fix parameter handling of path.split_pt
[PyX.git] / pyx / deformer.py
blob6de35e1efe987bff336a4ace8b98a5c2afd3221c
1 # -*- encoding: utf-8 -*-
4 # Copyright (C) 2003-2013 Michael Schindler <m-schindler@users.sourceforge.net>
5 # Copyright (C) 2003-2005 André Wobst <wobsta@users.sourceforge.net>
7 # This file is part of PyX (http://pyx.sourceforge.net/).
9 # PyX is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 2 of the License, or
12 # (at your option) any later version.
14 # PyX is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
19 # You should have received a copy of the GNU General Public License
20 # along with PyX; if not, write to the Free Software
21 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
23 import functools, logging, math
24 from . import attr, baseclasses, mathutils, path, normpath, unit, color
26 normpath.invalid = 175e175 # Just a very crude workaround to get the code running again. normpath.invalid does not exist anymore.
28 logger = logging.getLogger("pyx")
30 # specific exception for an invalid parameterization point
31 # used in parallel
32 class InvalidParamException(Exception):
34 def __init__(self, param):
35 self.normsubpathitemparam = param
37 # error raised in parallel if we are trying to get badly defined intersections
38 class IntersectionError(Exception): pass
40 # None has a meaning in linesmoothed
41 class _marker: pass
43 class inf_curvature: pass
45 def curvescontrols_from_endlines_pt(B, tangent1, tangent2, r1, r2, softness): # <<<
46 # calculates the parameters for two bezier curves connecting two lines (curvature=0)
47 # starting at B - r1*tangent1
48 # ending at B + r2*tangent2
50 # Takes the corner B
51 # and two tangent vectors heading to and from B
52 # and two radii r1 and r2:
53 # All arguments must be in Points
54 # Returns the seven control points of the two bezier curves:
55 # - start d1
56 # - control points g1 and f1
57 # - midpoint e
58 # - control points f2 and g2
59 # - endpoint d2
61 # make direction vectors d1: from B to A
62 # d2: from B to C
63 d1 = -tangent1[0] / math.hypot(*tangent1), -tangent1[1] / math.hypot(*tangent1)
64 d2 = tangent2[0] / math.hypot(*tangent2), tangent2[1] / math.hypot(*tangent2)
66 # 0.3192 has turned out to be the maximum softness available
67 # for straight lines ;-)
68 f = 0.3192 * softness
69 g = (15.0 * f + math.sqrt(-15.0*f*f + 24.0*f))/12.0
71 # make the control points of the two bezier curves
72 f1 = B[0] + f * r1 * d1[0], B[1] + f * r1 * d1[1]
73 f2 = B[0] + f * r2 * d2[0], B[1] + f * r2 * d2[1]
74 g1 = B[0] + g * r1 * d1[0], B[1] + g * r1 * d1[1]
75 g2 = B[0] + g * r2 * d2[0], B[1] + g * r2 * d2[1]
76 d1 = B[0] + r1 * d1[0], B[1] + r1 * d1[1]
77 d2 = B[0] + r2 * d2[0], B[1] + r2 * d2[1]
78 e = 0.5 * (f1[0] + f2[0]), 0.5 * (f1[1] + f2[1])
80 return (d1, g1, f1, e, f2, g2, d2)
81 # >>>
83 def controldists_from_endgeometry_pt(A, B, tangA, tangB, curvA, curvB, allownegative=False, curv_epsilon=1.0e-8): # <<<
85 """For a curve with given tangents and curvatures at the endpoints this gives the distances between the controlpoints
87 This helper routine returns a list of two distances between the endpoints and the
88 corresponding control points of a (cubic) bezier curve that has
89 prescribed tangents tangentA, tangentB and curvatures curvA, curvB at the
90 end points.
92 Note: The returned distances are not always positive.
93 But only positive values are geometrically correct, so please check!
94 The outcome is sorted so that the first entry is expected to be the
95 most reasonable one
96 """
97 debug = 0
99 def test_divisions(T, D, E, AB, curvA, curvB, debug):# <<<
100 small = AB * 1.0e-4 # at infinite curvature, avoid setting control points exactly on the startpoint
101 # TODO: is this consistent with the avoiding of curv=inf in normpath?
102 arbitrary = AB * 0.33 # at zero curvature, we know nothing about a or b
104 def is_zero(x):
105 return abs(x) < curv_epsilon
106 # the following gave different results for forward/reverse paths
107 # in test/functional/test_deformer parallel G
108 #try:
109 # 1.0 / x
110 #except ZeroDivisionError:
111 # return True
112 #return False
115 if is_zero(T):
117 if curvA is inf_curvature:
118 a = small
119 if curvB is inf_curvature:
120 b = small
121 elif is_zero(curvB):
122 assert abs(E) < 1.0e-10
123 b = arbitrary
124 else:
125 b = math.sqrt(abs(E / (1.5 * curvB))) * mathutils.sign(E*curvB)
126 elif is_zero(curvA):
127 assert abs(D) < 1.0e-10
128 a = arbitrary
129 if curvB is inf_curvature:
130 b = small
131 elif is_zero(curvB):
132 assert abs(E) < 1.0e-10
133 b = arbitrary
134 else:
135 b = math.sqrt(abs(E / (1.5 * curvB))) * mathutils.sign(E*curvB)
136 else:
137 a = math.sqrt(abs(D / (1.5 * curvA))) * mathutils.sign(D*curvA)
138 if curvB is inf_curvature:
139 b = small
140 elif is_zero(curvB):
141 assert abs(E) < 1.0e-10
142 b = arbitrary
143 else:
144 b = math.sqrt(abs(E / (1.5 * curvB))) * mathutils.sign(E*curvB)
146 else:
147 if curvA is inf_curvature:
148 a = small
149 if curvB is inf_curvature:
150 b = small
151 elif is_zero(curvB):
152 b = arbitrary
153 else:
154 b1 = math.sqrt(abs(E / (1.5 * curvB))) * mathutils.sign(E*curvB)
155 b2 = D / T
156 if abs(b1) < abs(b2):
157 b = b1
158 else:
159 b = b2
160 elif curvB is inf_curvature:
161 b = small
162 if is_zero(curvA):
163 a = arbitrary
164 else:
165 a1 = math.sqrt(abs(D / (1.5 * curvA))) * mathutils.sign(D*curvA)
166 a2 = E / T
167 if abs(a1) < abs(a2):
168 a = a1
169 else:
170 a = a2
171 elif is_zero(curvA):
172 b = D / T
173 a = (E - 1.5*curvB*b*abs(b)) / T
174 elif is_zero(curvB):
175 a = E / T
176 b = (D - 1.5*curvA*a*abs(a)) / T
177 else:
178 return []
180 if debug:
181 print("fallback with exact zero value")
182 return [(a, b)]
183 # >>>
184 def fallback_smallT(T, D, E, AB, curvA, curvB, threshold, debug):# <<<
185 a = math.sqrt(abs(D / (1.5 * curvA))) * mathutils.sign(D*curvA)
186 b = math.sqrt(abs(E / (1.5 * curvB))) * mathutils.sign(E*curvB)
187 q1 = min(abs(1.5*a*a*curvA), abs(D))
188 q2 = min(abs(1.5*b*b*curvB), abs(E))
189 if (a >= 0 and b >= 0 and
190 abs(b*T) < threshold * q1 and abs(1.5*a*abs(a)*curvA - D) < threshold * q1 and
191 abs(a*T) < threshold * q2 and abs(1.5*b*abs(b)*curvB - E) < threshold * q2):
192 if debug:
193 print("fallback with T approx 0")
194 return [(a, b)]
195 return []
196 # >>>
197 def fallback_smallcurv(T, D, E, AB, curvA, curvB, threshold, debug):# <<<
198 result = []
200 # is curvB approx zero?
201 a = E / T
202 b = (D - 1.5*curvA*a*abs(a)) / T
203 if (a >= 0 and b >= 0 and
204 abs(1.5*b*b*curvB) < threshold * min(abs(a*T), abs(E)) and
205 abs(a*T - E) < threshold * min(abs(a*T), abs(E))):
206 if debug:
207 print("fallback with curvB approx 0")
208 result.append((a, b))
210 # is curvA approx zero?
211 b = D / T
212 a = (E - 1.5*curvB*b*abs(b)) / T
213 if (a >= 0 and b >= 0 and
214 abs(1.5*a*a*curvA) < threshold * min(abs(b*T), abs(D)) and
215 abs(b*T - D) < threshold * min(abs(b*T), abs(D))):
216 if debug:
217 print("fallback with curvA approx 0")
218 result.append((a, b))
220 return result
221 # >>>
222 def findnearest(x, ys): # <<<
223 I = 0
224 Y = ys[I]
225 mindist = abs(x - Y)
227 # find the value in ys which is nearest to x
228 for i, y in enumerate(ys[1:]):
229 dist = abs(x - y)
230 if dist < mindist:
231 I, Y, mindist = i, y, dist
233 return I, Y
234 # >>>
236 # some shortcuts
237 T = tangA[0] * tangB[1] - tangA[1] * tangB[0]
238 D = tangA[0] * (B[1]-A[1]) - tangA[1] * (B[0]-A[0])
239 E = tangB[0] * (A[1]-B[1]) - tangB[1] * (A[0]-B[0])
240 AB = math.hypot(A[0] - B[0], A[1] - B[1])
242 # try if one of the prefactors is exactly zero
243 testsols = test_divisions(T, D, E, AB, curvA, curvB, debug)
244 if testsols:
245 return testsols
247 # The general case:
248 # we try to find all the zeros of the decoupled 4th order problem
249 # for the combined problem:
250 # The control points of a cubic Bezier curve are given by a, b:
251 # A, A + a*tangA, B - b*tangB, B
252 # for the derivation see /design/beziers.tex
253 # 0 = 1.5 a |a| curvA + b * T - D
254 # 0 = 1.5 b |b| curvB + a * T - E
255 # because of the absolute values we get several possibilities for the signs
256 # in the equation. We test all signs, also the invalid ones!
