191 result
[index
] = rotation
1194 def segments(self
, params
):
1195 """return segments of the normsubpath
1197 The returned list of normsubpaths for the segments between
1198 the params. params need to contain at least two values.
1200 For a closed normsubpath the last segment result is joined to
1201 the first one when params starts with 0 and ends with len(self).
1202 or params starts with len(self) and ends with 0. Thus a segments
1203 operation on a closed normsubpath might properly join those the
1204 first and the last part to take into account the closed nature of
1205 the normsubpath. However, for intermediate parameters, closepath
1206 is not taken into account, i.e. when walking backwards you do not
1207 loop over the closepath forwardly. The special values 0 and
1208 len(self) for the first and the last parameter should be given as
1209 integers, i.e. no finite precision is used when checking for
1213 raise ValueError("at least two parameters needed in segments")
1215 result
= [normsubpath(epsilon
=self
.epsilon
)]
1217 # instead of distribute the parameters, we need to keep their
1218 # order and collect parameters for the needed segments of
1219 # normsubpathitem with index collectindex
1222 for param
in params
:
1223 # calculate index and parameter for corresponding normsubpathitem
1226 if index
> len(self
.normsubpathitems
) - 1:
1227 index
= len(self
.normsubpathitems
) - 1
1231 if index
!= collectindex
:
1232 if collectindex
is not None:
1233 # append end point depening on the forthcoming index
1234 if index
> collectindex
:
1235 collectparams
.append(1)
1237 collectparams
.append(0)
1238 # get segments of the normsubpathitem and add them to the result
1239 segments
= self
.normsubpathitems
[collectindex
].segments(collectparams
)
1240 result
[-1].append(segments
[0])
1241 result
.extend([normsubpath([segment
], epsilon
=self
.epsilon
) for segment
in segments
[1:]])
1242 # add normsubpathitems and first segment parameter to close the
1243 # gap to the forthcoming index
1244 if index
> collectindex
:
1245 for i
in range(collectindex
+1, index
):
1246 result
[-1].append(self
.normsubpathitems
[i
])
1249 for i
in range(collectindex
-1, index
, -1):
1250 result
[-1].append(self
.normsubpathitems
[i
].reversed())
1252 collectindex
= index
1253 collectparams
.append(param
)
1254 # add remaining collectparams to the result
1255 segments
= self
.normsubpathitems
[collectindex
].segments(collectparams
)
1256 result
[-1].append(segments
[0])
1257 result
.extend([normsubpath([segment
], epsilon
=self
.epsilon
) for segment
in segments
[1:]])
1260 # join last and first segment together if the normsubpath was
1261 # originally closed and first and the last parameters are the
1262 # beginning and end points of the normsubpath
1263 if ( ( params
[0] == 0 and params
[-1] == len(self
.normsubpathitems
) ) or
1264 ( params
[-1] == 0 and params
[0] == len(self
.normsubpathitems
) ) ):
1265 result
[-1].normsubpathitems
.extend(result
[0].normsubpathitems
)
1266 result
= result
[-1:] + result
[1:-1]
1270 def trafo(self
, params
):
1271 """return transformations at params"""
1272 result
= [None] * len(params
)
1273 for normsubpathitemindex
, (indices
, params
) in self
._distributeparams
(params
).items():
1274 for index
, trafo
in zip(indices
, self
.normsubpathitems
[normsubpathitemindex
].trafo(params
)):
1275 result
[index
] = trafo
1278 def transformed(self
, trafo
):
1279 """return transformed path"""
1280 nnormsubpath
= normsubpath(epsilon
=self
.epsilon
)
1281 for pitem
in self
.normsubpathitems
:
1282 nnormsubpath
.append(pitem
.transformed(trafo
))
1284 nnormsubpath
.close()
1285 elif self
.skippedline
is not None:
1286 nnormsubpath
.append(self
.skippedline
.transformed(trafo
))
1289 def outputPS(self
, file, writer
):
1290 # if the normsubpath is closed, we must not output a normline at
1292 if not self
.normsubpathitems
:
1294 if self
.closed
and isinstance(self
.normsubpathitems
[-1], normline_pt
):
1295 assert len(self
.normsubpathitems
