Move the HTSU_Result enum definition into snapshot.h, to avoid including
[PostgreSQL.git] / src / backend / access / heap / heapam.c
blobc208350da195fe6136d74d7bb2127c2d411efa58
1 /*-------------------------------------------------------------------------
3 * heapam.c
4 * heap access method code
6 * Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
10 * IDENTIFICATION
11 * $PostgreSQL$
14 * INTERFACE ROUTINES
15 * relation_open - open any relation by relation OID
16 * relation_openrv - open any relation specified by a RangeVar
17 * relation_close - close any relation
18 * heap_open - open a heap relation by relation OID
19 * heap_openrv - open a heap relation specified by a RangeVar
20 * heap_close - (now just a macro for relation_close)
21 * heap_beginscan - begin relation scan
22 * heap_rescan - restart a relation scan
23 * heap_endscan - end relation scan
24 * heap_getnext - retrieve next tuple in scan
25 * heap_fetch - retrieve tuple with given tid
26 * heap_insert - insert tuple into a relation
27 * heap_delete - delete a tuple from a relation
28 * heap_update - replace a tuple in a relation with another tuple
29 * heap_markpos - mark scan position
30 * heap_restrpos - restore position to marked location
31 * heap_sync - sync heap, for when no WAL has been written
33 * NOTES
34 * This file contains the heap_ routines which implement
35 * the POSTGRES heap access method used for all POSTGRES
36 * relations.
38 *-------------------------------------------------------------------------
40 #include "postgres.h"
42 #include "access/heapam.h"
43 #include "access/hio.h"
44 #include "access/multixact.h"
45 #include "access/transam.h"
46 #include "access/tuptoaster.h"
47 #include "access/valid.h"
48 #include "access/xact.h"
49 #include "catalog/catalog.h"
50 #include "catalog/namespace.h"
51 #include "miscadmin.h"
52 #include "pgstat.h"
53 #include "storage/procarray.h"
54 #include "storage/smgr.h"
55 #include "utils/datum.h"
56 #include "utils/inval.h"
57 #include "utils/lsyscache.h"
58 #include "utils/relcache.h"
59 #include "utils/snapmgr.h"
60 #include "utils/syscache.h"
61 #include "utils/tqual.h"
64 /* GUC variable */
65 bool synchronize_seqscans = true;
68 static HeapScanDesc heap_beginscan_internal(Relation relation,
69 Snapshot snapshot,
70 int nkeys, ScanKey key,
71 bool allow_strat, bool allow_sync,
72 bool is_bitmapscan);
73 static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf,
74 ItemPointerData from, Buffer newbuf, HeapTuple newtup, bool move);
75 static bool HeapSatisfiesHOTUpdate(Relation relation, Bitmapset *hot_attrs,
76 HeapTuple oldtup, HeapTuple newtup);
79 /* ----------------------------------------------------------------
80 * heap support routines
81 * ----------------------------------------------------------------
84 /* ----------------
85 * initscan - scan code common to heap_beginscan and heap_rescan
86 * ----------------
88 static void
89 initscan(HeapScanDesc scan, ScanKey key)
91 bool allow_strat;
92 bool allow_sync;
95 * Determine the number of blocks we have to scan.
97 * It is sufficient to do this once at scan start, since any tuples added
98 * while the scan is in progress will be invisible to my snapshot anyway.
99 * (That is not true when using a non-MVCC snapshot. However, we couldn't
100 * guarantee to return tuples added after scan start anyway, since they
101 * might go into pages we already scanned. To guarantee consistent
102 * results for a non-MVCC snapshot, the caller must hold some higher-level
103 * lock that ensures the interesting tuple(s) won't change.)
105 scan->rs_nblocks = RelationGetNumberOfBlocks(scan->rs_rd);
108 * If the table is large relative to NBuffers, use a bulk-read access
109 * strategy and enable synchronized scanning (see syncscan.c). Although
110 * the thresholds for these features could be different, we make them the
111 * same so that there are only two behaviors to tune rather than four.
112 * (However, some callers need to be able to disable one or both of
113 * these behaviors, independently of the size of the table; also there
114 * is a GUC variable that can disable synchronized scanning.)
116 * During a rescan, don't make a new strategy object if we don't have to.
118 if (!scan->rs_rd->rd_istemp &&
119 scan->rs_nblocks > NBuffers / 4)
121 allow_strat = scan->rs_allow_strat;
122 allow_sync = scan->rs_allow_sync;
124 else
125 allow_strat = allow_sync = false;
127 if (allow_strat)
129 if (scan->rs_strategy == NULL)
130 scan->rs_strategy = GetAccessStrategy(BAS_BULKREAD);
132 else
134 if (scan->rs_strategy != NULL)
135 FreeAccessStrategy(scan->rs_strategy);
136 scan->rs_strategy = NULL;
139 if (allow_sync && synchronize_seqscans)
141 scan->rs_syncscan = true;
142 scan->rs_startblock = ss_get_location(scan->rs_rd, scan->rs_nblocks);
144 else
146 scan->rs_syncscan = false;
147 scan->rs_startblock = 0;
150 scan->rs_inited = false;
151 scan->rs_ctup.t_data = NULL;
152 ItemPointerSetInvalid(&scan->rs_ctup.t_self);
153 scan->rs_cbuf = InvalidBuffer;
154 scan->rs_cblock = InvalidBlockNumber;
156 /* we don't have a marked position... */
157 ItemPointerSetInvalid(&(scan->rs_mctid));
159 /* page-at-a-time fields are always invalid when not rs_inited */
162 * copy the scan key, if appropriate
164 if (key != NULL)
165 memcpy(scan->rs_key, key, scan->rs_nkeys * sizeof(ScanKeyData));
168 * Currently, we don't have a stats counter for bitmap heap scans (but the
169 * underlying bitmap index scans will be counted).
171 if (!scan->rs_bitmapscan)
172 pgstat_count_heap_scan(scan->rs_rd);
176 * heapgetpage - subroutine for heapgettup()
178 * This routine reads and pins the specified page of the relation.
179 * In page-at-a-time mode it performs additional work, namely determining
180 * which tuples on the page are visible.
182 static void
183 heapgetpage(HeapScanDesc scan, BlockNumber page)
185 Buffer buffer;
186 Snapshot snapshot;
187 Page dp;
188 int lines;
189 int ntup;
190 OffsetNumber lineoff;
191 ItemId lpp;
193 Assert(page < scan->rs_nblocks);
195 /* release previous scan buffer, if any */
196 if (BufferIsValid(scan->rs_cbuf))
198 ReleaseBuffer(scan->rs_cbuf);
199 scan->rs_cbuf = InvalidBuffer;
202 /* read page using selected strategy */
203 scan->rs_cbuf = ReadBufferWithStrategy(scan->rs_rd,
204 page,
205 scan->rs_strategy);
206 scan->rs_cblock = page;
208 if (!scan->rs_pageatatime)
209 return;
211 buffer = scan->rs_cbuf;
212 snapshot = scan->rs_snapshot;
215 * Prune and repair fragmentation for the whole page, if possible.
217 heap_page_prune_opt(scan->rs_rd, buffer, RecentGlobalXmin);
220 * We must hold share lock on the buffer content while examining tuple
221 * visibility. Afterwards, however, the tuples we have found to be
222 * visible are guaranteed good as long as we hold the buffer pin.
224 LockBuffer(buffer, BUFFER_LOCK_SHARE);
226 dp = (Page) BufferGetPage(buffer);
227 lines = PageGetMaxOffsetNumber(dp);
228 ntup = 0;
230 for (lineoff = FirstOffsetNumber, lpp = PageGetItemId(dp, lineoff);
231 lineoff <= lines;
232 lineoff++, lpp++)
234 if (ItemIdIsNormal(lpp))
236 HeapTupleData loctup;
237 bool valid;
239 loctup.t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp);
240 loctup.t_len = ItemIdGetLength(lpp);
241 ItemPointerSet(&(loctup.t_self), page, lineoff);
243 valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer);
244 if (valid)
245 scan->rs_vistuples[ntup++] = lineoff;
249 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
251 Assert(ntup <= MaxHeapTuplesPerPage);
252 scan->rs_ntuples = ntup;
255 /* ----------------
256 * heapgettup - fetch next heap tuple
258 * Initialize the scan if not already done; then advance to the next
259 * tuple as indicated by "dir"; return the next tuple in scan->rs_ctup,
260 * or set scan->rs_ctup.t_data = NULL if no more tuples.
262 * dir == NoMovementScanDirection means "re-fetch the tuple indicated
263 * by scan->rs_ctup".
265 * Note: the reason nkeys/key are passed separately, even though they are
266 * kept in the scan descriptor, is that the caller may not want us to check
267 * the scankeys.
269 * Note: when we fall off the end of the scan in either direction, we
270 * reset rs_inited. This means that a further request with the same
271 * scan direction will restart the scan, which is a bit odd, but a
272 * request with the opposite scan direction will start a fresh scan
273 * in the proper direction. The latter is required behavior for cursors,
274 * while the former case is generally undefined behavior in Postgres
275 * so we don't care too much.
276 * ----------------
278 static void
279 heapgettup(HeapScanDesc scan,
280 ScanDirection dir,
281 int nkeys,
282 ScanKey key)
284 HeapTuple tuple = &(scan->rs_ctup);
285 Snapshot snapshot = scan->rs_snapshot;
286 bool backward = ScanDirectionIsBackward(dir);
287 BlockNumber page;
288 bool finished;
289 Page dp;
290 int lines;
291 OffsetNumber lineoff;
292 int linesleft;
293 ItemId lpp;
296 * calculate next starting lineoff, given scan direction
298 if (ScanDirectionIsForward(dir))
300 if (!scan->rs_inited)
303 * return null immediately if relation is empty
305 if (scan->rs_nblocks == 0)
307 Assert(!BufferIsValid(scan->rs_cbuf));
308 tuple->t_data = NULL;
309 return;
311 page = scan->rs_startblock; /* first page */
312 heapgetpage(scan, page);
313 lineoff = FirstOffsetNumber; /* first offnum */
314 scan->rs_inited = true;
316 else
318 /* continue from previously returned page/tuple */
319 page = scan->rs_cblock; /* current page */
320 lineoff = /* next offnum */
321 OffsetNumberNext(ItemPointerGetOffsetNumber(&(tuple->t_self)));
324 LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
326 dp = (Page) BufferGetPage(scan->rs_cbuf);
327 lines = PageGetMaxOffsetNumber(dp);
328 /* page and lineoff now reference the physically next tid */
330 linesleft = lines - lineoff + 1;
332 else if (backward)
334 if (!scan->rs_inited)
337 * return null immediately if relation is empty
339 if (scan->rs_nblocks == 0)
341 Assert(!BufferIsValid(scan->rs_cbuf));
342 tuple->t_data = NULL;
343 return;
347 * Disable reporting to syncscan logic in a backwards scan; it's
348 * not very likely anyone else is doing the same thing at the same
349 * time, and much more likely that we'll just bollix things for
350 * forward scanners.