257 if allownegative:
258 signs = [(+1, +1), (-1, +1), (+1, -1), (-1, -1)]
259 else:
260 signs = [(+1, +1)]
262 candidates_a = []
263 candidates_b = []
264 for sign_a, sign_b in signs:
265 coeffs_a = (sign_b*3.375*curvA*curvA*curvB, 0.0, -sign_b*sign_a*4.5*curvA*curvB*D, T**3, sign_b*1.5*curvB*D*D - T*T*E)
266 coeffs_b = (sign_a*3.375*curvA*curvB*curvB, 0.0, -sign_a*sign_b*4.5*curvA*curvB*E, T**3, sign_a*1.5*curvA*E*E - T*T*D)
267 candidates_a += [root for root in mathutils.realpolyroots(*coeffs_a) if sign_a*root >= 0]
268 candidates_b += [root for root in mathutils.realpolyroots(*coeffs_b) if sign_b*root >= 0]
269 solutions = []
270 if candidates_a and candidates_b:
271 for a in candidates_a:
272 i, b = findnearest((D - 1.5*curvA*a*abs(a))/T, candidates_b)
273 solutions.append((a, b))
275 # try if there is an approximate solution
276 for thr in [1.0e-2, 1.0e-1]:
277 if not solutions:
278 solutions = fallback_smallT(T, D, E, AB, curvA, curvB, thr, debug)
279 if not solutions:
280 solutions = fallback_smallcurv(T, D, E, AB, curvA, curvB, thr, debug)
282 # sort the solutions: the more reasonable values at the beginning
283 def mycmp(x,y): # <<<
284 # first the pairs that are purely positive, then all the pairs with some negative signs
285 # inside the two sets: sort by magnitude
286 sx = (x[0] > 0 and x[1] > 0)
287 sy = (y[0] > 0 and y[1] > 0)
289 # experimental stuff:
290 # what criterion should be used for sorting ?
292 #errx = abs(1.5*curvA*x[0]*abs(x[0]) + x[1]*T - D) + abs(1.5*curvB*x[1]*abs(x[1]) + x[0]*T - E)
293 #erry = abs(1.5*curvA*y[0]*abs(y[0]) + y[1]*T - D) + abs(1.5*curvB*y[1]*abs(y[1]) + y[0]*T - E)
294 # # For each equation, a value like
295 # # abs(1.5*curvA*y[0]*abs(y[0]) + y[1]*T - D) / abs(curvA*(D - y[1]*T))
296 # # indicates how good the solution is. In order to avoid the division,
297 # # we here multiply with all four denominators:
298 # errx = max(abs( (1.5*curvA*y[0]*abs(y[0]) + y[1]*T - D) * (curvB*(E - y[0]*T))*(curvA*(D - x[1]*T))*(curvB*(E - x[0]*T)) ),
299 # abs( (1.5*curvB*y[1]*abs(y[1]) + y[0]*T - E) * (curvA*(D - y[1]*T))*(curvA*(D - x[1]*T))*(curvB*(E - x[0]*T)) ))
300 # errx = max(abs( (1.5*curvA*x[0]*abs(x[0]) + x[1]*T - D) * (curvA*(D - y[1]*T))*(curvB*(E - y[0]*T))*(curvB*(E - x[0]*T)) ),
301 # abs( (1.5*curvB*x[1]*abs(x[1]) + x[0]*T - E) * (curvA*(D - y[1]*T))*(curvB*(E - y[0]*T))*(curvA*(D - x[1]*T)) ))
302 #errx = (abs(curvA*x[0]) - 1.0)**2 + (abs(curvB*x[1]) - 1.0)**2
303 #erry = (abs(curvA*y[0]) - 1.0)**2 + (abs(curvB*y[1]) - 1.0)**2
305 errx = x[0]**2 + x[1]**2
306 erry = y[0]**2 + y[1]**2
308 if sx == 1 and sy == 1:
309 # try to use longer solutions if there are any crossings in the control-arms
310 # the following combination yielded fewest sorting errors in test_bezier.py
311 t, s = intersection(A, B, tangA, tangB)
312 t, s = abs(t), abs(s)
313 if (t > 0 and t < x[0] and s > 0 and s < x[1]):
314 if (t > 0 and t < y[0] and s > 0 and s < y[1]):
315 # use the shorter one
316 return (errx > erry) - (errx < erry)
317 else:
318 # use the longer one
319 return -1
320 else:
321 if (t > 0 and t < y[0] and s > 0 and s < y[1]):
322 # use the longer one
323 return 1
324 else:
325 # use the shorter one
326 return (errx > erry) - (errx < erry)
327 #return cmp(x[0]**2 + x[1]**2, y[0]**2 + y[1]**2)
328 else:
329 return (sy > sx) - (sy < sx)
330 # >>>
331 solutions.sort(key=functools.cmp_to_key(mycmp))
333 return solutions
334 # >>>
336 def normcurve_from_endgeometry_pt(A, B, tangA, tangB, curvA, curvB): # <<<
337 a, b = controldists_from_endgeometry_pt(A, B, tangA, tangB, curvA, curvB)[0]
338 return normpath.normcurve_pt(A[0], A[1],
339 A[0] + a * tangA[0], A[1] + a * tangA[1],
340 B[0] - b * tangB[0], B[1] - b * tangB[1], B[0], B[1])
341 # >>>
343 def intersection(A, D, tangA, tangD): # <<<
345 """returns the intersection parameters of two evens
347 they are defined by:
348 x(t) = A + t * tangA
349 x(s) = D + s * tangD
351 det = -tangA[0] * tangD[1] + tangA[1] * tangD[0]
352 try:
353 1.0 / det
354 except ArithmeticError:
355 return None, None
357 DA = D[0] - A[0], D[1] - A[1]
359 t = (-tangD[1]*DA[0] + tangD[0]*DA[1]) / det
360 s = (-tangA[1]*DA[0] + tangA[0]*DA[1]) / det
362 return t, s
363 # >>>
365 class cycloid(baseclasses.deformer): # <<<
366 """Wraps a cycloid around a path.
368 The outcome looks like a spring with the originalpath as the axis.
369 radius: radius of the cycloid
370 halfloops: number of halfloops
371 skipfirst/skiplast: undeformed end lines of the original path
372 curvesperhloop:
373 sign: start left (1) or right (-1) with the first halfloop
374 turnangle: angle of perspective on a (3D) spring
375 turnangle=0 will produce a sinus-like cycloid,
376 turnangle=90 will procude a row of connected circles
380 def __init__(self, radius=0.5*unit.t_cm, halfloops=10,
381 skipfirst=1*unit.t_cm, skiplast=1*unit.t_cm, curvesperhloop=3, sign=1, turnangle=45):
382 self.skipfirst = skipfirst
383 self.skiplast = skiplast
384 self.radius = radius
385 self.halfloops = halfloops
386 self.curvesperhloop = curvesperhloop
387 self.sign = sign
388 self.turnangle = turnangle
390 def __call__(self, radius=None, halfloops=None,
391 skipfirst=None, skiplast=None, curvesperhloop=None, sign=None, turnangle=None):
392 if radius is None:
393 radius = self.radius
394 if halfloops is None:
395 halfloops = self.halfloops
396 if skipfirst is None:
397 skipfirst = self.skipfirst
398 if skiplast is None:
399 skiplast = self.skiplast
400 if curvesperhloop is None:
401 curvesperhloop = self.curvesperhloop
402 if sign is None:
403 sign = self.sign
404 if turnangle is None:
405 turnangle = self.turnangle
407 return cycloid(radius=radius, halfloops=halfloops, skipfirst=skipfirst, skiplast=skiplast,
408 curvesperhloop=curvesperhloop, sign=sign, turnangle=turnangle)
410 def deform(self, basepath):
411 resultnormsubpaths = [self.deformsubpath(nsp) for nsp in basepath.normpath().normsubpaths]
412 return normpath.normpath(resultnormsubpaths)
414 def deformsubpath(self, normsubpath):
416 skipfirst = abs(unit.topt(self.skipfirst))
417 skiplast = abs(unit.topt(self.skiplast))
418 radius = abs(unit.topt(self.radius))
419 turnangle = math.radians(self.turnangle)
420 sign = mathutils.sign(self.sign)
422 cosTurn = math.cos(turnangle)
423 sinTurn = math.sin(turnangle)
425 # make list of the lengths and parameters at points on normsubpath
426 # where we will add cycloid-points
427 totlength = normsubpath.arclen_pt()
428 if totlength <= skipfirst + skiplast + 2*radius*sinTurn:
429 logger.warning("normsubpath is too short for deformation with cycloid -- skipping...")
430 return normsubpath
432 # parameterization is in rotation-angle around the basepath
433 # differences in length, angle ... between two basepoints
434 # and between basepoints and controlpoints
435 Dphi = math.pi / self.curvesperhloop
436 phis = [i * Dphi for i in range(self.halfloops * self.curvesperhloop + 1)]
437 DzDphi = (totlength - skipfirst - skiplast - 2*radius*sinTurn) * 1.0 / (self.halfloops * math.pi * cosTurn)
438 # Dz = (totlength - skipfirst - skiplast - 2*radius*sinTurn) * 1.0 / (self.halfloops * self.curvesperhloop * cosTurn)
439 # zs = [i * Dz for i in range(self.halfloops * self.curvesperhloop + 1)]
440 # from path._arctobcurve:
441 # optimal relative distance along tangent for second and third control point
442 L = 4 * radius * (1 - math.cos(Dphi/2)) / (3 * math.sin(Dphi/2))
444 # Now the transformation of z into the turned coordinate system
445 Zs = [ skipfirst + radius*sinTurn # here the coordinate z starts
446 - sinTurn*radius*math.cos(phi) + cosTurn*DzDphi*phi # the transformed z-coordinate
447 for phi in phis]
448 params = normsubpath._arclentoparam_pt(Zs)[0]
450 # get the positions of the splitpoints in the cycloid
451 points = []
452 for phi, param in zip(phis, params):
453 # the cycloid is a circle that is stretched along the normsubpath
454 # here are the points of that circle
455 basetrafo = normsubpath.trafo([param])[0]
457 # The point on the cycloid, in the basepath's local coordinate system
458 baseZ, baseY = 0, radius*math.sin(phi)
460 # The tangent there, also in local coords
461 tangentX = -cosTurn*radius*math.sin(phi) + sinTurn*DzDphi
462 tangentY = radius*math.cos(phi)
463 tangentZ = sinTurn*radius*math.sin(phi) + DzDphi*cosTurn
464 norm = math.sqrt(tangentX*tangentX + tangentY*tangentY + tangentZ*tangentZ)
465 tangentY, tangentZ = tangentY/norm, tangentZ/norm
467 # Respect the curvature of the basepath for the cycloid's curvature
468 # XXX this is only a heuristic, not a "true" expression for
469 # the curvature in curved coordinate systems
470 try:
471 pathradius = 1/normsubpath.curvature_pt([param])[0]
472 except ArithmeticError:
473 factor = 1
474 else:
475 factor = (pathradius - baseY) / pathradius
476 factor = abs(factor)
477 l = L * factor
479 # The control points prior and after the point on the cycloid
480 preeZ, preeY = baseZ - l * tangentZ, baseY - l * tangentY
481 postZ, postY = baseZ + l * tangentZ, baseY + l * tangentY
483 # Now put everything at the proper place
484 points.append(basetrafo.apply_pt(preeZ, sign * preeY) +
485 basetrafo.apply_pt(baseZ, sign * baseY) +
486 basetrafo.apply_pt(postZ, sign * postY))
488 if len(points) <= 1:
489 logger.warning("normsubpath is too short for deformation with cycloid -- skipping...")