) > 1, "a closed normsubpath should contain more than a single normline_pt"
1296 normsubpathitems
= self
.normsubpathitems
[:-1]
1298 normsubpathitems
= self
.normsubpathitems
1299 file.write("%g %g moveto\n" % self
.atbegin_pt())
1300 for anormsubpathitem
in normsubpathitems
:
1301 anormsubpathitem
.outputPS(file, writer
)
1303 file.write("closepath\n")
1305 def outputPDF(self
, file, writer
):
1306 # if the normsubpath is closed, we must not output a normline at
1308 if not self
.normsubpathitems
:
1310 if self
.closed
and isinstance(self
.normsubpathitems
[-1], normline_pt
):
1311 assert len(self
.normsubpathitems
) > 1, "a closed normsubpath should contain more than a single normline_pt"
1312 normsubpathitems
= self
.normsubpathitems
[:-1]
1314 normsubpathitems
= self
.normsubpathitems
1315 file.write("%f %f m\n" % self
.atbegin_pt())
1316 for anormsubpathitem
in normsubpathitems
:
1317 anormsubpathitem
.outputPDF(file, writer
)
1322 ################################################################################
1324 ################################################################################
1326 class normpathparam
:
1328 """parameter of a certain point along a normpath"""
1330 __slots__
= "normpath", "normsubpathindex", "normsubpathparam"
1332 def __init__(self
, normpath
, normsubpathindex
, normsubpathparam
):
1333 self
.normpath
= normpath
1334 self
.normsubpathindex
= normsubpathindex
1335 self
.normsubpathparam
= normsubpathparam
1336 float(normsubpathparam
)
1339 return "normpathparam(%s, %s, %s)" % (self
.normpath
, self
.normsubpathindex
, self
.normsubpathparam
)
1341 def __add__(self
, other
):
1342 if isinstance(other
, normpathparam
):
1343 assert self
.normpath
is other
.normpath
, "normpathparams have to belong to the same normpath"
1344 return self
.normpath
.arclentoparam_pt(self
.normpath
.paramtoarclen_pt(self
) +
1345 other
.normpath
.paramtoarclen_pt(other
))
1347 return self
.normpath
.arclentoparam_pt(self
.normpath
.paramtoarclen_pt(self
) + unit
.topt(other
))
1351 def __sub__(self
, other
):
1352 if isinstance(other
, normpathparam
):
1353 assert self
.normpath
is other
.normpath
, "normpathparams have to belong to the same normpath"
1354 return self
.normpath
.arclentoparam_pt(self
.normpath
.paramtoarclen_pt(self
) -
1355 other
.normpath
.paramtoarclen_pt(other
))
1357 return self
.normpath
.arclentoparam_pt(self
.normpath
.paramtoarclen_pt(self
) - unit
.topt(other
))
1359 def __rsub__(self
, other
):
1360 # other has to be a length in this case
1361 return self
.normpath
.arclentoparam_pt(-self
.normpath
.paramtoarclen_pt(self
) + unit
.topt(other
))
1363 def __mul__(self
, factor
):
1364 return self
.normpath
.arclentoparam_pt(self
.normpath
.paramtoarclen_pt(self
) * factor
)
1368 def __div__(self
, divisor
):
1369 return self
.normpath
.arclentoparam_pt(self
.normpath
.paramtoarclen_pt(self
) / divisor
)
1372 return self
.normpath
.arclentoparam_pt(-self
.normpath
.paramtoarclen_pt(self
))
1374 def __cmp__(self
, other
):
1375 if isinstance(other
, normpathparam
):
1376 assert self
.normpath
is other
.normpath
, "normpathparams have to belong to the same normpath"
1377 return cmp((self
.normsubpathindex
, self
.normsubpathparam
), (other
.normsubpathindex
, other
.normsubpathparam
))
1379 return cmp(self
.normpath
.paramtoarclen_pt(self
), unit
.topt(other
))
1381 def arclen_pt(self
):
1382 """return arc length in pts corresponding to the normpathparam """
1383 return self
.normpath
.paramtoarclen_pt(self
)
1386 """return arc length corresponding to the normpathparam """
1387 return self
.normpath
.paramtoarclen(self
)
1390 def _valueorlistmethod(method
):
1391 """Creates a method which takes a single argument or a list and
1392 returns a single value or a list out of method, which always
1395 def wrappedmethod(self
, valueorlist
, *args
, **kwargs
):
1397 for item
in valueorlist
:
1400 return method(self
, [valueorlist
], *args
, **kwargs
)[0]
1401 return method(self
, valueorlist
, *args
, **kwargs
)