352 scan->rs_syncscan = false;
353 /* start from last page of the scan */
354 if (scan->rs_startblock > 0)
355 page = scan->rs_startblock - 1;
356 else
357 page = scan->rs_nblocks - 1;
358 heapgetpage(scan, page);
360 else
362 /* continue from previously returned page/tuple */
363 page = scan->rs_cblock; /* current page */
366 LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
368 dp = (Page) BufferGetPage(scan->rs_cbuf);
369 lines = PageGetMaxOffsetNumber(dp);
371 if (!scan->rs_inited)
373 lineoff = lines; /* final offnum */
374 scan->rs_inited = true;
376 else
378 lineoff = /* previous offnum */
379 OffsetNumberPrev(ItemPointerGetOffsetNumber(&(tuple->t_self)));
381 /* page and lineoff now reference the physically previous tid */
383 linesleft = lineoff;
385 else
388 * ``no movement'' scan direction: refetch prior tuple
390 if (!scan->rs_inited)
392 Assert(!BufferIsValid(scan->rs_cbuf));
393 tuple->t_data = NULL;
394 return;
397 page = ItemPointerGetBlockNumber(&(tuple->t_self));
398 if (page != scan->rs_cblock)
399 heapgetpage(scan, page);
401 /* Since the tuple was previously fetched, needn't lock page here */
402 dp = (Page) BufferGetPage(scan->rs_cbuf);
403 lineoff = ItemPointerGetOffsetNumber(&(tuple->t_self));
404 lpp = PageGetItemId(dp, lineoff);
405 Assert(ItemIdIsNormal(lpp));
407 tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp);
408 tuple->t_len = ItemIdGetLength(lpp);
410 return;
414 * advance the scan until we find a qualifying tuple or run out of stuff
415 * to scan
417 lpp = PageGetItemId(dp, lineoff);
418 for (;;)
420 while (linesleft > 0)
422 if (ItemIdIsNormal(lpp))
424 bool valid;
426 tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp);
427 tuple->t_len = ItemIdGetLength(lpp);
428 ItemPointerSet(&(tuple->t_self), page, lineoff);
431 * if current tuple qualifies, return it.
433 valid = HeapTupleSatisfiesVisibility(tuple,
434 snapshot,
435 scan->rs_cbuf);
437 if (valid && key != NULL)
438 HeapKeyTest(tuple, RelationGetDescr(scan->rs_rd),
439 nkeys, key, valid);
441 if (valid)
443 LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
444 return;
449 * otherwise move to the next item on the page
451 --linesleft;
452 if (backward)
454 --lpp; /* move back in this page's ItemId array */
455 --lineoff;
457 else
459 ++lpp; /* move forward in this page's ItemId array */
460 ++lineoff;
465 * if we get here, it means we've exhausted the items on this page and
466 * it's time to move to the next.
468 LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
471 * advance to next/prior page and detect end of scan
473 if (backward)
475 finished = (page == scan->rs_startblock);
476 if (page == 0)
477 page = scan->rs_nblocks;
478 page--;
480 else
482 page++;
483 if (page >= scan->rs_nblocks)
484 page = 0;
485 finished = (page == scan->rs_startblock);
488 * Report our new scan position for synchronization purposes. We
489 * don't do that when moving backwards, however. That would just
490 * mess up any other forward-moving scanners.
492 * Note: we do this before checking for end of scan so that the
493 * final state of the position hint is back at the start of the
494 * rel. That's not strictly necessary, but otherwise when you run
495 * the same query multiple times the starting position would shift
496 * a little bit backwards on every invocation, which is confusing.
497 * We don't guarantee any specific ordering in general, though.
499 if (scan->rs_syncscan)
500 ss_report_location(scan->rs_rd, page);
504 * return NULL if we've exhausted all the pages
506 if (finished)
508 if (BufferIsValid(scan->rs_cbuf))
509 ReleaseBuffer(scan->rs_cbuf);
510 scan->rs_cbuf = InvalidBuffer;
511 scan->rs_cblock = InvalidBlockNumber;
512 tuple->t_data = NULL;
513 scan->rs_inited = false;
514 return;
517 heapgetpage(scan, page);
519 LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
521 dp = (Page) BufferGetPage(scan->rs_cbuf);
522 lines = PageGetMaxOffsetNumber((Page) dp);
523 linesleft = lines;
524 if (backward)
526 lineoff = lines;
527 lpp = PageGetItemId(dp, lines);
529 else
531 lineoff = FirstOffsetNumber;
532 lpp = PageGetItemId(dp, FirstOffsetNumber);
537 /* ----------------
538 * heapgettup_pagemode - fetch next heap tuple in page-at-a-time mode
540 * Same API as heapgettup, but used in page-at-a-time mode
542 * The internal logic is much the same as heapgettup's too, but there are some
543 * differences: we do not take the buffer content lock (that only needs to
544 * happen inside heapgetpage), and we iterate through just the tuples listed
545 * in rs_vistuples[] rather than all tuples on the page. Notice that
546 * lineindex is 0-based, where the corresponding loop variable lineoff in
547 * heapgettup is 1-based.
548 * ----------------
550 static void
551 heapgettup_pagemode(HeapScanDesc scan,
552 ScanDirection dir,
553 int nkeys,
554 ScanKey key)
556 HeapTuple tuple = &(scan->rs_ctup);
557 bool backward = ScanDirectionIsBackward(dir);
558 BlockNumber page;
559 bool finished;
560 Page dp;
561 int lines;
562 int lineindex;
563 OffsetNumber lineoff;
564 int linesleft;
565 ItemId lpp;
568 * calculate next starting lineindex, given scan direction
570 if (ScanDirectionIsForward(dir))
572 if (!scan->rs_inited)
575 * return null immediately if relation is empty
577 if (scan->rs_nblocks == 0)
579 Assert(!BufferIsValid(scan->rs_cbuf));
580 tuple->t_data = NULL;
581 return;
583 page = scan->rs_startblock; /* first page */
584 heapgetpage(scan, page);
585 lineindex = 0;
586 scan->rs_inited = true;
588 else
590 /* continue from previously returned page/tuple */
591 page = scan->rs_cblock; /* current page */
592 lineindex = scan->rs_cindex + 1;
595 dp = (Page) BufferGetPage(scan->rs_cbuf);
596 lines = scan->rs_ntuples;
597 /* page and lineindex now reference the next visible tid */
599 linesleft = lines - lineindex;
601 else if (backward)
603 if (!scan->rs_inited)
606 * return null immediately if relation is empty
608 if (scan->rs_nblocks == 0)
610 Assert(!BufferIsValid(scan->rs_cbuf));
611 tuple->t_data = NULL;
612 return;
616 * Disable reporting to syncscan logic in a backwards scan; it's
617 * not very likely anyone else is doing the same thing at the same
618 * time, and much more likely that we'll just bollix things for
619 * forward scanners.
621 scan->rs_syncscan = false;
622 /* start from last page of the scan */
623 if (scan->rs_startblock > 0)
624 page = scan->rs_startblock - 1;
625 else
626 page = scan->rs_nblocks - 1;
627 heapgetpage(scan, page);
629 else
631 /* continue from previously returned page/tuple */
632 page = scan->rs_cblock; /* current page */
635 dp = (Page) BufferGetPage(scan->rs_cbuf);
636 lines = scan->rs_ntuples;
638 if (!scan->rs_inited)
640 lineindex = lines - 1;
641 scan->rs_inited = true;
643 else
645 lineindex = scan->rs_cindex - 1;
647 /* page and lineindex now reference the previous visible tid */
649 linesleft = lineindex + 1;
651 else
654 * ``no movement'' scan direction: refetch prior tuple
656 if (!scan->rs_inited)
658 Assert(!BufferIsValid(scan->rs_cbuf));
659 tuple->t_data = NULL;
660 return;
663 page = ItemPointerGetBlockNumber(&(tuple->t_self));
664 if (page != scan->rs_cblock)
665 heapgetpage(scan, page);
667 /* Since the tuple was previously fetched, needn't lock page here */
668 dp = (Page) BufferGetPage(scan->rs_cbuf);
669 lineoff = ItemPointerGetOffsetNumber(&(tuple->t_self));
670 lpp = PageGetItemId(dp, lineoff);
671 Assert(ItemIdIsNormal(lpp));
673 tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp);
674 tuple->t_len = ItemIdGetLength(lpp);
676 /* check that rs_cindex is in sync */
677 Assert(scan->rs_cindex < scan->rs_ntuples);
678 Assert(lineoff == scan->rs_vistuples[scan->rs_cindex]);
680 return;
684 * advance the scan until we find a qualifying tuple or run out of stuff
685 * to scan
687 for (;;)
689 while (linesleft > 0)
691 lineoff = scan->rs_vistuples[lineindex];
692 lpp = PageGetItemId(dp, lineoff);
693 Assert(ItemIdIsNormal(lpp));
695 tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lpp);
696 tuple->t_len = ItemIdGetLength(lpp);
697 ItemPointerSet(&(tuple->t_self), page, lineoff);
700 * if current tuple qualifies, return it.