490 return normsubpath
492 # Build the path from the pointlist
493 # containing (control x 2, base x 2, control x 2)
494 if skipfirst > normsubpath.epsilon:
495 normsubpathitems = normsubpath.segments([0, params[0]])[0]
496 normsubpathitems.append(normpath.normcurve_pt(*(points[0][2:6] + points[1][0:4])))
497 else:
498 normsubpathitems = [normpath.normcurve_pt(*(points[0][2:6] + points[1][0:4]))]
499 for i in range(1, len(points)-1):
500 normsubpathitems.append(normpath.normcurve_pt(*(points[i][2:6] + points[i+1][0:4])))
501 if skiplast > normsubpath.epsilon:
502 for nsp in normsubpath.segments([params[-1], len(normsubpath)]):
503 normsubpathitems.extend(nsp.normsubpathitems)
505 # That's it
506 return normpath.normsubpath(normsubpathitems, epsilon=normsubpath.epsilon)
507 # >>>
509 cycloid.clear = attr.clearclass(cycloid)
511 class cornersmoothed(baseclasses.deformer): # <<<
513 """Bends corners in a normpath.
515 This decorator replaces corners in a normpath with bezier curves. There are two cases:
516 - If the corner lies between two lines, _two_ bezier curves will be used
517 that are highly optimized to look good (their curvature is to be zero at the ends
518 and has to have zero derivative in the middle).
519 Additionally, it can controlled by the softness-parameter.
520 - If the corner lies between curves then _one_ bezier is used that is (except in some
521 special cases) uniquely determined by the tangents and curvatures at its end-points.
522 In some cases it is necessary to use only the absolute value of the curvature to avoid a
523 cusp-shaped connection of the new bezier to the old path. In this case the use of
524 "obeycurv=0" allows the sign of the curvature to switch.
525 - The radius argument gives the arclength-distance of the corner to the points where the
526 old path is cut and the beziers are inserted.
527 - Path elements that are too short (shorter than the radius) are skipped
530 def __init__(self, radius, softness=1, obeycurv=0, relskipthres=0.01):
531 self.radius = radius
532 self.softness = softness
533 self.obeycurv = obeycurv
534 self.relskipthres = relskipthres
536 def __call__(self, radius=None, softness=None, obeycurv=None, relskipthres=None):
537 if radius is None:
538 radius = self.radius
539 if softness is None:
540 softness = self.softness
541 if obeycurv is None:
542 obeycurv = self.obeycurv
543 if relskipthres is None:
544 relskipthres = self.relskipthres
545 return cornersmoothed(radius=radius, softness=softness, obeycurv=obeycurv, relskipthres=relskipthres)
547 def deform(self, basepath):
548 return normpath.normpath([self.deformsubpath(normsubpath)
549 for normsubpath in basepath.normpath().normsubpaths])
551 def deformsubpath(self, normsubpath):
552 radius_pt = unit.topt(self.radius)
553 epsilon = normsubpath.epsilon
555 # remove too short normsubpath items (shorter than self.relskipthres*radius_pt or epsilon)
556 pertinentepsilon = max(epsilon, self.relskipthres*radius_pt)
557 pertinentnormsubpath = normpath.normsubpath(normsubpath.normsubpathitems,
558 epsilon=pertinentepsilon)
559 pertinentnormsubpath.flushskippedline()
560 pertinentnormsubpathitems = pertinentnormsubpath.normsubpathitems
562 # calculate the splitting parameters for the pertinentnormsubpathitems
563 arclens_pt = []
564 params = []
565 for pertinentnormsubpathitem in pertinentnormsubpathitems:
566 arclen_pt = pertinentnormsubpathitem.arclen_pt(epsilon)
567 arclens_pt.append(arclen_pt)
568 l1_pt = min(radius_pt, 0.5*arclen_pt)
569 l2_pt = max(0.5*arclen_pt, arclen_pt - radius_pt)
570 params.append(pertinentnormsubpathitem.arclentoparam_pt([l1_pt, l2_pt], epsilon))
572 # handle the first and last pertinentnormsubpathitems for a non-closed normsubpath
573 if not normsubpath.closed:
574 l1_pt = 0
575 l2_pt = max(0, arclens_pt[0] - radius_pt)
576 params[0] = pertinentnormsubpathitems[0].arclentoparam_pt([l1_pt, l2_pt], epsilon)
577 l1_pt = min(radius_pt, arclens_pt[-1])
578 l2_pt = arclens_pt[-1]
579 params[-1] = pertinentnormsubpathitems[-1].arclentoparam_pt([l1_pt, l2_pt], epsilon)
581 newnormsubpath = normpath.normsubpath(epsilon=normsubpath.epsilon)
582 for i in range(len(pertinentnormsubpathitems)):
583 this = i
584 next = (i+1) % len(pertinentnormsubpathitems)
585 thisparams = params[this]
586 nextparams = params[next]
587 thisnormsubpathitem = pertinentnormsubpathitems[this]
588 nextnormsubpathitem = pertinentnormsubpathitems[next]
589 thisarclen_pt = arclens_pt[this]
590 nextarclen_pt = arclens_pt[next]
592 # insert the middle segment
593 newnormsubpath.append(thisnormsubpathitem.segments(thisparams)[0])
595 # insert replacement curves for the corners
596 if next or normsubpath.closed:
598 t1 = thisnormsubpathitem.rotation([thisparams[1]])[0].apply_pt(1, 0)
599 t2 = nextnormsubpathitem.rotation([nextparams[0]])[0].apply_pt(1, 0)
600 # TODO: normpath.invalid
602 if (isinstance(thisnormsubpathitem, normpath.normline_pt) and
603 isinstance(nextnormsubpathitem, normpath.normline_pt)):
605 # case of two lines -> replace by two curves
606 d1, g1, f1, e, f2, g2, d2 = curvescontrols_from_endlines_pt(
607 thisnormsubpathitem.atend_pt(), t1, t2,
608 thisarclen_pt*(1-thisparams[1]), nextarclen_pt*(nextparams[0]), softness=self.softness)
610 p1 = thisnormsubpathitem.at_pt([thisparams[1]])[0]
611 p2 = nextnormsubpathitem.at_pt([nextparams[0]])[0]
613 newnormsubpath.append(normpath.normcurve_pt(*(d1 + g1 + f1 + e)))
614 newnormsubpath.append(normpath.normcurve_pt(*(e + f2 + g2 + d2)))
616 else:
618 # generic case -> replace by a single curve with prescribed tangents and curvatures
619 p1 = thisnormsubpathitem.at_pt([thisparams[1]])[0]
620 p2 = nextnormsubpathitem.at_pt([nextparams[0]])[0]
621 c1 = thisnormsubpathitem.curvature_pt([thisparams[1]])[0]
622 c2 = nextnormsubpathitem.curvature_pt([nextparams[0]])[0]
623 # TODO: normpath.invalid
625 # TODO: more intelligent fallbacks:
626 # circle -> line
627 # circle -> circle
629 if not self.obeycurv:
630 # do not obey the sign of the curvature but
631 # make the sign such that the curve smoothly passes to the next point
632 # this results in a discontinuous curvature
633 # (but the absolute value is still continuous)
634 s1 = +mathutils.sign(t1[0] * (p2[1]-p1[1]) - t1[1] * (p2[0]-p1[0]))
635 s2 = -mathutils.sign(t2[0] * (p2[1]-p1[1]) - t2[1] * (p2[0]-p1[0]))
636 c1 = s1 * abs(c1)
637 c2 = s2 * abs(c2)
639 # get the length of the control "arms"
640 controldists = controldists_from_endgeometry_pt(p1, p2, t1, t2, c1, c2)
642 if controldists and (controldists[0][0] >= 0 and controldists[0][1] >= 0):
643 # use the first entry in the controldists
644 # this should be the "smallest" pair
645 a, d = controldists[0]
646 # avoid curves with invalid parameterization
647 a = max(a, epsilon)
648 d = max(d, epsilon)
650 # avoid overshooting at the corners:
651 # this changes not only the sign of the curvature
652 # but also the magnitude
653 if not self.obeycurv:
654 t, s = intersection(p1, p2, t1, t2)
655 if (t is not None and s is not None and
656 t > 0 and s < 0):
657 a = min(a, abs(t))
658 d = min(d, abs(s))
660 else:
661 # use a fallback
662 t, s = intersection(p1, p2, t1, t2)
663 if t is not None and s is not None:
664 a = 0.65 * abs(t)
665 d = 0.65 * abs(s)
666 else:
667 # if there is no useful result:
668 # take an arbitrary smoothing curve that does not obey
669 # the curvature constraints
670 dist = math.hypot(p1[0] - p2[0], p1[1] - p2[1])
671 a = dist / (3.0 * math.hypot(*t1))
672 d = dist / (3.0 * math.hypot(*t2))
674 # calculate the two missing control points
675 q1 = p1[0] + a * t1[0], p1[1] + a * t1[1]
676 q2 = p2[0] - d * t2[0], p2[1] - d * t2[1]
678 newnormsubpath.append(normpath.normcurve_pt(*(p1 + q1 + q2 + p2)))
680 if normsubpath.closed:
681 newnormsubpath.close()
682 return newnormsubpath
684 # >>>
686 cornersmoothed.clear = attr.clearclass(cornersmoothed)
687 smoothed = cornersmoothed
688 smoothed.clear = attr.clearclass(smoothed)
690 class mynormpathparam(normpath.normpathparam): # <<<
691 """In the parallel deformer we use properties such as the curvature, which
692 are not continuous on a path (at points between normsubpathitems). We
693 therefore require a better parameter class which really resolves the
694 nsp-item """
696 # TODO: find reasonable values for these eps:
697 rounding_eps = 1.0e-8
699 def __init__(self, np, normsubpathindex, normsubpathitemindex, normsubpathitemparam):
700 normpath.normpathparam.__init__(self, np, normsubpathindex, normsubpathitemindex + normsubpathitemparam)
701 self.normsubpathitemindex = normsubpathitemindex