1402 return wrappedmethod
1409 A normalized path consists of a list of normsubpaths.
1412 def __init__(self
, normsubpaths
=None):
1413 """construct a normpath from a list of normsubpaths"""
1415 if normsubpaths
is None:
1416 self
.normsubpaths
= [] # make a fresh list
1418 self
.normsubpaths
= normsubpaths
1419 for subpath
in normsubpaths
:
1420 assert isinstance(subpath
, normsubpath
), "only list of normsubpath instances allowed"
1422 def __add__(self
, other
):
1423 """create new normpath out of self and other"""
1424 result
= self
.copy()
1428 def __iadd__(self
, other
):
1429 """add other inplace"""
1430 for normsubpath
in other
.normpath().normsubpaths
:
1431 self
.normsubpaths
.append(normsubpath
.copy())
1434 def __getitem__(self
, i
):
1435 """return normsubpath i"""
1436 return self
.normsubpaths
[i
]
1439 """return the number of normsubpaths"""
1440 return len(self
.normsubpaths
)
1443 return "normpath([%s])" % ", ".join(map(str, self
.normsubpaths
))
1445 def _convertparams(self
, params
, convertmethod
):
1446 """return params with all non-normpathparam arguments converted by convertmethod
1449 - self._convertparams(params, self.arclentoparam_pt)
1450 - self._convertparams(params, self.arclentoparam)
1453 converttoparams
= []
1454 convertparamindices
= []
1455 for i
, param
in enumerate(params
):
1456 if not isinstance(param
, normpathparam
):
1457 converttoparams
.append(param
)
1458 convertparamindices
.append(i
)
1461 for i
, param
in zip(convertparamindices
, convertmethod(converttoparams
)):
1465 def _distributeparams(self
, params
):
1466 """return a dictionary mapping subpathindices to a tuple of a paramindices and subpathparams
1468 subpathindex specifies a subpath containing one or several positions.
1469 paramindex specify the index of the normpathparam in the original list and
1470 subpathparam is the parameter value in the subpath.
1474 for i
, param
in enumerate(params
):
1475 assert param
.normpath
is self
, "normpathparam has to belong to this path"
1476 result
.setdefault(param
.normsubpathindex
, ([], []))
1477 result
[param
.normsubpathindex
][0].append(i
)
1478 result
[param
.normsubpathindex
][1].append(param
.normsubpathparam
)
1481 def append(self
, item
):
1482 """append a normpath by a normsubpath or a pathitem"""
1483 if isinstance(item
, normsubpath
):
1484 # the normsubpaths list can be appended by a normsubpath only
1485 self
.normsubpaths
.append(item
)
1486 elif isinstance(item
, path
.pathitem
):
1487 # ... but we are kind and allow for regular path items as well
1488 # in order to make a normpath to behave more like a regular path
1489 if self
.normsubpaths
:
1490 context
= path
.context(*(self
.normsubpaths
[-1].atend_pt() +
1491 self
.normsubpaths
[-1].atbegin_pt()))
1492 item
.updatenormpath(self
, context
)
1494 self
.normsubpaths
= item
.createnormpath(self
).normsubpaths
1496 def arclen_pt(self
):
1497 """return arc length in pts"""
1498 return sum([normsubpath
.arclen_pt() for normsubpath
in self
.normsubpaths
])
1501 """return arc length"""
1502 return self
.arclen_pt() * unit
.t_pt
1504 def _arclentoparam_pt(self
, lengths_pt
):
1505 """return the params matching the given lengths_pt"""