702 if (key != NULL)
704 bool valid;
706 HeapKeyTest(tuple, RelationGetDescr(scan->rs_rd),
707 nkeys, key, valid);
708 if (valid)
710 scan->rs_cindex = lineindex;
711 return;
714 else
716 scan->rs_cindex = lineindex;
717 return;
721 * otherwise move to the next item on the page
723 --linesleft;
724 if (backward)
725 --lineindex;
726 else
727 ++lineindex;
731 * if we get here, it means we've exhausted the items on this page and
732 * it's time to move to the next.
734 if (backward)
736 finished = (page == scan->rs_startblock);
737 if (page == 0)
738 page = scan->rs_nblocks;
739 page--;
741 else
743 page++;
744 if (page >= scan->rs_nblocks)
745 page = 0;
746 finished = (page == scan->rs_startblock);
749 * Report our new scan position for synchronization purposes. We
750 * don't do that when moving backwards, however. That would just
751 * mess up any other forward-moving scanners.
753 * Note: we do this before checking for end of scan so that the
754 * final state of the position hint is back at the start of the
755 * rel. That's not strictly necessary, but otherwise when you run
756 * the same query multiple times the starting position would shift
757 * a little bit backwards on every invocation, which is confusing.
758 * We don't guarantee any specific ordering in general, though.
760 if (scan->rs_syncscan)
761 ss_report_location(scan->rs_rd, page);
765 * return NULL if we've exhausted all the pages
767 if (finished)
769 if (BufferIsValid(scan->rs_cbuf))
770 ReleaseBuffer(scan->rs_cbuf);
771 scan->rs_cbuf = InvalidBuffer;
772 scan->rs_cblock = InvalidBlockNumber;
773 tuple->t_data = NULL;
774 scan->rs_inited = false;
775 return;
778 heapgetpage(scan, page);
780 dp = (Page) BufferGetPage(scan->rs_cbuf);
781 lines = scan->rs_ntuples;
782 linesleft = lines;
783 if (backward)
784 lineindex = lines - 1;
785 else
786 lineindex = 0;
791 #if defined(DISABLE_COMPLEX_MACRO)
793 * This is formatted so oddly so that the correspondence to the macro
794 * definition in access/heapam.h is maintained.
796 Datum
797 fastgetattr(HeapTuple tup, int attnum, TupleDesc tupleDesc,
798 bool *isnull)
800 return (
801 (attnum) > 0 ?
803 ((isnull) ? (*(isnull) = false) : (dummyret) NULL),
804 HeapTupleNoNulls(tup) ?
806 (tupleDesc)->attrs[(attnum) - 1]->attcacheoff >= 0 ?
808 fetchatt((tupleDesc)->attrs[(attnum) - 1],
809 (char *) (tup)->t_data + (tup)->t_data->t_hoff +
810 (tupleDesc)->attrs[(attnum) - 1]->attcacheoff)
813 nocachegetattr((tup), (attnum), (tupleDesc), (isnull))
817 att_isnull((attnum) - 1, (tup)->t_data->t_bits) ?
819 ((isnull) ? (*(isnull) = true) : (dummyret) NULL),
820 (Datum) NULL
824 nocachegetattr((tup), (attnum), (tupleDesc), (isnull))
830 (Datum) NULL
834 #endif /* defined(DISABLE_COMPLEX_MACRO) */
837 /* ----------------------------------------------------------------
838 * heap access method interface
839 * ----------------------------------------------------------------
842 /* ----------------
843 * relation_open - open any relation by relation OID
845 * If lockmode is not "NoLock", the specified kind of lock is
846 * obtained on the relation. (Generally, NoLock should only be
847 * used if the caller knows it has some appropriate lock on the
848 * relation already.)
850 * An error is raised if the relation does not exist.
852 * NB: a "relation" is anything with a pg_class entry. The caller is
853 * expected to check whether the relkind is something it can handle.
854 * ----------------
856 Relation
857 relation_open(Oid relationId, LOCKMODE lockmode)
859 Relation r;
861 Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES);
863 /* Get the lock before trying to open the relcache entry */
864 if (lockmode != NoLock)
865 LockRelationOid(relationId, lockmode);
867 /* The relcache does all the real work... */
868 r = RelationIdGetRelation(relationId);
870 if (!RelationIsValid(r))
871 elog(ERROR, "could not open relation with OID %u", relationId);
873 /* Make note that we've accessed a temporary relation */
874 if (r->rd_istemp)
875 MyXactAccessedTempRel = true;
877 pgstat_initstats(r);
879 return r;
882 /* ----------------
883 * try_relation_open - open any relation by relation OID
885 * Same as relation_open, except return NULL instead of failing
886 * if the relation does not exist.
887 * ----------------
889 Relation
890 try_relation_open(Oid relationId, LOCKMODE lockmode)
892 Relation r;
894 Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES);
896 /* Get the lock first */
897 if (lockmode != NoLock)
898 LockRelationOid(relationId, lockmode);
901 * Now that we have the lock, probe to see if the relation really exists
902 * or not.
904 if (!SearchSysCacheExists(RELOID,
905 ObjectIdGetDatum(relationId),
906 0, 0, 0))
908 /* Release useless lock */
909 if (lockmode != NoLock)
910 UnlockRelationOid(relationId, lockmode);
912 return NULL;
915 /* Should be safe to do a relcache load */
916 r = RelationIdGetRelation(relationId);
918 if (!RelationIsValid(r))
919 elog(ERROR, "could not open relation with OID %u", relationId);
921 /* Make note that we've accessed a temporary relation */
922 if (r->rd_istemp)
923 MyXactAccessedTempRel = true;
925 pgstat_initstats(r);
927 return r;
930 /* ----------------
931 * relation_open_nowait - open but don't wait for lock
933 * Same as relation_open, except throw an error instead of waiting
934 * when the requested lock is not immediately obtainable.
935 * ----------------
937 Relation
938 relation_open_nowait(Oid relationId, LOCKMODE lockmode)
940 Relation r;
942 Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES);
944 /* Get the lock before trying to open the relcache entry */
945 if (lockmode != NoLock)
947 if (!ConditionalLockRelationOid(relationId, lockmode))
949 /* try to throw error by name; relation could be deleted... */
950 char *relname = get_rel_name(relationId);
952 if (relname)
953 ereport(ERROR,
954 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
955 errmsg("could not obtain lock on relation \"%s\"",
956 relname)));
957 else
958 ereport(ERROR,
959 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
960 errmsg("could not obtain lock on relation with OID %u",
961 relationId)));
965 /* The relcache does all the real work... */
966 r = RelationIdGetRelation(relationId);
968 if (!RelationIsValid(r))
969 elog(ERROR, "could not open relation with OID %u", relationId);
971 /* Make note that we've accessed a temporary relation */
972 if (r->rd_istemp)
973 MyXactAccessedTempRel = true;
975 pgstat_initstats(r);
977 return r;
980 /* ----------------
981 * relation_openrv - open any relation specified by a RangeVar
983 * Same as relation_open, but the relation is specified by a RangeVar.
984 * ----------------
986 Relation
987 relation_openrv(const RangeVar *relation, LOCKMODE lockmode)
989 Oid relOid;
992 * Check for shared-cache-inval messages before trying to open the
993 * relation. This is needed to cover the case where the name identifies a
994 * rel that has been dropped and recreated since the start of our
995 * transaction: if we don't flush the old syscache entry then we'll latch
996 * onto that entry and suffer an error when we do RelationIdGetRelation.
997 * Note that relation_open does not need to do this, since a relation's
998 * OID never changes.
1000 * We skip this if asked for NoLock, on the assumption that the caller has
1001 * already ensured some appropriate lock is held.
1003 if (lockmode != NoLock)
1004 AcceptInvalidationMessages();
1006 /* Look up the appropriate relation using namespace search */
1007 relOid = RangeVarGetRelid(relation, false);
1009 /* Let relation_open do the rest */
1010 return relation_open(relOid, lockmode);
1013 /* ----------------
1014 * relation_close - close any relation
1016 * If lockmode is not "NoLock", we then release the specified lock.
1018 * Note that it is often sensible to hold a lock beyond relation_close;
1019 * in that case, the lock is released automatically at xact end.
1020 * ----------------
1022 void
1023 relation_close(Relation relation, LOCKMODE lockmode)
1025 LockRelId relid = relation->rd_lockInfo.lockRelId;
1027 Assert(lockmode >= NoLock && lockmode < MAX_LOCKMODES);
1029 /* The relcache does the real work... */
1030 RelationClose(relation);
1032 if (lockmode != NoLock)
1033 UnlockRelationId(&relid, lockmode);
1037 /* ----------------
1038 * heap_open - open a heap relation by relation OID
1040 * This is essentially relation_open plus check that the relation
1041 * is not an index nor a composite type. (The caller should also
1042 * check that it's not a view before assuming it has storage.)
1043 * ----------------
1045 Relation
1046 heap_open(Oid relationId, LOCKMODE lockmode)
1048 Relation r;
1050 r = relation_open(relationId, lockmode);
1052 if (r->rd_rel->relkind == RELKIND_INDEX)
1053 ereport(ERROR,
1054 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1055 errmsg("\"%s\" is an index",
1056 RelationGetRelationName(r))));
1057 else if (r->rd_rel->relkind == RELKIND_COMPOSITE_TYPE)
1058 ereport(ERROR,
1059 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1060 errmsg("\"%s\" is a composite type",
1061 RelationGetRelationName(r))));
1063 return r;
1066 /* ----------------
1067 * heap_openrv - open a heap relation specified
1068 * by a RangeVar node
1070 * As above, but relation is specified by a RangeVar.
1071 * ----------------
1073 Relation
1074 heap_openrv(const RangeVar *relation, LOCKMODE lockmode)
1076 Relation r;
1078 r = relation_openrv(relation, lockmode);
1080 if (r->rd_rel->relkind == RELKIND_INDEX)
1081 ereport(ERROR,
1082 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1083 errmsg("\"%s\" is an index",
1084 RelationGetRelationName(r))));
1085 else if (r->rd_rel->relkind == RELKIND_COMPOSITE_TYPE)
1086 ereport(ERROR,
1087 (errcode(ERRCODE_WRONG_OBJECT_TYPE),
1088 errmsg("\"%s\" is a composite type",
1089 RelationGetRelationName(r))));
1091 return r;
1095 /* ----------------
1096 * heap_beginscan - begin relation scan
1098 * heap_beginscan_strat offers an extended API that lets the caller control
1099 * whether a nondefault buffer access strategy can be used, and whether
1100 * syncscan can be chosen (possibly resulting in the scan not starting from
1101 * block zero). Both of these default to TRUE with plain heap_beginscan.