702 self.normsubpathitemparam = normsubpathitemparam
703 self.beg_nspitem_known = False
704 self.end_nspitem_known = False
706 # guarantee that normpath.normpathparam always gets the correct item:
707 if int(self.normsubpathparam) != self.normsubpathitemindex:
708 if int(self.normsubpathparam) == self.normsubpathitemindex - 1:
709 self.normsubpathparam = self.normsubpathitemindex + self.rounding_eps
710 self.beg_nspitem_known = True
711 elif int(self.normsubpathparam) == self.normsubpathitemindex + 1:
712 self.normsubpathparam = (self.normsubpathitemindex + 1) - self.rounding_eps
713 self.end_nspitem_known = True
714 else:
715 assert False
716 assert int(self.normsubpathparam) == self.normsubpathitemindex
717 #assert 0 <= self.normsubpathparam - self.normsubpathitemindex
718 #assert 1 >= self.normsubpathparam - self.normsubpathitemindex
720 def __str__(self):
721 return "npp(%d, %d, %.3f)" % (self.normsubpathindex, self.normsubpathitemindex, self.normsubpathitemparam)
723 def __eq__(self, other):
724 if isinstance(other, mynormpathparam):
725 assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
726 return (self.normsubpathindex, self.normsubpathitemindex, self.normsubpathitemparam) == (other.normsubpathindex, other.normsubpathitemindex, other.normsubpathitemparam)
727 else:
728 normpath.normpathparam.__eq__(self, other)
730 def __lt__(self, other):
731 if isinstance(other, mynormpathparam):
732 assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
733 return (self.normsubpathindex, self.normsubpathitemindex, self.normsubpathitemparam) < (other.normsubpathindex, other.normsubpathitemindex, other.normsubpathitemparam)
734 else:
735 normpath.normpathparam.__eq__(self, other)
737 def __hash__(self):
738 return id(self)
740 def smaller_equiv(self, epsilon=None):
741 """Returns smaller equivalent parameter, if self is between two nsp-items"""
742 if not self.is_beg_of_nspitem(epsilon):
743 return self
744 nsp = self.normpath[self.normsubpathindex]
745 nspi_index = self.normsubpathitemindex - 1
746 nspi_param = 1
747 if nsp.closed:
748 nspi_index = nspi_index % len(nsp)
749 elif nspi_index < 0:
750 nspi_index = 0
751 nspi_param = 0
752 other = mynormpathparam(self.normpath, self.normsubpathindex, nspi_index, nspi_param)
753 if self.is_equiv(other, epsilon):
754 return other
755 return self
757 def larger_equiv(self, epsilon=None):
758 """Returns smaller equivalent parameter, if self is between two nsp-items"""
759 if not self.is_end_of_nspitem(epsilon):
760 return self
761 nsp = self.normpath[self.normsubpathindex]
762 nspi_index = self.normsubpathitemindex + 1
763 nspi_param = 0
764 if nsp.closed:
765 nspi_index = nspi_index % len(nsp)
766 elif nspi_index >= len(nsp):
767 nspi_index = len(nsp) - 1
768 nspi_param = 1
769 other = mynormpathparam(self.normpath, self.normsubpathindex, nspi_index, nspi_param)
770 if self.is_equiv(other, epsilon):
771 return other
772 return self
774 def is_equiv(self, other, epsilon=None):
775 """Test whether the two params yield essentially the same point"""
776 assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
777 if self.normsubpathindex != other.normsubpathindex:
778 return False
779 nsp = self.normpath[self.normsubpathindex]
780 if epsilon is None:
781 epsilon = nsp.epsilon
782 A, B = self.normpath.at_pt([self, other])
783 return math.hypot(A[0]-B[0], A[1]-B[1]) < epsilon
785 def is_beg_of_nspitem(self, epsilon=None):
786 if self.beg_nspitem_known:
787 return True
788 return self.is_equiv(mynormpathparam(self.normpath, self.normsubpathindex, self.normsubpathitemindex, 0), epsilon)
790 def is_end_of_nspitem(self, epsilon=None):
791 if self.end_nspitem_known:
792 return True
793 return self.is_equiv(mynormpathparam(self.normpath, self.normsubpathindex, self.normsubpathitemindex, 1), epsilon)
795 def is_beg_of_nsp(self, epsilon=None):
796 if self.normsubpathitemindex > 0:
797 return False
798 return self.is_equiv(mynormpathparam(self.normpath, self.normsubpathindex, 0, 0), epsilon)
800 def is_end_of_nsp(self, epsilon=None):
801 n = len(self.normpath[self.normsubpathindex]) - 1
802 if self.normsubpathitemindex < n:
803 return False
804 return self.is_equiv(mynormpathparam(self.normpath, self.normsubpathindex, n, 1), epsilon)
806 # >>>
807 def _length_pt(path, param1, param2): # <<<
808 point1, point2 = path.at_pt([param1, param2])
809 return math.hypot(point1[0] - point2[0], point1[1] - point2[1])
810 # >>>
811 class parallel(baseclasses.deformer): # <<<
813 """creates a parallel normpath with constant distance to the original normpath
815 A positive 'distance' results in a curve left of the original one -- and a
816 negative 'distance' in a curve at the right. Left/right are understood in
817 terms of the parameterization of the original curve. The construction of
818 the paralel path is done in two steps: First, an "extended" parallel path
819 is built. For each path element a parallel curve/line is constructed, which
820 can be too long or too short, depending on the presence of corners. At
821 corners, either a circular arc is drawn around the corner, or, if possible,
822 the parallel curve is cut in order to also exhibit a corner. In a second
823 step all self-intersection points are determined and unnecessary parts of
824 the path are cut away.
826 distance: the distance of the parallel normpath
827 relerr: distance*relerr is the maximal allowed error in the parallel distance
828 sharpoutercorners: make the outer corners not round but sharp.
829 The inner corners (corners after inflection points) will stay round
830 dointersection: boolean for doing the intersection step (default: 1).
831 Set this value to 0 if you want the whole parallel path
832 checkdistanceparams: a list of parameter values in the interval (0,1) where the
833 parallel distance is checked on each normpathitem
834 lookforcurvatures: number of points per normpathitem where is looked for
835 a critical value of the curvature
838 # TODO:
839 # * DECIDE MEANING of arcs around corners (see case L in test/functional/test_deformer.py)
840 # * eliminate double, triple, ... pairs
841 # * implement self-intersection of normcurve_pt
842 # * implement _between_paths also for normcurve_pt
845 def __init__(self, distance, relerr=0.05, sharpoutercorners=False, dointersection=True,
846 checkdistanceparams=[0.5], lookforcurvatures=11, searchstep=0.01, debug=None):
847 self.distance = distance
848 self.relerr = relerr
849 self.sharpoutercorners = sharpoutercorners
850 self.checkdistanceparams = checkdistanceparams
851 self.lookforcurvatures = lookforcurvatures
852 self.dointersection = dointersection
853 self.searchstep = searchstep
854 self.debug = debug
856 def __call__(self, distance=None, relerr=None, sharpoutercorners=None, dointersection=None,
857 checkdistanceparams=None, lookforcurvatures=None, searchstep=None, debug=None):
858 # returns a copy of the deformer with different parameters
859 if distance is None:
860 distance = self.distance
861 if relerr is None:
862 relerr = self.relerr
863 if sharpoutercorners is None:
864 sharpoutercorners = self.sharpoutercorners
865 if dointersection is None:
866 dointersection = self.dointersection
867 if checkdistanceparams is None:
868 checkdistanceparams = self.checkdistanceparams
869 if lookforcurvatures is None:
870 lookforcurvatures = self.lookforcurvatures
871 if searchstep is None:
872 searchstep = self.searchstep
873 if debug is None:
874 debug = self.debug
876 return parallel(distance=distance, relerr=relerr,
877 sharpoutercorners=sharpoutercorners,
878 dointersection=dointersection,
879 checkdistanceparams=checkdistanceparams,
880 lookforcurvatures=lookforcurvatures,
881 searchstep=searchstep,
882 debug=debug)
884 def deform(self, basepath):
885 basepath = basepath.normpath()
886 self.dist_pt = unit.topt(self.distance)
887 resultnormsubpaths = []
888 par_to_orig = {}
889 for nsp in basepath.normsubpaths:
890 parallel_normpath, tmp1, tmp2, par2orig = self.deformsubpath(nsp)
891 resultnormsubpaths += parallel_normpath.normsubpaths
892 for key in par2orig:
893 par_to_orig[key] = par2orig[key]
894 result = normpath.normpath(resultnormsubpaths)
896 if self.dointersection:
897 result = self.rebuild_intersected_normpath(result, basepath, par_to_orig)
899 return result
901 def deformsubpath(self, orig_nsp): # <<<
903 """Performs the first step of the deformation: Returns a list of
904 normsubpaths building the parallel to the given normsubpath.
905 Then calls the intersection routine to do the second step."""
906 # the default case is not to join the result.