1506 # work on a copy which is counted down to negative values
1507 lengths_pt
= lengths_pt
[:]
1508 results
= [None] * len(lengths_pt
)
1510 for normsubpathindex
, normsubpath
in enumerate(self
.normsubpaths
):
1511 params
, arclen
= normsubpath
._arclentoparam
_pt
(lengths_pt
)
1513 for i
, result
in enumerate(results
):
1514 if results
[i
] is None:
1515 lengths_pt
[i
] -= arclen
1516 if lengths_pt
[i
] < 0 or normsubpathindex
== len(self
.normsubpaths
) - 1:
1517 # overwrite the results until the length has become negative
1518 results
[i
] = normpathparam(self
, normsubpathindex
, params
[i
])
1525 def arclentoparam_pt(self
, lengths_pt
):
1526 """return the param(s) matching the given length(s)_pt in pts"""
1528 arclentoparam_pt
= _valueorlistmethod(_arclentoparam_pt
)
1530 def arclentoparam(self
, lengths
):
1531 """return the param(s) matching the given length(s)"""
1532 return self
._arclentoparam
_pt
([unit
.topt(l
) for l
in lengths
])
1533 arclentoparam
= _valueorlistmethod(arclentoparam
)
1535 def _at_pt(self
, params
):
1536 """return coordinates of normpath in pts at params"""
1537 result
= [None] * len(params
)
1538 for normsubpathindex
, (indices
, params
) in self
._distributeparams
(params
).items():
1539 for index
, point_pt
in zip(indices
, self
.normsubpaths
[normsubpathindex
].at_pt(params
)):
1540 result
[index
] = point_pt
1543 def at_pt(self
, params
):
1544 """return coordinates of normpath in pts at param(s) or lengths in pts"""
1545 return self
._at
_pt
(self
._convertparams
(params
, self
.arclentoparam_pt
))
1546 at_pt
= _valueorlistmethod(at_pt
)
1548 def at(self
, params
):
1549 """return coordinates of normpath at param(s) or arc lengths"""
1550 return [(x_pt
* unit
.t_pt
, y_pt
* unit
.t_pt
)
1551 for x_pt
, y_pt
in self
._at
_pt
(self
._convertparams
(params
, self
.arclentoparam
))]
1552 at
= _valueorlistmethod(at
)
1554 def atbegin_pt(self
):
1555 """return coordinates of the beginning of first subpath in normpath in pts"""
1556 if self
.normsubpaths
:
1557 return self
.normsubpaths
[0].atbegin_pt()
1559 raise NormpathException("cannot return first point of empty path")
1562 """return coordinates of the beginning of first subpath in normpath"""
1563 x
, y
= self
.atbegin_pt()
1564 return x
* unit
.t_pt
, y
* unit
.t_pt
1567 """return coordinates of the end of last subpath in normpath in pts"""
1568 if self
.normsubpaths
:
1569 return self
.normsubpaths
[-1].atend_pt()
1571 raise NormpathException("cannot return last point of empty path")
1574 """return coordinates of the end of last subpath in normpath"""
1575 x
, y
= self
.atend_pt()
1576 return x
* unit
.t_pt
, y
* unit
.t_pt
1579 """return bbox of normpath"""
1580 abbox
= bboxmodule
.empty()
1581 for normsubpath
in self
.normsubpaths
:
1582 abbox
+= normsubpath
.bbox()
1586 """return param corresponding of the beginning of the normpath"""
1587 if self
.normsubpaths
:
1588 return normpathparam(self
, 0, 0)
1590 raise NormpathException("empty path")
1593 """return copy of normpath"""
1595 for normsubpath
in self
.normsubpaths
:
1596 result
.append(normsubpath
.copy())
1599 def _curvature_pt(self
, params
):