1103 * heap_beginscan_bm is an alternative entry point for setting up a
1104 * HeapScanDesc for a bitmap heap scan. Although that scan technology is
1105 * really quite unlike a standard seqscan, there is just enough commonality
1106 * to make it worth using the same data structure.
1107 * ----------------
1109 HeapScanDesc
1110 heap_beginscan(Relation relation, Snapshot snapshot,
1111 int nkeys, ScanKey key)
1113 return heap_beginscan_internal(relation, snapshot, nkeys, key,
1114 true, true, false);
1117 HeapScanDesc
1118 heap_beginscan_strat(Relation relation, Snapshot snapshot,
1119 int nkeys, ScanKey key,
1120 bool allow_strat, bool allow_sync)
1122 return heap_beginscan_internal(relation, snapshot, nkeys, key,
1123 allow_strat, allow_sync, false);
1126 HeapScanDesc
1127 heap_beginscan_bm(Relation relation, Snapshot snapshot,
1128 int nkeys, ScanKey key)
1130 return heap_beginscan_internal(relation, snapshot, nkeys, key,
1131 false, false, true);
1134 static HeapScanDesc
1135 heap_beginscan_internal(Relation relation, Snapshot snapshot,
1136 int nkeys, ScanKey key,
1137 bool allow_strat, bool allow_sync,
1138 bool is_bitmapscan)
1140 HeapScanDesc scan;
1143 * increment relation ref count while scanning relation
1145 * This is just to make really sure the relcache entry won't go away while
1146 * the scan has a pointer to it. Caller should be holding the rel open
1147 * anyway, so this is redundant in all normal scenarios...
1149 RelationIncrementReferenceCount(relation);
1152 * allocate and initialize scan descriptor
1154 scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData));
1156 scan->rs_rd = relation;
1157 scan->rs_snapshot = snapshot;
1158 scan->rs_nkeys = nkeys;
1159 scan->rs_bitmapscan = is_bitmapscan;
1160 scan->rs_strategy = NULL; /* set in initscan */
1161 scan->rs_allow_strat = allow_strat;
1162 scan->rs_allow_sync = allow_sync;
1165 * we can use page-at-a-time mode if it's an MVCC-safe snapshot
1167 scan->rs_pageatatime = IsMVCCSnapshot(snapshot);
1169 /* we only need to set this up once */
1170 scan->rs_ctup.t_tableOid = RelationGetRelid(relation);
1173 * we do this here instead of in initscan() because heap_rescan also calls
1174 * initscan() and we don't want to allocate memory again
1176 if (nkeys > 0)
1177 scan->rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys);
1178 else
1179 scan->rs_key = NULL;
1181 initscan(scan, key);
1183 return scan;
1186 /* ----------------
1187 * heap_rescan - restart a relation scan
1188 * ----------------
1190 void
1191 heap_rescan(HeapScanDesc scan,
1192 ScanKey key)
1195 * unpin scan buffers
1197 if (BufferIsValid(scan->rs_cbuf))
1198 ReleaseBuffer(scan->rs_cbuf);
1201 * reinitialize scan descriptor
1203 initscan(scan, key);
1206 /* ----------------
1207 * heap_endscan - end relation scan
1209 * See how to integrate with index scans.
1210 * Check handling if reldesc caching.
1211 * ----------------
1213 void
1214 heap_endscan(HeapScanDesc scan)
1216 /* Note: no locking manipulations needed */
1219 * unpin scan buffers
1221 if (BufferIsValid(scan->rs_cbuf))
1222 ReleaseBuffer(scan->rs_cbuf);
1225 * decrement relation reference count and free scan descriptor storage
1227 RelationDecrementReferenceCount(scan->rs_rd);
1229 if (scan->rs_key)
1230 pfree(scan->rs_key);
1232 if (scan->rs_strategy != NULL)
1233 FreeAccessStrategy(scan->rs_strategy);
1235 pfree(scan);
1238 /* ----------------
1239 * heap_getnext - retrieve next tuple in scan
1241 * Fix to work with index relations.
1242 * We don't return the buffer anymore, but you can get it from the
1243 * returned HeapTuple.
1244 * ----------------
1247 #ifdef HEAPDEBUGALL
1248 #define HEAPDEBUG_1 \
1249 elog(DEBUG2, "heap_getnext([%s,nkeys=%d],dir=%d) called", \
1250 RelationGetRelationName(scan->rs_rd), scan->rs_nkeys, (int) direction)
1251 #define HEAPDEBUG_2 \
1252 elog(DEBUG2, "heap_getnext returning EOS")
1253 #define HEAPDEBUG_3 \
1254 elog(DEBUG2, "heap_getnext returning tuple")
1255 #else
1256 #define HEAPDEBUG_1
1257 #define HEAPDEBUG_2
1258 #define HEAPDEBUG_3
1259 #endif /* !defined(HEAPDEBUGALL) */
1262 HeapTuple
1263 heap_getnext(HeapScanDesc scan, ScanDirection direction)
1265 /* Note: no locking manipulations needed */
1267 HEAPDEBUG_1; /* heap_getnext( info ) */
1269 if (scan->rs_pageatatime)
1270 heapgettup_pagemode(scan, direction,
1271 scan->rs_nkeys, scan->rs_key);
1272 else
1273 heapgettup(scan, direction, scan->rs_nkeys, scan->rs_key);
1275 if (scan->rs_ctup.t_data == NULL)
1277 HEAPDEBUG_2; /* heap_getnext returning EOS */
1278 return NULL;
1282 * if we get here it means we have a new current scan tuple, so point to
1283 * the proper return buffer and return the tuple.
1285 HEAPDEBUG_3; /* heap_getnext returning tuple */
1287 pgstat_count_heap_getnext(scan->rs_rd);
1289 return &(scan->rs_ctup);
1293 * heap_fetch - retrieve tuple with given tid
1295 * On entry, tuple->t_self is the TID to fetch. We pin the buffer holding
1296 * the tuple, fill in the remaining fields of *tuple, and check the tuple
1297 * against the specified snapshot.
1299 * If successful (tuple found and passes snapshot time qual), then *userbuf
1300 * is set to the buffer holding the tuple and TRUE is returned. The caller
1301 * must unpin the buffer when done with the tuple.
1303 * If the tuple is not found (ie, item number references a deleted slot),
1304 * then tuple->t_data is set to NULL and FALSE is returned.
1306 * If the tuple is found but fails the time qual check, then FALSE is returned
1307 * but tuple->t_data is left pointing to the tuple.
1309 * keep_buf determines what is done with the buffer in the FALSE-result cases.
1310 * When the caller specifies keep_buf = true, we retain the pin on the buffer
1311 * and return it in *userbuf (so the caller must eventually unpin it); when
1312 * keep_buf = false, the pin is released and *userbuf is set to InvalidBuffer.
1314 * stats_relation is the relation to charge the heap_fetch operation against
1315 * for statistical purposes. (This could be the heap rel itself, an
1316 * associated index, or NULL to not count the fetch at all.)
1318 * heap_fetch does not follow HOT chains: only the exact TID requested will
1319 * be fetched.
1321 * It is somewhat inconsistent that we ereport() on invalid block number but
1322 * return false on invalid item number. There are a couple of reasons though.
1323 * One is that the caller can relatively easily check the block number for
1324 * validity, but cannot check the item number without reading the page
1325 * himself. Another is that when we are following a t_ctid link, we can be
1326 * reasonably confident that the page number is valid (since VACUUM shouldn't
1327 * truncate off the destination page without having killed the referencing
1328 * tuple first), but the item number might well not be good.
1330 bool
1331 heap_fetch(Relation relation,
1332 Snapshot snapshot,
1333 HeapTuple tuple,
1334 Buffer *userbuf,
1335 bool keep_buf,
1336 Relation stats_relation)
1338 /* Assume *userbuf is undefined on entry */
1339 *userbuf = InvalidBuffer;
1340 return heap_release_fetch(relation, snapshot, tuple,
1341 userbuf, keep_buf, stats_relation);
1345 * heap_release_fetch - retrieve tuple with given tid
1347 * This has the same API as heap_fetch except that if *userbuf is not
1348 * InvalidBuffer on entry, that buffer will be released before reading
1349 * the new page. This saves a separate ReleaseBuffer step and hence
1350 * one entry into the bufmgr when looping through multiple fetches.
1351 * Also, if *userbuf is the same buffer that holds the target tuple,
1352 * we avoid bufmgr manipulation altogether.
1354 bool
1355 heap_release_fetch(Relation relation,
1356 Snapshot snapshot,
1357 HeapTuple tuple,
1358 Buffer *userbuf,
1359 bool keep_buf,
1360 Relation stats_relation)
1362 ItemPointer tid = &(tuple->t_self);
1363 ItemId lp;
1364 Buffer buffer;
1365 PageHeader dp;
1366 OffsetNumber offnum;
1367 bool valid;
1370 * get the buffer from the relation descriptor. Note that this does a
1371 * buffer pin, and releases the old *userbuf if not InvalidBuffer.
1373 buffer = ReleaseAndReadBuffer(*userbuf, relation,
1374 ItemPointerGetBlockNumber(tid));
1377 * Need share lock on buffer to examine tuple commit status.
1379 LockBuffer(buffer, BUFFER_LOCK_SHARE);
1380 dp = (PageHeader) BufferGetPage(buffer);
1383 * We'd better check for out-of-range offnum in case of VACUUM since the
1384 * TID was obtained.
1386 offnum = ItemPointerGetOffsetNumber(tid);
1387 if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(dp))
1389 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
1390 if (keep_buf)
1391 *userbuf = buffer;
1392 else
1394 ReleaseBuffer(buffer);
1395 *userbuf = InvalidBuffer;
1397 tuple->t_data = NULL;
1398 return false;
1402 * get the item line pointer corresponding to the requested tid
1404 lp = PageGetItemId(dp, offnum);
1407 * Must check for deleted tuple.