908 dist = self.dist_pt
909 epsilon = orig_nsp.epsilon
910 assert len(orig_nsp.normsubpathitems) != 0
912 # avoid too small dists: we would run into instabilities
913 if abs(dist) < abs(epsilon):
914 assert orig_nsp.normsubpathitems
915 par_to_orig = {}
916 for nspitem in orig_nsp:
917 par_to_orig[nspitem] = nspitem
918 return normpath.normpath([orig_nsp]), None, None, par_to_orig
920 result = None
921 par_to_orig = None
922 join_begin = None
923 prev_joinend = None
925 # iterate over the normsubpath in the following way:
926 # * for each item first append the additional arc
927 # and then add the next parallel piece
928 # * for the first item only add the parallel piece
929 # (because this is done for curr_orig_nspitem, we need to start with i=0)
930 for i in range(len(orig_nsp.normsubpathitems)):
931 prev_orig_nspitem = orig_nsp.normsubpathitems[i-1]
932 curr_orig_nspitem = orig_nsp.normsubpathitems[i]
934 # get the next parallel piece for the normpath
935 next_parallel_normpath, joinbeg, joinend, par2orig = self.deformsubpathitem(curr_orig_nspitem, epsilon)
936 if result is None:
937 if join_begin is None:
938 join_begin = joinbeg
939 else:
940 join_begin = (join_begin and joinbeg)
942 if not (next_parallel_normpath.normsubpaths and next_parallel_normpath[0].normsubpathitems):
943 if prev_joinend is None:
944 prev_joinend = joinend
945 else:
946 prev_joinend = (prev_joinend and joinend)
947 continue
949 # this starts the whole normpath
950 if result is None:
951 result = next_parallel_normpath
952 par_to_orig = {}
953 for key in par2orig:
954 par_to_orig[key] = par2orig[key]
955 prev_joinend = joinend
956 continue # there is nothing to join
958 prev_tangent, next_tangent, is_straight, is_concave = self._get_angles(prev_orig_nspitem, curr_orig_nspitem, epsilon)
959 if not (joinbeg and prev_joinend): # split due to loo large curvature
960 result += next_parallel_normpath
961 elif is_straight:
962 # The path is quite straight between prev and next item:
963 # normpath.normpath.join adds a straight line if necessary
964 result.join(next_parallel_normpath)
965 else:
966 # The parallel path can be extended continuously.
967 # We must add a corner or an arc around the corner:
968 cornerpath = self._path_around_corner(curr_orig_nspitem.atbegin_pt(), result.atend_pt(), next_parallel_normpath.atbegin_pt(),
969 prev_tangent, next_tangent, is_concave, epsilon)
970 result.join(cornerpath)
971 assert len(cornerpath) == 1
972 corner = curr_orig_nspitem.atbegin_pt()
973 for cp_nspitem in cornerpath[0]:
974 par_to_orig[cp_nspitem] = corner
975 # append the next parallel piece to the path
976 result.join(next_parallel_normpath)
977 for key in par2orig:
978 par_to_orig[key] = par2orig[key]
979 prev_joinend = joinend
981 # end here if nothing has been found so far
982 if result is None:
983 return normpath.normpath(), False, False, {}
985 # the curve around the closing corner may still be missing
986 if orig_nsp.closed:
987 prev_tangent, next_tangent, is_straight, is_concave = self._get_angles(orig_nsp.normsubpathitems[-1], orig_nsp.normsubpathitems[0], epsilon)
988 if not (joinend and join_begin): # do not close because of infinite curvature
989 do_close = False
990 elif is_straight:
991 # The path is quite straight at end and beginning
992 do_close = True
993 else:
994 # The parallel path can be extended continuously.
995 do_close = True
996 # We must add a corner or an arc around the corner:
997 cornerpath = self._path_around_corner(orig_nsp.atend_pt(), result.atend_pt(), result.atbegin_pt(),
998 prev_tangent, next_tangent, is_concave, epsilon)
999 result.join(cornerpath)
1000 corner = orig_nsp.atend_pt()
1001 assert len(cornerpath) == 1
1002 for cp_nspitem in cornerpath[0]:
1003 par_to_orig[cp_nspitem] = corner
1005 if do_close:
1006 if len(result) == 1:
1007 result[0].close()
1008 else:
1009 # if the parallel normpath is split into several subpaths anyway,
1010 # then use the natural beginning and ending
1011 # closing is not possible anymore
1012 for nspitem in result[0]:
1013 result[-1].append(nspitem)
1014 result.normsubpaths = result.normsubpaths[1:]
1015 join_begin, joinend = False, False
1017 return result, join_begin, joinend, par_to_orig
1018 # >>>
1019 def deformsubpathitem(self, nspitem, epsilon): # <<<
1021 """Returns a parallel normpath for a single normsubpathitem
1023 Analyzes the curvature of a normsubpathitem and returns a normpath with
1024 the appropriate number of normsubpaths. This must be a normpath because
1025 a normcurve can be strongly curved, such that the parallel path must
1026 contain a hole"""
1027 # the default case is to join the result. Only if there was an infinite
1028 # curvature at beginning/end, we return info not to join it.
1030 dist = self.dist_pt
1032 # for a simple line we return immediately
1033 if isinstance(nspitem, normpath.normline_pt):
1034 normal = nspitem.rotation([0])[0].apply_pt(0, 1)
1035 start = nspitem.atbegin_pt()
1036 end = nspitem.atend_pt()
1037 result = path.line_pt(start[0] + dist * normal[0], start[1] + dist * normal[1],
1038 end[0] + dist * normal[0], end[1] + dist * normal[1]).normpath(epsilon=epsilon)
1039 assert len(result) == 1 and len(result[0]) == 1
1040 return result, True, True, {result[0][0]:nspitem}
1042 # for a curve we have to check if the curvatures
1043 # cross the singular value 1/dist
1044 crossings = list(self._distcrossingparameters(nspitem, epsilon))
1045 crossings.sort()
1047 # depending on the number of crossings we must consider
1048 # three different cases:
1049 if crossings:
1050 # The curvature crosses the borderline 1/dist
1051 # the parallel curve contains points with infinite curvature!
1052 parallcurvs = [inf_curvature]*len(crossings)
1054 result = normpath.normpath()
1055 join_begin, join_end = False, False
1056 par_to_orig = {}
1058 # we need the endpoints of the nspitem
1059 if _length_pt(nspitem, crossings[0], 0) > epsilon:
1060 crossings.insert(0, 0)
1061 parallcurvs.insert(0, None)
1062 if _length_pt(nspitem, crossings[-1], 1) > epsilon:
1063 crossings.append(1)
1064 parallcurvs.append(None)
1066 for i in range(len(crossings) - 1):
1067 middleparam = 0.5*(crossings[i] + crossings[i+1])
1068 middlecurv = nspitem.curvature_pt([middleparam])[0]
1069 # the radius is good if
1070 # - middlecurv and dist have opposite signs : distance vector points "out" of the original curve
1071 # - middlecurv is "smaller" than 1/dist : original curve is less curved than +-1/dist
1072 if dist*middlecurv < 0 or abs(dist*middlecurv) < 1:
1073 if i == 0:
1074 join_begin = True
1075 elif i == len(crossings) - 2:
1076 join_end = True
1077 parallel_nsp, par2orig = self.deformnicecurve(nspitem.segments(crossings[i:i+2])[0], epsilon, curvA=parallcurvs[i], curvD=parallcurvs[i+1])
1078 # never append empty normsubpaths
1079 if parallel_nsp.normsubpathitems:
1080 # infinite curvatures interrupt the path and start a new nsp
1081 result.append(parallel_nsp)
1082 for key in par2orig:
1083 par_to_orig[key] = par2orig[key]
1084 if not (result.normsubpaths and result[0].normsubpathitems):
1085 return normpath.normpath(), True, True, {}
1086 return result, join_begin, join_end, par_to_orig
1088 # the curvature is either bigger or smaller than 1/dist
1089 middlecurv = nspitem.curvature_pt([0.5])[0]
1090 if dist*middlecurv < 0 or abs(dist*middlecurv) < 1:
1091 # The curve is everywhere less curved than 1/dist
1092 # We can proceed finding the parallel curve for the whole piece
1093 parallel_nsp, par2orig = self.deformnicecurve(nspitem, epsilon)
1094 # never append empty normsubpaths
1095 if parallel_nsp.normsubpathitems:
1096 par_to_orig = {}
1097 for key in par2orig:
1098 par_to_orig[key] = par2orig[key]
1099 return normpath.normpath([parallel_nsp]), True, True, par_to_orig
1101 # the curve is everywhere stronger curved than 1/dist
1102 # There is nothing to be returned.
1103 return normpath.normpath(), False, False, {}
1104 # >>>
1105 def deformnicecurve(self, normcurve, epsilon, startparam=0.0, endparam=1.0, curvA=None, curvD=None): # <<<
1106 """Returns a parallel normsubpath for the normcurve.
1108 This routine assumes that the normcurve is everywhere
1109 'less' curved than 1/dist. Only at the ends, the curvature
1110 can be exactly +-1/dist, which is marked by curvA and/or curvD.
1112 dist = self.dist_pt
1114 # normalized tangent directions
1115 tangA, tangD = normcurve.rotation([startparam, endparam])
1116 tangA = tangA.apply_pt(1, 0)
1117 tangD = tangD.apply_pt(1, 0)
1119 # the new starting points
1120 orig_A, orig_D = normcurve.at_pt([startparam, endparam])
1121 A = orig_A[0] - dist * tangA[1], orig_A[1] + dist * tangA[0]
1122 D = orig_D[0] - dist * tangD[1], orig_D[1] + dist * tangD[0]
1124 # we need to end this _before_ we will run into epsilon-problems
1125 # when creating curves we do not want to calculate the length of
1126 # or even split it for recursive calls
1127 if (math.hypot(A[0] - D[0], A[1] - D[1]) < epsilon and
1128 abs(dist)*(tangA[0]*tangD[1] - tangA[1]*tangD[0]) < epsilon):
1129 nl = normpath.normline_pt(A[0], A[1], D[0], D[1])
1130 return normpath.normsubpath([nl]), {nl:normcurve}
1132 result = normpath.normsubpath(epsilon=epsilon)
1133 # is there enough space on the normals before they intersect?
1134 a, d = intersection(orig_A, orig_D, (-tangA[1], tangA[0]), (-tangD[1], tangD[0]))
1135 # a,d are the lengths to the intersection points:
1136 # for a (and equally for b) we can proceed in one of the following cases:
1137 # a is None (means parallel normals)
1138 # a and dist have opposite signs (and the same for b)
1139 # a has the same sign but is bigger
1140 if ( (a is None or a*dist < 0 or abs(a) > abs(dist) + epsilon) or
1141 (d is None or d*dist < 0 or abs(d) > abs(dist) + epsilon) ):
1142 # the original path is long enough to draw a parallel piece
1143 # this is the generic case. Get the parallel curves
1144 orig_curvA, orig_curvD = normcurve.curvature_pt([startparam, endparam])
1145 if curvA is None:
1146 curvA = orig_curvA / (1.0 - dist*orig_curvA)
1147 if curvD is None:
1148 curvD = orig_curvD / (1.0 - dist*orig_curvD)
1150 # first try to approximate the normcurve with a single item
1151 controldistpairs = controldists_from_endgeometry_pt(A, D, tangA, tangD, curvA, curvD)
1153 if controldistpairs:
1154 # TODO: is it good enough to get the first entry here?