1600 """return the curvature in 1/pts at params
1602 When the curvature is undefined, the invalid instance is returned."""
1604 result
= [None] * len(params
)
1605 for normsubpathindex
, (indices
, params
) in self
._distributeparams
(params
).items():
1606 for index
, curvature_pt
in zip(indices
, self
.normsubpaths
[normsubpathindex
].curvature_pt(params
)):
1607 result
[index
] = curvature_pt
1610 def curvature_pt(self
, params
):
1611 """return the curvature in 1/pt at params
1613 The curvature radius is the inverse of the curvature. When the
1614 curvature is undefined, the invalid instance is returned. Note that
1615 this radius can be negative or positive, depending on the sign of the
1618 result
= [None] * len(params
)
1619 for normsubpathindex
, (indices
, params
) in self
._distributeparams
(params
).items():
1620 for index
, curv_pt
in zip(indices
, self
.normsubpaths
[normsubpathindex
].curvature_pt(params
)):
1621 result
[index
] = curv_pt
1623 curvature_pt
= _valueorlistmethod(curvature_pt
)
1625 def _curveradius_pt(self
, params
):
1626 """return the curvature radius at params in pts
1628 The curvature radius is the inverse of the curvature. When the
1629 curvature is 0, None is returned. Note that this radius can be negative
1630 or positive, depending on the sign of the curvature."""
1632 result
= [None] * len(params
)
1633 for normsubpathindex
, (indices
, params
) in self
._distributeparams
(params
).items():
1634 for index
, radius_pt
in zip(indices
, self
.normsubpaths
[normsubpathindex
].curveradius_pt(params
)):
1635 result
[index
] = radius_pt
1638 def curveradius_pt(self
, params
):
1639 """return the curvature radius in pts at param(s) or arc length(s) in pts
1641 The curvature radius is the inverse of the curvature. When the
1642 curvature is 0, None is returned. Note that this radius can be negative
1643 or positive, depending on the sign of the curvature."""
1645 return self
._curveradius
_pt
(self
._convertparams
(params
, self
.arclentoparam_pt
))
1646 curveradius_pt
= _valueorlistmethod(curveradius_pt
)
1648 def curveradius(self
, params
):
1649 """return the curvature radius at param(s) or arc length(s)
1651 The curvature radius is the inverse of the curvature. When the
1652 curvature is 0, None is returned. Note that this radius can be negative
1653 or positive, depending on the sign of the curvature."""
1656 for radius_pt
in self
._curveradius
_pt
(self
._convertparams
(params
, self
.arclentoparam
)):
1657 if radius_pt
is not invalid
:
1658 result
.append(radius_pt
* unit
.t_pt
)
1660 result
.append(invalid
)
1662 curveradius
= _valueorlistmethod(curveradius
)
1665 """return param corresponding of the end of the path"""
1666 if self
.normsubpaths
:
1667 return normpathparam(self
, len(self
)-1, len(self
.normsubpaths
[-1]))
1669 raise NormpathException("empty path")
1671 def extend(self
, normsubpaths
):
1672 """extend path by normsubpaths or pathitems"""
1673 for anormsubpath
in normsubpaths
:
1674 # use append to properly handle regular path items as well as normsubpaths
1675 self
.append(anormsubpath
)
1677 def intersect(self
, other
):
1678 """intersect self with other path
1680 Returns a tuple of lists consisting of the parameter values
1681 of the intersection points of the corresponding normpath.
1683 other
= other
.normpath()
1685 # here we build up the result
1686 intersections
= ([], [])
1688 # Intersect all normsubpaths of self with the normsubpaths of
1690 for ia
, normsubpath_a
in enumerate(self
.normsubpaths
):
1691 for ib
, normsubpath_b
in enumerate(other
.normsubpaths
):
1692 for intersection
in zip(*normsubpath_a
.intersect(normsubpath_b
)):
1693 intersections
[0].append(normpathparam(self
, ia
, intersection
[0]))
1694 intersections
[1].append(normpathparam(other
, ib
, intersection
[1]))
1695 return intersections
1697 def join(self
, other
):
1698 """join other normsubpath inplace
1700 Both normpaths must contain at least one normsubpath.
1701 The last normsubpath of self will be joined to the first
1702 normsubpath of other.
1704 other
= other
.normpath()
1706 if not self
.normsubpaths
:
1707 raise NormpathException("cannot join to empty path")
1708 if not other
.normsubpaths
:
1709 raise NormpathException("cannot join empty path")
1710 self
.normsubpaths
[-1].join(other
.normsubpaths
[0])
1711 self
.normsubpaths
.extend(other
.normsubpaths
[1:])
1713 def joined(self
, other
):
1714 """return joined self and other
1716 Both normpaths must contain at least one normsubpath.
1717 The last normsubpath of self will be joined to the first
1718 normsubpath of other.