1409 if (!ItemIdIsNormal(lp))
1411 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
1412 if (keep_buf)
1413 *userbuf = buffer;
1414 else
1416 ReleaseBuffer(buffer);
1417 *userbuf = InvalidBuffer;
1419 tuple->t_data = NULL;
1420 return false;
1424 * fill in *tuple fields
1426 tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lp);
1427 tuple->t_len = ItemIdGetLength(lp);
1428 tuple->t_tableOid = RelationGetRelid(relation);
1431 * check time qualification of tuple, then release lock
1433 valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer);
1435 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
1437 if (valid)
1440 * All checks passed, so return the tuple as valid. Caller is now
1441 * responsible for releasing the buffer.
1443 *userbuf = buffer;
1445 /* Count the successful fetch against appropriate rel, if any */
1446 if (stats_relation != NULL)
1447 pgstat_count_heap_fetch(stats_relation);
1449 return true;
1452 /* Tuple failed time qual, but maybe caller wants to see it anyway. */
1453 if (keep_buf)
1454 *userbuf = buffer;
1455 else
1457 ReleaseBuffer(buffer);
1458 *userbuf = InvalidBuffer;
1461 return false;
1465 * heap_hot_search_buffer - search HOT chain for tuple satisfying snapshot
1467 * On entry, *tid is the TID of a tuple (either a simple tuple, or the root
1468 * of a HOT chain), and buffer is the buffer holding this tuple. We search
1469 * for the first chain member satisfying the given snapshot. If one is
1470 * found, we update *tid to reference that tuple's offset number, and
1471 * return TRUE. If no match, return FALSE without modifying *tid.
1473 * If all_dead is not NULL, we check non-visible tuples to see if they are
1474 * globally dead; *all_dead is set TRUE if all members of the HOT chain
1475 * are vacuumable, FALSE if not.
1477 * Unlike heap_fetch, the caller must already have pin and (at least) share
1478 * lock on the buffer; it is still pinned/locked at exit. Also unlike
1479 * heap_fetch, we do not report any pgstats count; caller may do so if wanted.
1481 bool
1482 heap_hot_search_buffer(ItemPointer tid, Buffer buffer, Snapshot snapshot,
1483 bool *all_dead)
1485 Page dp = (Page) BufferGetPage(buffer);
1486 TransactionId prev_xmax = InvalidTransactionId;
1487 OffsetNumber offnum;
1488 bool at_chain_start;
1490 if (all_dead)
1491 *all_dead = true;
1493 Assert(ItemPointerGetBlockNumber(tid) == BufferGetBlockNumber(buffer));
1494 offnum = ItemPointerGetOffsetNumber(tid);
1495 at_chain_start = true;
1497 /* Scan through possible multiple members of HOT-chain */
1498 for (;;)
1500 ItemId lp;
1501 HeapTupleData heapTuple;
1503 /* check for bogus TID */
1504 if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(dp))
1505 break;
1507 lp = PageGetItemId(dp, offnum);
1509 /* check for unused, dead, or redirected items */
1510 if (!ItemIdIsNormal(lp))
1512 /* We should only see a redirect at start of chain */
1513 if (ItemIdIsRedirected(lp) && at_chain_start)
1515 /* Follow the redirect */
1516 offnum = ItemIdGetRedirect(lp);
1517 at_chain_start = false;
1518 continue;
1520 /* else must be end of chain */
1521 break;
1524 heapTuple.t_data = (HeapTupleHeader) PageGetItem(dp, lp);
1525 heapTuple.t_len = ItemIdGetLength(lp);
1528 * Shouldn't see a HEAP_ONLY tuple at chain start.
1530 if (at_chain_start && HeapTupleIsHeapOnly(&heapTuple))
1531 break;
1534 * The xmin should match the previous xmax value, else chain is
1535 * broken.
1537 if (TransactionIdIsValid(prev_xmax) &&
1538 !TransactionIdEquals(prev_xmax,
1539 HeapTupleHeaderGetXmin(heapTuple.t_data)))
1540 break;
1542 /* If it's visible per the snapshot, we must return it */
1543 if (HeapTupleSatisfiesVisibility(&heapTuple, snapshot, buffer))
1545 ItemPointerSetOffsetNumber(tid, offnum);
1546 if (all_dead)
1547 *all_dead = false;
1548 return true;
1552 * If we can't see it, maybe no one else can either. At caller
1553 * request, check whether all chain members are dead to all
1554 * transactions.
1556 if (all_dead && *all_dead &&
1557 HeapTupleSatisfiesVacuum(heapTuple.t_data, RecentGlobalXmin,
1558 buffer) != HEAPTUPLE_DEAD)
1559 *all_dead = false;
1562 * Check to see if HOT chain continues past this tuple; if so fetch
1563 * the next offnum and loop around.
1565 if (HeapTupleIsHotUpdated(&heapTuple))
1567 Assert(ItemPointerGetBlockNumber(&heapTuple.t_data->t_ctid) ==
1568 ItemPointerGetBlockNumber(tid));
1569 offnum = ItemPointerGetOffsetNumber(&heapTuple.t_data->t_ctid);
1570 at_chain_start = false;
1571 prev_xmax = HeapTupleHeaderGetXmax(heapTuple.t_data);
1573 else
1574 break; /* end of chain */
1577 return false;
1581 * heap_hot_search - search HOT chain for tuple satisfying snapshot
1583 * This has the same API as heap_hot_search_buffer, except that the caller
1584 * does not provide the buffer containing the page, rather we access it
1585 * locally.
1587 bool
1588 heap_hot_search(ItemPointer tid, Relation relation, Snapshot snapshot,
1589 bool *all_dead)
1591 bool result;
1592 Buffer buffer;
1594 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
1595 LockBuffer(buffer, BUFFER_LOCK_SHARE);
1596 result = heap_hot_search_buffer(tid, buffer, snapshot, all_dead);
1597 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
1598 ReleaseBuffer(buffer);
1599 return result;
1603 * heap_get_latest_tid - get the latest tid of a specified tuple
1605 * Actually, this gets the latest version that is visible according to
1606 * the passed snapshot. You can pass SnapshotDirty to get the very latest,
1607 * possibly uncommitted version.
1609 * *tid is both an input and an output parameter: it is updated to
1610 * show the latest version of the row. Note that it will not be changed
1611 * if no version of the row passes the snapshot test.
1613 void
1614 heap_get_latest_tid(Relation relation,
1615 Snapshot snapshot,
1616 ItemPointer tid)
1618 BlockNumber blk;
1619 ItemPointerData ctid;
1620 TransactionId priorXmax;
1622 /* this is to avoid Assert failures on bad input */
1623 if (!ItemPointerIsValid(tid))
1624 return;
1627 * Since this can be called with user-supplied TID, don't trust the input
1628 * too much. (RelationGetNumberOfBlocks is an expensive check, so we
1629 * don't check t_ctid links again this way. Note that it would not do to
1630 * call it just once and save the result, either.)
1632 blk = ItemPointerGetBlockNumber(tid);
1633 if (blk >= RelationGetNumberOfBlocks(relation))
1634 elog(ERROR, "block number %u is out of range for relation \"%s\"",
1635 blk, RelationGetRelationName(relation));
1638 * Loop to chase down t_ctid links. At top of loop, ctid is the tuple we
1639 * need to examine, and *tid is the TID we will return if ctid turns out
1640 * to be bogus.
1642 * Note that we will loop until we reach the end of the t_ctid chain.
1643 * Depending on the snapshot passed, there might be at most one visible
1644 * version of the row, but we don't try to optimize for that.
1646 ctid = *tid;
1647 priorXmax = InvalidTransactionId; /* cannot check first XMIN */
1648 for (;;)
1650 Buffer buffer;
1651 PageHeader dp;
1652 OffsetNumber offnum;
1653 ItemId lp;
1654 HeapTupleData tp;
1655 bool valid;
1658 * Read, pin, and lock the page.
1660 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid));
1661 LockBuffer(buffer, BUFFER_LOCK_SHARE);
1662 dp = (PageHeader) BufferGetPage(buffer);
1665 * Check for bogus item number. This is not treated as an error
1666 * condition because it can happen while following a t_ctid link. We
1667 * just assume that the prior tid is OK and return it unchanged.
1669 offnum = ItemPointerGetOffsetNumber(&ctid);
1670 if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(dp))
1672 UnlockReleaseBuffer(buffer);
1673 break;
1675 lp = PageGetItemId(dp, offnum);
1676 if (!ItemIdIsNormal(lp))
1678 UnlockReleaseBuffer(buffer);
1679 break;
1682 /* OK to access the tuple */
1683 tp.t_self = ctid;
1684 tp.t_data = (HeapTupleHeader) PageGetItem(dp, lp);
1685 tp.t_len = ItemIdGetLength(lp);
1688 * After following a t_ctid link, we might arrive at an unrelated
1689 * tuple. Check for XMIN match.
1691 if (TransactionIdIsValid(priorXmax) &&
1692 !TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(tp.t_data)))
1694 UnlockReleaseBuffer(buffer);
1695 break;
1699 * Check time qualification of tuple; if visible, set it as the new
1700 * result candidate.
1702 valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer);
1703 if (valid)
1704 *tid = ctid;
1707 * If there's a valid t_ctid link, follow it, else we're done.
1709 if ((tp.t_data->t_infomask & (HEAP_XMAX_INVALID | HEAP_IS_LOCKED)) ||
1710 ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
1712 UnlockReleaseBuffer(buffer);
1713 break;
1716 ctid = tp.t_data->t_ctid;
1717 priorXmax = HeapTupleHeaderGetXmax(tp.t_data);
1718 UnlockReleaseBuffer(buffer);
1719 } /* end of loop */
1724 * UpdateXmaxHintBits - update tuple hint bits after xmax transaction ends
1726 * This is called after we have waited for the XMAX transaction to terminate.