1155 # from testing: this fails if there are loops in the original curve
1156 a, d = controldistpairs[0]
1157 if a >= 0 and d >= 0:
1158 # we avoid to create curves with invalid parameterization
1159 if a < epsilon and d < epsilon:
1160 result = normpath.normsubpath([normpath.normline_pt(A[0], A[1], D[0], D[1])], epsilon=epsilon)
1161 else:
1162 a = max(a, epsilon)
1163 d = max(d, epsilon)
1164 result = normpath.normsubpath([normpath.normcurve_pt(
1165 A[0], A[1],
1166 A[0] + a * tangA[0], A[1] + a * tangA[1],
1167 D[0] - d * tangD[0], D[1] - d * tangD[1],
1168 D[0], D[1])], epsilon=epsilon)
1170 # then try with two items, recursive call
1171 if ((not result.normsubpathitems) or
1172 (self.checkdistanceparams and result.normsubpathitems
1173 and not self._distchecked(normcurve, result, epsilon, startparam, endparam))):
1174 # TODO: does this ever converge?
1175 # TODO: what if this hits epsilon?
1176 middleparam = 0.5*(startparam + endparam)
1177 firstnsp, first_par2orig = self.deformnicecurve(normcurve, epsilon, startparam, middleparam, curvA, None)
1178 secondnsp, second_par2orig = self.deformnicecurve(normcurve, epsilon, middleparam, endparam, None, curvD)
1179 if not (firstnsp.normsubpathitems and secondnsp.normsubpathitems):
1180 result = normpath.normsubpath(
1181 [normpath.normline_pt(A[0], A[1], D[0], D[1])], epsilon=epsilon)
1182 else:
1183 result = firstnsp.joined(secondnsp)
1185 par_to_orig = {}
1186 for key in result:
1187 par_to_orig[key] = normcurve
1188 return result, par_to_orig
1189 # >>>
1191 def _path_around_corner(self, corner_pt, beg_pt, end_pt, beg_tangent, end_tangent, is_concave, epsilon): # <<<
1192 """Helper routine for parallel.deformsubpath: Draws an arc around a convex corner"""
1193 if self.sharpoutercorners and not is_concave:
1194 # straight lines:
1195 t1, t2 = intersection(beg_pt, end_pt, beg_tangent, end_tangent)
1196 B = beg_pt[0] + t1 * beg_tangent[0], beg_pt[1] + t1 * beg_tangent[1]
1197 return normpath.normpath([normpath.normsubpath([
1198 normpath.normline_pt(beg_pt[0], beg_pt[1], B[0], B[1]),
1199 normpath.normline_pt(B[0], B[1], end_pt[0], end_pt[1])
1200 ])])
1202 # We append an arc around the corner
1203 # these asserts fail in test case "E"
1204 #assert abs(math.hypot(beg_pt[1] - corner_pt[1], beg_pt[0] - corner_pt[0]) - abs(self.dist_pt)) < epsilon
1205 #assert abs(math.hypot(end_pt[1] - corner_pt[1], end_pt[0] - corner_pt[0]) - abs(self.dist_pt)) < epsilon
1206 angle1 = math.atan2(beg_pt[1] - corner_pt[1], beg_pt[0] - corner_pt[0])
1207 angle2 = math.atan2(end_pt[1] - corner_pt[1], end_pt[0] - corner_pt[0])
1209 # depending on the direction we have to use arc or arcn
1210 sinangle = beg_tangent[0]*end_tangent[1] - beg_tangent[1]*end_tangent[0] # >0 for left-turning, <0 for right-turning
1211 if self.dist_pt > 0:
1212 arcclass = path.arcn_pt
1213 else:
1214 arcclass = path.arc_pt
1215 return path.path(arcclass(
1216 corner_pt[0], corner_pt[1], abs(self.dist_pt),
1217 math.degrees(angle1), math.degrees(angle2))).normpath(epsilon=epsilon)
1218 # >>>
1219 def _distchecked(self, orig_normcurve, parallel_normsubpath, epsilon, tstart, tend): # <<<
1220 """Helper routine for parallel.deformnicecurve: Checks the distances between orig_normcurve and parallel_normsubpath.
1222 The checking is done at parameters self.checkdistanceparams of orig_normcurve."""
1224 dist = self.dist_pt
1225 # do not look closer than epsilon:
1226 dist_err = mathutils.sign(dist) * max(abs(self.relerr*dist), epsilon)
1228 checkdistanceparams = [tstart + (tend-tstart)*t for t in self.checkdistanceparams]
1230 for param, P, rotation in zip(checkdistanceparams,
1231 orig_normcurve.at_pt(checkdistanceparams),
1232 orig_normcurve.rotation(checkdistanceparams)):
1233 normal = rotation.apply_pt(0, 1)
1235 # create a short cutline for intersection only:
1236 cutline = normpath.normsubpath([normpath.normline_pt(
1237 P[0] + (dist - 2*dist_err) * normal[0], P[1] + (dist - 2*dist_err) * normal[1],
1238 P[0] + (dist + 2*dist_err) * normal[0], P[1] + (dist + 2*dist_err) * normal[1])], epsilon=epsilon)
1240 cutparams = parallel_normsubpath.intersect(cutline)
1241 distances = [math.hypot(P[0] - cutpoint[0], P[1] - cutpoint[1])
1242 for cutpoint in cutline.at_pt(cutparams[1])]
1244 if (not distances) or (abs(min(distances) - abs(dist)) > abs(dist_err)):
1245 return False
1247 return True
1248 # >>>
1249 def _distcrossingparameters(self, normcurve, epsilon, tstart=0, tend=1): # <<<
1250 """Helper routine for parallel.deformsubpathitem: Returns a list of parameters where the curvature of normcurve is 1/distance"""
1252 assert tstart < tend
1253 dist = self.dist_pt
1255 # we _need_ to do this with the curvature, not with the radius
1256 # because the curvature is continuous at the straight line and the radius is not:
1257 # when passing from one slightly curved curve to the other with opposite curvature sign,
1258 # via the straight line, then the curvature changes its sign at curv=0, while the
1259 # radius changes its sign at +/-infinity
1260 # this causes instabilities for nearly straight curves
1262 # include tstart and tend
1263 params = [tstart + i * (tend - tstart) / (self.lookforcurvatures - 1.0)
1264 for i in range(self.lookforcurvatures)]
1265 curvs = normcurve.curvature_pt(params)
1267 parampairs = list(zip(params[:-1], params[1:]))
1268 curvpairs = list(zip(curvs[:-1], curvs[1:]))
1270 crossingparams = set()
1271 for parampair, curvpair in zip(parampairs, curvpairs):
1272 begparam, endparam = parampair
1273 begcurv, endcurv = curvpair
1274 begchange = begcurv*dist - 1
1275 endchange = endcurv*dist - 1
1276 if begchange*endchange < 0:
1277 # the curvature crosses the value 1/dist
1278 # get the parmeter value by linear interpolation:
1279 middleparam = (
1280 (begparam * abs(begchange) + endparam * abs(endchange)) /
1281 (abs(begchange) + abs(endchange)))
1282 try:
1283 middleradius = 1/normcurve.curvature_pt([middleparam])[0]
1284 except ArithmeticError:
1285 raise InvalidParamException(middleparam)
1287 if abs(middleradius - dist) < epsilon or endparam-begparam < 1.0e-14:
1288 # get the parmeter value by linear interpolation:
1289 crossingparams.add(middleparam)
1290 else:
1291 # call recursively:
1292 for x in self._distcrossingparameters(normcurve, epsilon, tstart=begparam, tend=endparam):
1293 crossingparams.add(x)
1294 else:
1295 if begchange == 0:
1296 crossingparams.add(begparam)
1297 if endchange == 0:
1298 crossingparams.add(endparam)
1300 return crossingparams
1301 # >>>
1302 def _get_angles(self, prev_nspitem, next_nspitem, epsilon): # <<<
1303 prev_rotation = prev_nspitem.rotation([1])[0]
1304 next_rotation = next_nspitem.rotation([0])[0]
1305 prev_tangent = prev_rotation.apply_pt(1, 0)
1306 prev_orthogo = prev_rotation.apply_pt(0, self.dist_pt) # points towards parallel path (prev_nspitem is on original path)
1307 next_tangent = next_rotation.apply_pt(1, 0)
1308 #sinangle = prev_tangent[0]*next_tangent[1] - prev_tangent[1]*next_tangent[0] # >0 for left-turning, <0 for right-turning
1309 cosangle = prev_tangent[0]*next_tangent[0] + prev_tangent[1]*next_tangent[1]
1310 proj = prev_orthogo[0]*next_tangent[0] + prev_orthogo[1]*next_tangent[1]
1311 is_straight = (cosangle > 0 and abs(proj) < epsilon)
1312 is_concave = (proj > 0)
1313 return prev_tangent, next_tangent, is_straight, is_concave
1314 # >>>
1316 def rebuild_intersected_normpath(self, par_np, orig_np, par2orig, epsilon=None): # <<<
1318 dist = self.dist_pt
1319 if epsilon is None:
1320 epsilon = orig_np.normsubpaths[0].epsilon
1321 eps_comparepairs = 10*epsilon
1323 # calculate the self-intersections of the par_np
1324 forwardpairs, backwardpairs = self.normpath_selfintersections(par_np, epsilon, eps_comparepairs)
1325 # calculate the intersections of the par_np with the original path
1326 origintparams, orig_origintparams = self.normpath_origintersections(orig_np, par_np, epsilon)
1327 if not forwardpairs:
1328 if origintparams:
1329 return normpath.normpath()
1330 else:
1331 return par_np
1333 # parameters at begin and end of subnormpaths:
1334 # omit those which start/end on the original path
1335 beginparams = []
1336 endparams = []
1337 testparams = origintparams + list(forwardpairs.keys()) + list(forwardpairs.values())
1338 for i, nsp in enumerate(par_np):
1339 beginparam = mynormpathparam(par_np, i, 0, 0)
1340 is_new = True
1341 for param in testparams:
1342 if beginparam.is_equiv(param):
1343 is_new = False
1344 break
1345 if is_new:
1346 beginparams.append(beginparam)
1348 endparam = mynormpathparam(par_np, i, len(nsp)-1, 1)
1349 is_new = True
1350 for param in testparams:
1351 if endparam.is_equiv(param):
1352 is_new = False
1353 break
1354 if is_new:
1355 endparams.append(endparam)
1356 beginparams.sort()
1357 endparams.sort()
1359 # we need a way to get the "next" param on the normpath
1360 # XXX why + beginparams + endparams ?