1720 result
= self
.copy()
1721 result
.join(other
.normpath())
1724 # << operator also designates joining
1728 """return a normpath, i.e. self"""
1731 def _paramtoarclen_pt(self
, params
):
1732 """return arc lengths in pts matching the given params"""
1733 result
= [None] * len(params
)
1735 distributeparams
= self
._distributeparams
(params
)
1736 for normsubpathindex
in range(max(distributeparams
.keys()) + 1):
1737 if distributeparams
.has_key(normsubpathindex
):
1738 indices
, params
= distributeparams
[normsubpathindex
]
1739 arclens_pt
, normsubpatharclen_pt
= self
.normsubpaths
[normsubpathindex
]._paramtoarclen
_pt
(params
)
1740 for index
, arclen_pt
in zip(indices
, arclens_pt
):
1741 result
[index
] = totalarclen_pt
+ arclen_pt
1742 totalarclen_pt
+= normsubpatharclen_pt
1744 totalarclen_pt
+= self
.normsubpaths
[normsubpathindex
].arclen_pt()
1747 def paramtoarclen_pt(self
, params
):
1748 """return arc length(s) in pts matching the given param(s)"""
1749 paramtoarclen_pt
= _valueorlistmethod(_paramtoarclen_pt
)
1751 def paramtoarclen(self
, params
):
1752 """return arc length(s) matching the given param(s)"""
1753 return [arclen_pt
* unit
.t_pt
for arclen_pt
in self
._paramtoarclen
_pt
(params
)]
1754 paramtoarclen
= _valueorlistmethod(paramtoarclen
)
1757 """return path corresponding to normpath"""
1759 for normsubpath
in self
.normsubpaths
:
1760 pathitems
.extend(normsubpath
.pathitems())
1761 return path
.path(*pathitems
)
1764 """return reversed path"""
1765 nnormpath
= normpath()
1766 for i
in range(len(self
.normsubpaths
)):
1767 nnormpath
.normsubpaths
.append(self
.normsubpaths
[-(i
+1)].reversed())
1770 def _rotation(self
, params
):
1771 """return rotation at params"""
1772 result
= [None] * len(params
)
1773 for normsubpathindex
, (indices
, params
) in self
._distributeparams
(params
).items():
1774 for index
, rotation
in zip(indices
, self
.normsubpaths
[normsubpathindex
].rotation(params
)):
1775 result
[index
] = rotation
1778 def rotation_pt(self
, params
):
1779 """return rotation at param(s) or arc length(s) in pts"""
1780 return self
._rotation
(self
._convertparams
(params
, self
.arclentoparam_pt
))
1781 rotation_pt
= _valueorlistmethod(rotation_pt
)
1783 def rotation(self
, params
):
1784 """return rotation at param(s) or arc length(s)"""
1785 return self
._rotation
(self
._convertparams
(params
, self
.arclentoparam
))
1786 rotation
= _valueorlistmethod(rotation
)
1788 def _split_pt(self
, params
):
1789 """split path at params and return list of normpaths"""
1791 return [self
.copy()]
1793 # instead of distributing the parameters, we need to keep their
1794 # order and collect parameters for splitting of normsubpathitem
1795 # with index collectindex
1797 for param
in params
:
1798 if param
.normsubpathindex
!= collectindex
:
1799 if collectindex
is not None:
1800 # append end point depening on the forthcoming index
1801 if param
.normsubpathindex
> collectindex
:
1802 collectparams
.append(len(self
.normsubpaths
[collectindex
]))
1804 collectparams
.append(0)
1805 # get segments of the normsubpath and add them to the result
1806 segments
= self
.normsubpaths
[collectindex
].segments(collectparams
)
1807 result
[-1].append(segments
[0])
1808 result
.extend([normpath([segment
]) for segment
in segments
[1:]])
1809 # add normsubpathitems and first segment parameter to close the
1810 # gap to the forthcoming index
1811 if param
.normsubpathindex
> collectindex
:
1812 for i
in range(collectindex
+1, param
.normsubpathindex
):
1813 result
[-1].append(self
.normsubpaths
[i
])
1816 for i
in range(collectindex
-1, param