1727 * If the transaction aborted, we guarantee the XMAX_INVALID hint bit will
1728 * be set on exit. If the transaction committed, we set the XMAX_COMMITTED
1729 * hint bit if possible --- but beware that that may not yet be possible,
1730 * if the transaction committed asynchronously. Hence callers should look
1731 * only at XMAX_INVALID.
1733 static void
1734 UpdateXmaxHintBits(HeapTupleHeader tuple, Buffer buffer, TransactionId xid)
1736 Assert(TransactionIdEquals(HeapTupleHeaderGetXmax(tuple), xid));
1738 if (!(tuple->t_infomask & (HEAP_XMAX_COMMITTED | HEAP_XMAX_INVALID)))
1740 if (TransactionIdDidCommit(xid))
1741 HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_COMMITTED,
1742 xid);
1743 else
1744 HeapTupleSetHintBits(tuple, buffer, HEAP_XMAX_INVALID,
1745 InvalidTransactionId);
1751 * heap_insert - insert tuple into a heap
1753 * The new tuple is stamped with current transaction ID and the specified
1754 * command ID.
1756 * If use_wal is false, the new tuple is not logged in WAL, even for a
1757 * non-temp relation. Safe usage of this behavior requires that we arrange
1758 * that all new tuples go into new pages not containing any tuples from other
1759 * transactions, and that the relation gets fsync'd before commit.
1760 * (See also heap_sync() comments)
1762 * use_fsm is passed directly to RelationGetBufferForTuple, which see for
1763 * more info.
1765 * Note that use_wal and use_fsm will be applied when inserting into the
1766 * heap's TOAST table, too, if the tuple requires any out-of-line data.
1768 * The return value is the OID assigned to the tuple (either here or by the
1769 * caller), or InvalidOid if no OID. The header fields of *tup are updated
1770 * to match the stored tuple; in particular tup->t_self receives the actual
1771 * TID where the tuple was stored. But note that any toasting of fields
1772 * within the tuple data is NOT reflected into *tup.
1775 heap_insert(Relation relation, HeapTuple tup, CommandId cid,
1776 bool use_wal, bool use_fsm)
1778 TransactionId xid = GetCurrentTransactionId();
1779 HeapTuple heaptup;
1780 Buffer buffer;
1782 if (relation->rd_rel->relhasoids)
1784 #ifdef NOT_USED
1785 /* this is redundant with an Assert in HeapTupleSetOid */
1786 Assert(tup->t_data->t_infomask & HEAP_HASOID);
1787 #endif
1790 * If the object id of this tuple has already been assigned, trust the
1791 * caller. There are a couple of ways this can happen. At initial db
1792 * creation, the backend program sets oids for tuples. When we define
1793 * an index, we set the oid. Finally, in the future, we may allow
1794 * users to set their own object ids in order to support a persistent
1795 * object store (objects need to contain pointers to one another).
1797 if (!OidIsValid(HeapTupleGetOid(tup)))
1798 HeapTupleSetOid(tup, GetNewOid(relation));
1800 else
1802 /* check there is not space for an OID */
1803 Assert(!(tup->t_data->t_infomask & HEAP_HASOID));
1806 tup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
1807 tup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
1808 tup->t_data->t_infomask |= HEAP_XMAX_INVALID;
1809 HeapTupleHeaderSetXmin(tup->t_data, xid);
1810 HeapTupleHeaderSetCmin(tup->t_data, cid);
1811 HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */
1812 tup->t_tableOid = RelationGetRelid(relation);
1815 * If the new tuple is too big for storage or contains already toasted
1816 * out-of-line attributes from some other relation, invoke the toaster.
1818 * Note: below this point, heaptup is the data we actually intend to store
1819 * into the relation; tup is the caller's original untoasted data.
1821 if (relation->rd_rel->relkind != RELKIND_RELATION)
1823 /* toast table entries should never be recursively toasted */
1824 Assert(!HeapTupleHasExternal(tup));
1825 heaptup = tup;
1827 else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
1828 heaptup = toast_insert_or_update(relation, tup, NULL,
1829 use_wal, use_fsm);
1830 else
1831 heaptup = tup;
1833 /* Find buffer to insert this tuple into */
1834 buffer = RelationGetBufferForTuple(relation, heaptup->t_len,
1835 InvalidBuffer, use_fsm);
1837 /* NO EREPORT(ERROR) from here till changes are logged */
1838 START_CRIT_SECTION();
1840 RelationPutHeapTuple(relation, buffer, heaptup);
1843 * XXX Should we set PageSetPrunable on this page ?
1845 * The inserting transaction may eventually abort thus making this tuple
1846 * DEAD and hence available for pruning. Though we don't want to optimize
1847 * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the
1848 * aborted tuple will never be pruned until next vacuum is triggered.
1850 * If you do add PageSetPrunable here, add it in heap_xlog_insert too.
1853 MarkBufferDirty(buffer);
1855 /* XLOG stuff */
1856 if (use_wal && !relation->rd_istemp)
1858 xl_heap_insert xlrec;
1859 xl_heap_header xlhdr;
1860 XLogRecPtr recptr;
1861 XLogRecData rdata[3];
1862 Page page = BufferGetPage(buffer);
1863 uint8 info = XLOG_HEAP_INSERT;
1865 xlrec.target.node = relation->rd_node;
1866 xlrec.target.tid = heaptup->t_self;
1867 rdata[0].data = (char *) &xlrec;
1868 rdata[0].len = SizeOfHeapInsert;
1869 rdata[0].buffer = InvalidBuffer;
1870 rdata[0].next = &(rdata[1]);
1872 xlhdr.t_infomask2 = heaptup->t_data->t_infomask2;
1873 xlhdr.t_infomask = heaptup->t_data->t_infomask;
1874 xlhdr.t_hoff = heaptup->t_data->t_hoff;
1877 * note we mark rdata[1] as belonging to buffer; if XLogInsert decides
1878 * to write the whole page to the xlog, we don't need to store
1879 * xl_heap_header in the xlog.
1881 rdata[1].data = (char *) &xlhdr;
1882 rdata[1].len = SizeOfHeapHeader;
1883 rdata[1].buffer = buffer;
1884 rdata[1].buffer_std = true;
1885 rdata[1].next = &(rdata[2]);
1887 /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
1888 rdata[2].data = (char *) heaptup->t_data + offsetof(HeapTupleHeaderData, t_bits);
1889 rdata[2].len = heaptup->t_len - offsetof(HeapTupleHeaderData, t_bits);
1890 rdata[2].buffer = buffer;
1891 rdata[2].buffer_std = true;
1892 rdata[2].next = NULL;
1895 * If this is the single and first tuple on page, we can reinit the
1896 * page instead of restoring the whole thing. Set flag, and hide
1897 * buffer references from XLogInsert.
1899 if (ItemPointerGetOffsetNumber(&(heaptup->t_self)) == FirstOffsetNumber &&
1900 PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
1902 info |= XLOG_HEAP_INIT_PAGE;
1903 rdata[1].buffer = rdata[2].buffer = InvalidBuffer;
1906 recptr = XLogInsert(RM_HEAP_ID, info, rdata);
1908 PageSetLSN(page, recptr);
1909 PageSetTLI(page, ThisTimeLineID);
1912 END_CRIT_SECTION();
1914 UnlockReleaseBuffer(buffer);
1917 * If tuple is cachable, mark it for invalidation from the caches in case
1918 * we abort. Note it is OK to do this after releasing the buffer, because
1919 * the heaptup data structure is all in local memory, not in the shared
1920 * buffer.
1922 CacheInvalidateHeapTuple(relation, heaptup);
1924 pgstat_count_heap_insert(relation);
1927 * If heaptup is a private copy, release it. Don't forget to copy t_self
1928 * back to the caller's image, too.
1930 if (heaptup != tup)
1932 tup->t_self = heaptup->t_self;
1933 heap_freetuple(heaptup);
1936 return HeapTupleGetOid(tup);
1940 * simple_heap_insert - insert a tuple
1942 * Currently, this routine differs from heap_insert only in supplying
1943 * a default command ID and not allowing access to the speedup options.
1945 * This should be used rather than using heap_insert directly in most places
1946 * where we are modifying system catalogs.
1949 simple_heap_insert(Relation relation, HeapTuple tup)
1951 return heap_insert(relation, tup, GetCurrentCommandId(true), true, true);
1955 * heap_delete - delete a tuple
1957 * NB: do not call this directly unless you are prepared to deal with
1958 * concurrent-update conditions. Use simple_heap_delete instead.
1960 * relation - table to be modified (caller must hold suitable lock)
1961 * tid - TID of tuple to be deleted
1962 * ctid - output parameter, used only for failure case (see below)
1963 * update_xmax - output parameter, used only for failure case (see below)
1964 * cid - delete command ID (used for visibility test, and stored into
1965 * cmax if successful)
1966 * crosscheck - if not InvalidSnapshot, also check tuple against this
1967 * wait - true if should wait for any conflicting update to commit/abort
1969 * Normal, successful return value is HeapTupleMayBeUpdated, which
1970 * actually means we did delete it. Failure return codes are
1971 * HeapTupleSelfUpdated, HeapTupleUpdated, or HeapTupleBeingUpdated
1972 * (the last only possible if wait == false).
1974 * In the failure cases, the routine returns the tuple's t_ctid and t_xmax.
1975 * If t_ctid is the same as tid, the tuple was deleted; if different, the
1976 * tuple was updated, and t_ctid is the location of the replacement tuple.
1977 * (t_xmax is needed to verify that the replacement tuple matches.)