1361 allparams = list(forwardpairs.keys()) + list(backwardpairs.keys()) + origintparams + beginparams + endparams
1362 allparams.sort()
1363 done = {}
1364 for param in allparams:
1365 done[param] = False
1366 nextp = {}
1367 for i, param in enumerate(allparams[:-1]):
1368 nextp[param] = allparams[i+1]
1369 for endparam in endparams:
1370 if par_np[endparam.normsubpathindex].closed:
1371 begparam = [p for p in allparams if p.normsubpathindex == endparam.normsubpathindex][0]
1372 assert begparam.normsubpathitemindex == 0
1373 assert begparam.normsubpathitemparam == 0
1374 nextp[endparam] = begparam
1375 else:
1376 nextp[endparam] = None
1378 # exclude all intersections that are between the original and the parallel path:
1379 # See for example test/functional/test_deformer (parallel Z): There can
1380 # remain a little piece of the path (triangle) that lies between a lot
1381 # of intersection points. Simple intersection rules such as thoe in
1382 # trial_parampairs cannot exclude this piece.
1383 for param in forwardpairs:
1384 if done[param] or done[forwardpairs[param]]:
1385 done[param] = done[forwardpairs[param]] = True
1386 elif self._between_paths(par_np.at_pt(param), par2orig, 4*epsilon):
1387 done[param] = done[forwardpairs[param]] = True
1388 for param in beginparams + endparams:
1389 if self._between_paths(par_np.at_pt(param), par2orig, 4*epsilon):
1390 done[param] = True
1392 # visualize the intersection points: # <<<
1393 if self.debug is not None:
1394 for param1, param2 in forwardpairs.items():
1395 point1, point2 = par_np.at([param1, param2])
1396 if not done[param1]:
1397 self.debug.fill(path.circle(point1[0], point1[1], 0.05), [color.rgb.red])
1398 if not done[param2]:
1399 self.debug.fill(path.circle(point2[0], point2[1], 0.03), [color.rgb.black])
1400 for param in origintparams:
1401 #assert done[param]
1402 point = par_np.at([param])[0]
1403 self.debug.fill(path.circle(point[0], point[1], 0.05), [color.rgb.green])
1404 for i, nsp in enumerate(par_np):
1405 for j, nspi in enumerate(nsp):
1406 x, y = nspi.at_pt([0.5])[0]
1407 self.debug.text_pt(x, y, "{}/{}".format(i,j))#, [text.halign.center, text.vshift.mathaxis])
1408 print("aborted path intersection due to debug")
1409 return par_np
1410 # >>>
1412 def ptype(param): # <<<
1413 if param in forwardpairs : return "fw with partner %s" % (forwardpairs[param])
1414 if param in backwardpairs : return "bw with partner %s" % (backwardpairs[param])
1415 if param in origintparams: return "orig"
1416 if param in beginparams: return "begin"
1417 if param in endparams: return "end"
1418 # >>>
1419 def trial_parampairs(startp): # <<<
1420 """Starting at startp, try to find a valid series of intersection parameters"""
1421 tried = {} # a local copy of done
1422 for param in allparams:
1423 tried[param] = done[param]
1425 previousp = startp
1426 currentp = nextp[previousp]
1427 result = []
1429 while True:
1430 # successful and unsuccessful termination conditions:
1431 if tried[currentp]:
1432 # we reached a branch that has already been treated
1433 # ==> this is not a valid parallel path
1434 return []
1435 if currentp in origintparams:
1436 # we cross the original path
1437 # ==> this is not a valid parallel path
1438 return []
1439 if currentp in backwardpairs:
1440 # we reached a branch that should be followed from another part
1441 # ==> this is not a valid parallel path
1442 return []
1443 if currentp is startp:
1444 # we have reached again the starting point on a closed subpath.
1445 assert startp in beginparams
1446 assert previousp in endparams
1447 return result
1448 if currentp in forwardpairs:
1449 result.append((previousp, currentp))
1450 if forwardpairs[currentp] is startp:
1451 # we have found the same point as the startp (its pair partner)
1452 return result
1453 previousp = forwardpairs[currentp]
1454 if currentp in endparams:
1455 result.append((previousp, currentp))
1456 if nextp[currentp] is None: # open subpath
1457 # we have found the end of a non-closed subpath
1458 return result
1459 previousp = currentp # closed subpath
1460 # follow the crossings on valid startpairs
1461 tried[currentp] = True
1462 tried[previousp] = True
1463 currentp = nextp[previousp]
1464 assert False # never reach this point
1465 # >>>
1467 # first the paths that start at the beginning of a subnormpath:
1468 result = normpath.normpath()
1469 # paths can start on subnormpaths or crossings where we can "get away":
1470 bwkeys = list(backwardpairs.keys())
1471 bwkeys.sort()
1472 for startp in beginparams + bwkeys:
1473 if done[startp]:
1474 continue
1476 # try to find a valid series of intersection points:
1477 parampairs = trial_parampairs(startp)
1478 if not parampairs:
1479 continue
1481 # collect all the pieces between parampairs:
1482 add_nsp = normpath.normsubpath(epsilon=epsilon)
1483 for begin, end in parampairs:
1484 # check that trial_parampairs works correctly
1485 assert begin is not end
1486 for item in par_np[begin.normsubpathindex].segments(
1487 [begin.normsubpathparam, end.normsubpathparam])[0].normsubpathitems:
1488 # TODO: this should be obsolete with an improved intersection algorithm
1489 # guaranteeing epsilon
1490 if add_nsp.normsubpathitems:
1491 item = item.modifiedbegin_pt(*(add_nsp.atend_pt()))
1492 add_nsp.append(item)
1494 done[begin] = True
1495 done[end] = True
1497 # close the path if necessary
1498 if add_nsp:
1499 if ((parampairs[-1][-1] in forwardpairs and forwardpairs[parampairs[-1][-1]] is parampairs[0][0]) or
1500 (parampairs[-1][-1] in endparams and parampairs[0][0] in beginparams and parampairs[0][0] is nextp[parampairs[-1][-1]])):
1501 add_nsp.normsubpathitems[-1] = add_nsp.normsubpathitems[-1].modifiedend_pt(*add_nsp.atbegin_pt())
1502 add_nsp.close()
1504 result.extend([add_nsp])
1506 return result
1507 # >>>
1508 def normpath_selfintersections(self, np, epsilon, eps_comparepairs): # <<<
1510 """Returns all self-intersection points of normpath np.
1512 This does not include the intersections of a single normcurve with itself,
1513 but all intersections of one normpathitem with a different one in the path.
1514 The intersection pairs are such that the parallel path can be continued
1515 from the first to the second parameter, but not vice-versa."""
1517 dist = self.dist_pt
1519 n = len(np)
1520 forwardpairs = {}
1521 for nsp_i in range(n):
1522 for nsp_j in range(nsp_i, n):
1523 for nspitem_i in range(len(np[nsp_i])):
1524 if nsp_j == nsp_i:
1525 nspitem_j_range = list(range(nspitem_i+1, len(np[nsp_j])))
1526 else:
1527 nspitem_j_range = list(range(len(np[nsp_j])))
1528 for nspitem_j in nspitem_j_range:
1529 intsparams = np[nsp_i][nspitem_i].intersect(np[nsp_j][nspitem_j], epsilon)
1530 if intsparams:
1531 for intsparam_i, intsparam_j in intsparams:
1532 npp_i = mynormpathparam(np, nsp_i, nspitem_i, intsparam_i)
1533 npp_j = mynormpathparam(np, nsp_j, nspitem_j, intsparam_j)
1535 # skip successive nsp-items
1536 if nsp_i == nsp_j:
1537 if nspitem_j == nspitem_i+1 and (npp_i.is_end_of_nspitem(epsilon) or npp_j.is_beg_of_nspitem(epsilon)):
1538 continue
1539 if np[nsp_i].closed and ((npp_i.is_beg_of_nsp(epsilon) and npp_j.is_end_of_nsp(epsilon)) or
1540 (npp_j.is_beg_of_nsp(epsilon) and npp_i.is_end_of_nsp(epsilon))):
1541 continue
1543 # correct the order of the pair, such that we can use it to continue on the path
1544 if not self._can_continue(npp_i, npp_j, epsilon):
1545 assert self._can_continue(npp_j, npp_i, epsilon)
1546 npp_i, npp_j = npp_j, npp_i
1548 # if the intersection is between two nsp-items, take the smallest -> largest
1549 npp_i = npp_i.smaller_equiv(5*epsilon)
1550 npp_j = npp_j.larger_equiv(5*epsilon)
1552 # because of the above change of npp_ij, and because there may be intersections between nsp-items,
1553 # it may happen that we try to insert two times the same pair
1554 if self._skip_intersection_doublet(npp_i, npp_j, forwardpairs, eps_comparepairs):
1555 continue
1556 forwardpairs[npp_i] = npp_j
1558 # this is partially done in _skip_intersection_doublet
1559 #forwardpairs = self._elim_intersection_doublets(forwardpairs, eps_comparepairs)
1560 # create the reverse mapping
1561 backwardpairs = {}
1562 for p, q in forwardpairs.items():
1563 backwardpairs[q] = p
1564 return forwardpairs, backwardpairs
1566 # >>>
1567 def normpath_origintersections(self, orig_np, par_np, epsilon): # <<<
1568 """return all intersection points of the original path and the parallel path"""
1570 # this code became necessary with introduction of mynormpathparam
1571 params = []
1572 oparams = []
1573 for nsp_i in range(len(orig_np)):
1574 for nsp_j in range(len(par_np)):
1575 for nspitem_i in range(len(orig_np[nsp_i])):
1576 for nspitem_j in range(len(par_np[nsp_j])):
1577 intsparams = orig_np[nsp_i][nspitem_i].intersect(par_np[nsp_j][nspitem_j], epsilon)
1578 if intsparams:
1579 for intsparam_i, intsparam_j in intsparams:
1580 npp_i = mynormpathparam(orig_np, nsp_i, nspitem_i, intsparam_i)
1581 npp_j = mynormpathparam(par_np, nsp_j, nspitem_j, intsparam_j)
1583 oparams.append(npp_i)
1584 params.append(npp_j)
1585 return params, oparams
1586 # >>>
1587 def _can_continue(self, param1, param2, epsilon=None): # <<<
1588 """Test whether the parallel path can be continued at the param-pair (param1, param2)"""
1589 par_np = param1.normpath
1590 if epsilon is None:
1591 epsilon = par_np[0].epsilon
1593 rot1, rot2 = par_np.rotation([param1, param2])
1594 orth1 = rot1.apply_pt(0, self.dist_pt) # directs away from original path (as seen from parallel path)
1595 tang2 = rot2.apply_pt(1, 0)
1597 # the self-intersection is valid if the tangents
1598 # point into the correct direction or, for parallel tangents,
1599 # if the curvature is such that the on-going path does not
1600 # enter the region defined by dist
1601 proj = orth1[0]*tang2[0] + orth1[1]*tang2[1]
1602 if abs(proj) > epsilon: # the curves are not parallel
1603 # tang2 must go away from the original path
1604 return (proj > 0)
1606 # tang1 and tang2 are parallel.