.normsubpathindex
, -1):
1817 result
[-1].append(self
.normsubpaths
[i
].reversed())
1818 collectparams
= [len(self
.normsubpaths
[param
.normsubpathindex
])]
1820 result
= [normpath(self
.normsubpaths
[:param
.normsubpathindex
])]
1822 collectindex
= param
.normsubpathindex
1823 collectparams
.append(param
.normsubpathparam
)
1824 # add remaining collectparams to the result
1825 collectparams
.append(len(self
.normsubpaths
[collectindex
]))
1826 segments
= self
.normsubpaths
[collectindex
].segments(collectparams
)
1827 result
[-1].append(segments
[0])
1828 result
.extend([normpath([segment
]) for segment
in segments
[1:]])
1829 result
[-1].extend(self
.normsubpaths
[collectindex
+1:])
1832 def split_pt(self
, params
):
1833 """split path at param(s) or arc length(s) in pts and return list of normpaths"""
1835 for param
in params
:
1839 return self
._split
_pt
(self
._convertparams
(params
, self
.arclentoparam_pt
))
1841 def split(self
, params
):
1842 """split path at param(s) or arc length(s) and return list of normpaths"""
1844 for param
in params
:
1848 return self
._split
_pt
(self
._convertparams
(params
, self
.arclentoparam
))
1850 def _tangent(self
, params
, length_pt
):
1851 """return tangent vector of path at params
1853 If length_pt in pts is not None, the tangent vector will be scaled to
1857 result
= [None] * len(params
)
1858 tangenttemplate
= path
.line_pt(0, 0, length_pt
, 0).normpath()
1859 for normsubpathindex
, (indices
, params
) in self
._distributeparams
(params
).items():
1860 for index
, atrafo
in zip(indices
, self
.normsubpaths
[normsubpathindex
].trafo(params
)):
1861 if atrafo
is invalid
:
1862 result
[index
] = invalid
1864 result
[index
] = tangenttemplate
.transformed(atrafo
)
1867 def tangent_pt(self
, params
, length_pt
):
1868 """return tangent vector of path at param(s) or arc length(s) in pts
1870 If length in pts is not None, the tangent vector will be scaled to
1873 return self
._tangent
(self
._convertparams
(params
, self
.arclentoparam_pt
), length_pt
)
1874 tangent_pt
= _valueorlistmethod(tangent_pt
)
1876 def tangent(self
, params
, length
=1):
1877 """return tangent vector of path at param(s) or arc length(s)
1879 If length is not None, the tangent vector will be scaled to
1882 return self
._tangent
(self
._convertparams
(params
, self
.arclentoparam
), unit
.topt(length
))
1883 tangent
= _valueorlistmethod(tangent
)
1885 def _trafo(self
, params
):
1886 """return transformation at params"""
1887 result
= [None] * len(params
)
1888 for normsubpathindex
, (indices
, params
) in self
._distributeparams
(params
).items():
1889 for index
, trafo
in zip(indices
, self
.normsubpaths
[normsubpathindex
].trafo(params
)):
1890 result
[index
] = trafo
1893 def trafo_pt(self
, params
):
1894 """return transformation at param(s) or arc length(s) in pts"""
1895 return self
._trafo
(self
._convertparams
(params
, self
.arclentoparam_pt
))
1896 trafo_pt
= _valueorlistmethod(trafo_pt
)
1898 def trafo(self
, params
):
1899 """return transformation at param(s) or arc length(s)"""
1900 return self
._trafo
(self
._convertparams
(params
, self
.arclentoparam
))
1901 trafo
= _valueorlistmethod(trafo
)
1903 def transformed(self
, trafo
):
1904 """return transformed normpath"""
1905 return normpath([normsubpath
.transformed(trafo
) for normsubpath
in self
.normsubpaths
])
1907 def outputPS(self
, file, writer
):
1908 for normsubpath
in self
.normsubpaths
:
1909 normsubpath
.outputPS(file, writer
)
1911 def outputPDF(self
, file, writer
):
1912 for normsubpath
in self
.normsubpaths
:
1913 normsubpath
.outputPDF(file, writer
)