1979 HTSU_Result
1980 heap_delete(Relation relation, ItemPointer tid,
1981 ItemPointer ctid, TransactionId *update_xmax,
1982 CommandId cid, Snapshot crosscheck, bool wait)
1984 HTSU_Result result;
1985 TransactionId xid = GetCurrentTransactionId();
1986 ItemId lp;
1987 HeapTupleData tp;
1988 PageHeader dp;
1989 Buffer buffer;
1990 bool have_tuple_lock = false;
1991 bool iscombo;
1993 Assert(ItemPointerIsValid(tid));
1995 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
1996 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
1998 dp = (PageHeader) BufferGetPage(buffer);
1999 lp = PageGetItemId(dp, ItemPointerGetOffsetNumber(tid));
2000 Assert(ItemIdIsNormal(lp));
2002 tp.t_data = (HeapTupleHeader) PageGetItem(dp, lp);
2003 tp.t_len = ItemIdGetLength(lp);
2004 tp.t_self = *tid;
2007 result = HeapTupleSatisfiesUpdate(tp.t_data, cid, buffer);
2009 if (result == HeapTupleInvisible)
2011 UnlockReleaseBuffer(buffer);
2012 elog(ERROR, "attempted to delete invisible tuple");
2014 else if (result == HeapTupleBeingUpdated && wait)
2016 TransactionId xwait;
2017 uint16 infomask;
2019 /* must copy state data before unlocking buffer */
2020 xwait = HeapTupleHeaderGetXmax(tp.t_data);
2021 infomask = tp.t_data->t_infomask;
2023 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
2026 * Acquire tuple lock to establish our priority for the tuple (see
2027 * heap_lock_tuple). LockTuple will release us when we are
2028 * next-in-line for the tuple.
2030 * If we are forced to "start over" below, we keep the tuple lock;
2031 * this arranges that we stay at the head of the line while rechecking
2032 * tuple state.
2034 if (!have_tuple_lock)
2036 LockTuple(relation, &(tp.t_self), ExclusiveLock);
2037 have_tuple_lock = true;
2041 * Sleep until concurrent transaction ends. Note that we don't care
2042 * if the locker has an exclusive or shared lock, because we need
2043 * exclusive.
2046 if (infomask & HEAP_XMAX_IS_MULTI)
2048 /* wait for multixact */
2049 MultiXactIdWait((MultiXactId) xwait);
2050 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2053 * If xwait had just locked the tuple then some other xact could
2054 * update this tuple before we get to this point. Check for xmax
2055 * change, and start over if so.
2057 if (!(tp.t_data->t_infomask & HEAP_XMAX_IS_MULTI) ||
2058 !TransactionIdEquals(HeapTupleHeaderGetXmax(tp.t_data),
2059 xwait))
2060 goto l1;
2063 * You might think the multixact is necessarily done here, but not
2064 * so: it could have surviving members, namely our own xact or
2065 * other subxacts of this backend. It is legal for us to delete
2066 * the tuple in either case, however (the latter case is
2067 * essentially a situation of upgrading our former shared lock to
2068 * exclusive). We don't bother changing the on-disk hint bits
2069 * since we are about to overwrite the xmax altogether.
2072 else
2074 /* wait for regular transaction to end */
2075 XactLockTableWait(xwait);
2076 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2079 * xwait is done, but if xwait had just locked the tuple then some
2080 * other xact could update this tuple before we get to this point.
2081 * Check for xmax change, and start over if so.
2083 if ((tp.t_data->t_infomask & HEAP_XMAX_IS_MULTI) ||
2084 !TransactionIdEquals(HeapTupleHeaderGetXmax(tp.t_data),
2085 xwait))
2086 goto l1;
2088 /* Otherwise check if it committed or aborted */
2089 UpdateXmaxHintBits(tp.t_data, buffer, xwait);
2093 * We may overwrite if previous xmax aborted, or if it committed but
2094 * only locked the tuple without updating it.
2096 if (tp.t_data->t_infomask & (HEAP_XMAX_INVALID |
2097 HEAP_IS_LOCKED))
2098 result = HeapTupleMayBeUpdated;
2099 else
2100 result = HeapTupleUpdated;
2103 if (crosscheck != InvalidSnapshot && result == HeapTupleMayBeUpdated)
2105 /* Perform additional check for serializable RI updates */
2106 if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer))
2107 result = HeapTupleUpdated;
2110 if (result != HeapTupleMayBeUpdated)
2112 Assert(result == HeapTupleSelfUpdated ||
2113 result == HeapTupleUpdated ||
2114 result == HeapTupleBeingUpdated);
2115 Assert(!(tp.t_data->t_infomask & HEAP_XMAX_INVALID));
2116 *ctid = tp.t_data->t_ctid;
2117 *update_xmax = HeapTupleHeaderGetXmax(tp.t_data);
2118 UnlockReleaseBuffer(buffer);
2119 if (have_tuple_lock)
2120 UnlockTuple(relation, &(tp.t_self), ExclusiveLock);
2121 return result;
2124 /* replace cid with a combo cid if necessary */
2125 HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo);
2127 START_CRIT_SECTION();
2130 * If this transaction commits, the tuple will become DEAD sooner or
2131 * later. Set flag that this page is a candidate for pruning once our xid
2132 * falls below the OldestXmin horizon. If the transaction finally aborts,
2133 * the subsequent page pruning will be a no-op and the hint will be
2134 * cleared.
2136 PageSetPrunable(dp, xid);
2138 /* store transaction information of xact deleting the tuple */
2139 tp.t_data->t_infomask &= ~(HEAP_XMAX_COMMITTED |
2140 HEAP_XMAX_INVALID |
2141 HEAP_XMAX_IS_MULTI |
2142 HEAP_IS_LOCKED |
2143 HEAP_MOVED);
2144 HeapTupleHeaderClearHotUpdated(tp.t_data);
2145 HeapTupleHeaderSetXmax(tp.t_data, xid);
2146 HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo);
2147 /* Make sure there is no forward chain link in t_ctid */
2148 tp.t_data->t_ctid = tp.t_self;
2150 MarkBufferDirty(buffer);
2152 /* XLOG stuff */
2153 if (!relation->rd_istemp)
2155 xl_heap_delete xlrec;
2156 XLogRecPtr recptr;
2157 XLogRecData rdata[2];
2159 xlrec.target.node = relation->rd_node;
2160 xlrec.target.tid = tp.t_self;
2161 rdata[0].data = (char *) &xlrec;
2162 rdata[0].len = SizeOfHeapDelete;
2163 rdata[0].buffer = InvalidBuffer;
2164 rdata[0].next = &(rdata[1]);
2166 rdata[1].data = NULL;
2167 rdata[1].len = 0;
2168 rdata[1].buffer = buffer;
2169 rdata[1].buffer_std = true;
2170 rdata[1].next = NULL;
2172 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE, rdata);
2174 PageSetLSN(dp, recptr);
2175 PageSetTLI(dp, ThisTimeLineID);
2178 END_CRIT_SECTION();
2180 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
2183 * If the tuple has toasted out-of-line attributes, we need to delete
2184 * those items too. We have to do this before releasing the buffer
2185 * because we need to look at the contents of the tuple, but it's OK to
2186 * release the content lock on the buffer first.
2188 if (relation->rd_rel->relkind != RELKIND_RELATION)
2190 /* toast table entries should never be recursively toasted */
2191 Assert(!HeapTupleHasExternal(&tp));
2193 else if (HeapTupleHasExternal(&tp))
2194 toast_delete(relation, &tp);
2197 * Mark tuple for invalidation from system caches at next command
2198 * boundary. We have to do this before releasing the buffer because we
2199 * need to look at the contents of the tuple.
2201 CacheInvalidateHeapTuple(relation, &tp);
2203 /* Now we can release the buffer */
2204 ReleaseBuffer(buffer);
2207 * Release the lmgr tuple lock, if we had it.
2209 if (have_tuple_lock)
2210 UnlockTuple(relation, &(tp.t_self), ExclusiveLock);
2212 pgstat_count_heap_delete(relation);
2214 return HeapTupleMayBeUpdated;
2218 * simple_heap_delete - delete a tuple
2220 * This routine may be used to delete a tuple when concurrent updates of
2221 * the target tuple are not expected (for example, because we have a lock
2222 * on the relation associated with the tuple). Any failure is reported
2223 * via ereport().
2225 void
2226 simple_heap_delete(Relation relation, ItemPointer tid)
2228 HTSU_Result result;
2229 ItemPointerData update_ctid;
2230 TransactionId update_xmax;
2232 result = heap_delete(relation, tid,
2233 &update_ctid, &update_xmax,
2234 GetCurrentCommandId(true), InvalidSnapshot,
2235 true /* wait for commit */ );
2236 switch (result)
2238 case HeapTupleSelfUpdated:
2239 /* Tuple was already updated in current command? */
2240 elog(ERROR, "tuple already updated by self");
2241 break;
2243 case HeapTupleMayBeUpdated:
2244 /* done successfully */
2245 break;
2247 case HeapTupleUpdated:
2248 elog(ERROR, "tuple concurrently updated");
2249 break;
2251 default:
2252 elog(ERROR, "unrecognized heap_delete status: %u", result);
2253 break;
2258 * heap_update - replace a tuple
2260 * NB: do not call this directly unless you are prepared to deal with
2261 * concurrent-update conditions. Use simple_heap_update instead.
2263 * relation - table to be modified (caller must hold suitable lock)
2264 * otid - TID of old tuple to be replaced
2265 * newtup - newly constructed tuple data to store
2266 * ctid - output parameter, used only for failure case (see below)
2267 * update_xmax - output parameter, used only for failure case (see below)
2268 * cid - update command ID (used for visibility test, and stored into
2269 * cmax/cmin if successful)
2270 * crosscheck - if not InvalidSnapshot, also check old tuple against this
2271 * wait - true if should wait for any conflicting update to commit/abort
2273 * Normal, successful return value is HeapTupleMayBeUpdated, which
2274 * actually means we *did* update it. Failure return codes are
2275 * HeapTupleSelfUpdated, HeapTupleUpdated, or HeapTupleBeingUpdated
2276 * (the last only possible if wait == false).
2278 * On success, the header fields of *newtup are updated to match the new
2279 * stored tuple; in particular, newtup->t_self is set to the TID where the
2280 * new tuple was inserted, and its HEAP_ONLY_TUPLE flag is set iff a HOT
2281 * update was done. However, any TOAST changes in the new tuple's
2282 * data are not reflected into *newtup.
2284 * In the failure cases, the routine returns the tuple's t_ctid and t_xmax.
2285 * If t_ctid is the same as otid, the tuple was deleted; if different, the
2286 * tuple was updated, and t_ctid is the location of the replacement tuple.