1607 curv1, curv2 = par_np.curvature_pt([param1, param2])
1609 # We need to treat also cases where the params are nspitem-endpoints.
1610 # There, we know that the tangents are continuous, but the curvature is
1611 # not necessarily continuous. We have to test whether the curve *after*
1612 # param2 has curvature such that it enters the forbidden side of the
1613 # curve after param1
1614 if param1.is_end_of_nspitem(epsilon):
1615 curv1 = par_np.curvature_pt([param1.larger_equiv(epsilon)])[0]
1616 if param2.is_end_of_nspitem(epsilon):
1617 curv2 = par_np.curvature_pt([param2.larger_equiv(epsilon)])[0]
1619 tang1 = rot1.apply_pt(1, 0)
1620 running_back = (tang1[0]*tang2[0] + tang1[1]*tang2[1] < 0)
1621 if running_back:
1622 # the second curve is running "back" -- the curvature sign appears to be switched
1623 curv2 = -curv2
1624 # endpoints of normsubpaths must be treated differently:
1626 if (not running_back) and param1.is_end_of_nsp(epsilon):
1627 return True
1629 if curv1 == curv2:
1630 raise IntersectionError("Cannot determine whether curves intersect (parallel and equally curved)")
1632 if self.dist_pt > 0:
1633 return (curv2 > curv1)
1634 else:
1635 return (curv2 < curv1)
1636 # >>>
1637 def _skip_intersection_doublet(self, npp_i, npp_j, parampairs, epsilon): # <<<
1638 # An intersection point that lies exactly between two nsp-items can occur twice or more
1639 # times if we calculate all mutual intersections. We should take only
1640 # one such parameter pair, namely the one with smallest first and
1641 # largest last param.
1642 result = False
1643 delete_keys = []
1644 delete_values = []
1645 # TODO: improve complexity?
1646 for pi, pj in parampairs.items():
1647 if npp_i.is_equiv(pi, epsilon) and npp_j.is_equiv(pj, epsilon):
1648 #print("double pair: ", npp_i, npp_j, pi, pj)
1649 #print("... replacing ", pi, parampairs[pi], "by", min(npp_i, pi), max(npp_j, pj))
1650 delete_keys.append(pi)
1651 delete_values.append(pj)
1652 result = True # we have already added this one
1653 newkey = min([npp_i] + delete_keys)
1654 newval = max([npp_j] + delete_values)
1655 for pi in delete_keys:
1656 del parampairs[pi]
1657 parampairs[newkey] = newval
1658 return result
1659 # >>>
1660 def _elim_intersection_doublets(self, parampairs, epsilon): # <<<
1661 # It may always happen that three intersections coincide. (It will
1662 # occur often with degenerate distances for technical designs such as
1663 # those used in microfluidics). We then have two equivalent pairs in our
1664 # forward list, and we must throw away one of them.
1665 # One of them is indeed forbidden by the _can_continue of the other.
1667 # TODO implement this
1669 keys = list(parampairs.keys())
1670 n = len(keys)
1671 for i in range(n):
1672 start = "equivalent pairs\n"
1673 for j in range(i+1, n):
1674 key1, key2 = keys[i], keys[j]
1675 npp1 = parampairs[key1]
1676 npp2 = parampairs[key2]
1677 #assert key1.is_equiv(npp1, epsilon)
1678 #if not key2.is_equiv(npp2, epsilon):
1679 # np = key2.normpath
1680 # print(np.at_pt(key2), np.at_pt(npp2), _length_pt(np, key2, npp2)/epsilon)
1681 #assert key2.is_equiv(npp2, epsilon)
1682 if ((key1.is_equiv(key2, epsilon) and npp1.is_equiv(npp2, epsilon)) or
1683 (key1.is_equiv(npp2, epsilon) and npp1.is_equiv(key2, epsilon))):
1684 print(start,"pair: ", key1, npp1, " and ", key2, npp2)
1685 start = ""
1686 if not start:
1687 print()
1688 return parampairs
1689 # >>>
1690 def _between_paths(self, pos, par2orig, epsilon): # <<<
1691 """Tests whether the given point (pos) is found in the forbidden zone between an original and a parallel nsp-item (these are in par2orig)
1693 The test uses epsilon close to the original/parallel path, and sharp comparison at their ends."""
1694 dist = self.dist_pt
1695 for par_nspitem in par2orig:
1696 origobj = par2orig[par_nspitem]
1697 if isinstance(origobj, normpath.normline_pt):
1698 rot = origobj.rotation([0])[0]
1699 t, s = intersection(pos, origobj.atbegin_pt(), rot.apply_pt(0, mathutils.sign(dist)), rot.apply_pt(origobj.arclen_pt(epsilon), 0))
1700 if 0 <= s <= 1 and -abs(dist)+epsilon < t < -epsilon:
1701 return True
1702 elif isinstance(origobj, normpath.normcurve_pt):
1703 # TODO: implement this
1704 # TODO: pre-sort par2orig as a list to fasten up this code
1705 pass
1706 else:
1707 cx, cy = origobj
1708 if math.hypot(pos[0]-cx, pos[1]-cy) < abs(dist) - epsilon:
1709 if self.dist_pt > 0: # running around (cx,cy) in the negative sense (see _path_around_corner)
1710 x0, y0 = par_nspitem.atend_pt()
1711 x1, y1 = par_nspitem.atbegin_pt()
1712 else: # running around (cx,cy) in the positive sense
1713 x0, y0 = par_nspitem.atbegin_pt()
1714 x1, y1 = par_nspitem.atend_pt()
1715 t0, s0 = intersection(pos, (cx, cy), (-y0+cy, x0-cx), (x0-cx, y0-cy))
1716 t1, s1 = intersection(pos, (cx, cy), ( y1-cy,-x1+cx), (x1-cx, y1-cy))
1717 if t0 <= 0 and s0 >= 0 and t1 <= 0 and s1 >= 0:
1718 return True
1719 return False
1720 # >>>
1722 # >>>
1724 parallel.clear = attr.clearclass(parallel)
1726 class linesmoothed(baseclasses.deformer): # <<<
1728 def __init__(self, tension=1, atleast=False, lcurl=1, rcurl=1):
1729 """Tension and atleast control the tension of the replacement curves.
1730 l/rcurl control the curlynesses at (possible) endpoints. If a curl is
1731 set to None, the angle is taken from the original path."""
1732 if atleast:
1733 self.tension = -abs(tension)
1734 else:
1735 self.tension = abs(tension)
1736 self.lcurl = lcurl
1737 self.rcurl = rcurl
1739 def __call__(self, tension=_marker, atleast=_marker, lcurl=_marker, rcurl=_marker):
1740 if tension is _marker:
1741 tension = self.tension
1742 if atleast is _marker:
1743 atleast = (self.tension < 0)
1744 if lcurl is _marker:
1745 lcurl = self.lcurl
1746 if rcurl is _marker:
1747 rcurl = self.rcurl
1748 return linesmoothed(tension, atleast, lcurl, rcurl)
1750 def deform(self, basepath):
1751 newnp = normpath.normpath()
1752 for nsp in basepath.normpath().normsubpaths:
1753 newnp += self.deformsubpath(nsp)
1754 return newnp
1756 def deformsubpath(self, nsp):
1757 from .metapost import path as mppath
1758 """Returns a path/normpath from the points in the given normsubpath"""
1759 # TODO: epsilon ?
1760 knots = []
1762 # first point
1763 x_pt, y_pt = nsp.atbegin_pt()
1764 if nsp.closed:
1765 knots.append(mppath.smoothknot_pt(x_pt, y_pt))
1766 elif self.lcurl is None:
1767 rot = nsp.rotation([0])[0]
1768 dx, dy = rot.apply_pt(1, 0)
1769 angle = math.atan2(dy, dx)
1770 knots.append(mppath.beginknot_pt(x_pt, y_pt, angle=angle))
1771 else:
1772 knots.append(mppath.beginknot_pt(x_pt, y_pt, curl=self.lcurl))
1774 # intermediate points:
1775 for npelem in nsp[:-1]:
1776 knots.append(mppath.tensioncurve(self.tension))
1777 knots.append(mppath.smoothknot_pt(*npelem.atend_pt()))
1779 # last point
1780 knots.append(mppath.tensioncurve(self.tension))
1781 x_pt, y_pt = nsp.atend_pt()
1782 if nsp.closed:
1783 pass
1784 elif self.rcurl is None:
1785 rot = nsp.rotation([len(nsp)])[0]
1786 dx, dy = rot.apply_pt(1, 0)
1787 angle = math.atan2(dy, dx)
1788 knots.append(mppath.endknot_pt(x_pt, y_pt, angle=angle))
1789 else:
1790 knots.append(mppath.endknot_pt(x_pt, y_pt, curl=self.rcurl))
1792 return mppath.path(knots)
1793 # >>>
1795 linesmoothed.clear = attr.clearclass(linesmoothed)
1798 # vim:foldmethod=marker:foldmarker=<<<,>>>