2287 * (t_xmax is needed to verify that the replacement tuple matches.)
2289 HTSU_Result
2290 heap_update(Relation relation, ItemPointer otid, HeapTuple newtup,
2291 ItemPointer ctid, TransactionId *update_xmax,
2292 CommandId cid, Snapshot crosscheck, bool wait)
2294 HTSU_Result result;
2295 TransactionId xid = GetCurrentTransactionId();
2296 Bitmapset *hot_attrs;
2297 ItemId lp;
2298 HeapTupleData oldtup;
2299 HeapTuple heaptup;
2300 PageHeader dp;
2301 Buffer buffer,
2302 newbuf;
2303 bool need_toast,
2304 already_marked;
2305 Size newtupsize,
2306 pagefree;
2307 bool have_tuple_lock = false;
2308 bool iscombo;
2309 bool use_hot_update = false;
2311 Assert(ItemPointerIsValid(otid));
2314 * Fetch the list of attributes to be checked for HOT update. This is
2315 * wasted effort if we fail to update or have to put the new tuple on a
2316 * different page. But we must compute the list before obtaining buffer
2317 * lock --- in the worst case, if we are doing an update on one of the
2318 * relevant system catalogs, we could deadlock if we try to fetch the list
2319 * later. In any case, the relcache caches the data so this is usually
2320 * pretty cheap.
2322 * Note that we get a copy here, so we need not worry about relcache flush
2323 * happening midway through.
2325 hot_attrs = RelationGetIndexAttrBitmap(relation);
2327 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(otid));
2328 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2330 dp = (PageHeader) BufferGetPage(buffer);
2331 lp = PageGetItemId(dp, ItemPointerGetOffsetNumber(otid));
2332 Assert(ItemIdIsNormal(lp));
2334 oldtup.t_data = (HeapTupleHeader) PageGetItem(dp, lp);
2335 oldtup.t_len = ItemIdGetLength(lp);
2336 oldtup.t_self = *otid;
2339 * Note: beyond this point, use oldtup not otid to refer to old tuple.
2340 * otid may very well point at newtup->t_self, which we will overwrite
2341 * with the new tuple's location, so there's great risk of confusion if we
2342 * use otid anymore.
2346 result = HeapTupleSatisfiesUpdate(oldtup.t_data, cid, buffer);
2348 if (result == HeapTupleInvisible)
2350 UnlockReleaseBuffer(buffer);
2351 elog(ERROR, "attempted to update invisible tuple");
2353 else if (result == HeapTupleBeingUpdated && wait)
2355 TransactionId xwait;
2356 uint16 infomask;
2358 /* must copy state data before unlocking buffer */
2359 xwait = HeapTupleHeaderGetXmax(oldtup.t_data);
2360 infomask = oldtup.t_data->t_infomask;
2362 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
2365 * Acquire tuple lock to establish our priority for the tuple (see
2366 * heap_lock_tuple). LockTuple will release us when we are
2367 * next-in-line for the tuple.
2369 * If we are forced to "start over" below, we keep the tuple lock;
2370 * this arranges that we stay at the head of the line while rechecking
2371 * tuple state.
2373 if (!have_tuple_lock)
2375 LockTuple(relation, &(oldtup.t_self), ExclusiveLock);
2376 have_tuple_lock = true;
2380 * Sleep until concurrent transaction ends. Note that we don't care
2381 * if the locker has an exclusive or shared lock, because we need
2382 * exclusive.
2385 if (infomask & HEAP_XMAX_IS_MULTI)
2387 /* wait for multixact */
2388 MultiXactIdWait((MultiXactId) xwait);
2389 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2392 * If xwait had just locked the tuple then some other xact could
2393 * update this tuple before we get to this point. Check for xmax
2394 * change, and start over if so.
2396 if (!(oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) ||
2397 !TransactionIdEquals(HeapTupleHeaderGetXmax(oldtup.t_data),
2398 xwait))
2399 goto l2;
2402 * You might think the multixact is necessarily done here, but not
2403 * so: it could have surviving members, namely our own xact or
2404 * other subxacts of this backend. It is legal for us to update
2405 * the tuple in either case, however (the latter case is
2406 * essentially a situation of upgrading our former shared lock to
2407 * exclusive). We don't bother changing the on-disk hint bits
2408 * since we are about to overwrite the xmax altogether.
2411 else
2413 /* wait for regular transaction to end */
2414 XactLockTableWait(xwait);
2415 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2418 * xwait is done, but if xwait had just locked the tuple then some
2419 * other xact could update this tuple before we get to this point.
2420 * Check for xmax change, and start over if so.
2422 if ((oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI) ||
2423 !TransactionIdEquals(HeapTupleHeaderGetXmax(oldtup.t_data),
2424 xwait))
2425 goto l2;
2427 /* Otherwise check if it committed or aborted */
2428 UpdateXmaxHintBits(oldtup.t_data, buffer, xwait);
2432 * We may overwrite if previous xmax aborted, or if it committed but
2433 * only locked the tuple without updating it.
2435 if (oldtup.t_data->t_infomask & (HEAP_XMAX_INVALID |
2436 HEAP_IS_LOCKED))
2437 result = HeapTupleMayBeUpdated;
2438 else
2439 result = HeapTupleUpdated;
2442 if (crosscheck != InvalidSnapshot && result == HeapTupleMayBeUpdated)
2444 /* Perform additional check for serializable RI updates */
2445 if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer))
2446 result = HeapTupleUpdated;
2449 if (result != HeapTupleMayBeUpdated)
2451 Assert(result == HeapTupleSelfUpdated ||
2452 result == HeapTupleUpdated ||
2453 result == HeapTupleBeingUpdated);
2454 Assert(!(oldtup.t_data->t_infomask & HEAP_XMAX_INVALID));
2455 *ctid = oldtup.t_data->t_ctid;
2456 *update_xmax = HeapTupleHeaderGetXmax(oldtup.t_data);
2457 UnlockReleaseBuffer(buffer);
2458 if (have_tuple_lock)
2459 UnlockTuple(relation, &(oldtup.t_self), ExclusiveLock);
2460 bms_free(hot_attrs);
2461 return result;
2464 /* Fill in OID and transaction status data for newtup */
2465 if (relation->rd_rel->relhasoids)
2467 #ifdef NOT_USED
2468 /* this is redundant with an Assert in HeapTupleSetOid */
2469 Assert(newtup->t_data->t_infomask & HEAP_HASOID);
2470 #endif
2471 HeapTupleSetOid(newtup, HeapTupleGetOid(&oldtup));
2473 else
2475 /* check there is not space for an OID */
2476 Assert(!(newtup->t_data->t_infomask & HEAP_HASOID));
2479 newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
2480 newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
2481 newtup->t_data->t_infomask |= (HEAP_XMAX_INVALID | HEAP_UPDATED);
2482 HeapTupleHeaderSetXmin(newtup->t_data, xid);
2483 HeapTupleHeaderSetCmin(newtup->t_data, cid);
2484 HeapTupleHeaderSetXmax(newtup->t_data, 0); /* for cleanliness */
2487 * Replace cid with a combo cid if necessary. Note that we already put
2488 * the plain cid into the new tuple.
2490 HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo);
2493 * If the toaster needs to be activated, OR if the new tuple will not fit
2494 * on the same page as the old, then we need to release the content lock
2495 * (but not the pin!) on the old tuple's buffer while we are off doing
2496 * TOAST and/or table-file-extension work. We must mark the old tuple to
2497 * show that it's already being updated, else other processes may try to
2498 * update it themselves.
2500 * We need to invoke the toaster if there are already any out-of-line
2501 * toasted values present, or if the new tuple is over-threshold.
2503 if (relation->rd_rel->relkind != RELKIND_RELATION)
2505 /* toast table entries should never be recursively toasted */
2506 Assert(!HeapTupleHasExternal(&oldtup));
2507 Assert(!HeapTupleHasExternal(newtup));
2508 need_toast = false;
2510 else
2511 need_toast = (HeapTupleHasExternal(&oldtup) ||
2512 HeapTupleHasExternal(newtup) ||
2513 newtup->t_len > TOAST_TUPLE_THRESHOLD);
2515 pagefree = PageGetHeapFreeSpace((Page) dp);
2517 newtupsize = MAXALIGN(newtup->t_len);
2519 if (need_toast || newtupsize > pagefree)
2521 /* Clear obsolete visibility flags ... */
2522 oldtup.t_data->t_infomask &= ~(HEAP_XMAX_COMMITTED |
2523 HEAP_XMAX_INVALID |
2524 HEAP_XMAX_IS_MULTI |
2525 HEAP_IS_LOCKED |
2526 HEAP_MOVED);
2527 HeapTupleClearHotUpdated(&oldtup);
2528 /* ... and store info about transaction updating this tuple */
2529 HeapTupleHeaderSetXmax(oldtup.t_data, xid);
2530 HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
2531 /* temporarily make it look not-updated */
2532 oldtup.t_data->t_ctid = oldtup.t_self;
2533 already_marked = true;
2534 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
2537 * Let the toaster do its thing, if needed.
2539 * Note: below this point, heaptup is the data we actually intend to
2540 * store into the relation; newtup is the caller's original untoasted
2541 * data.
2543 if (need_toast)
2545 /* Note we always use WAL and FSM during updates */
2546 heaptup = toast_insert_or_update(relation, newtup, &oldtup,
2547 true, true);
2548 newtupsize = MAXALIGN(heaptup->t_len);
2550 else
2551 heaptup = newtup;
2554 * Now, do we need a new page for the tuple, or not? This is a bit
2555 * tricky since someone else could have added tuples to the page while
2556 * we weren't looking. We have to recheck the available space after
2557 * reacquiring the buffer lock. But don't bother to do that if the
2558 * former amount of free space is still not enough; it's unlikely
2559 * there's more free now than before.
2561 * What's more, if we need to get a new page, we will need to acquire
2562 * buffer locks on both old and new pages. To avoid deadlock against
2563 * some other backend trying to get the same two locks in the other
2564 * order, we must be consistent about the order we get the locks in.
2565 * We use the rule "lock the lower-numbered page of the relation
2566 * first". To implement this, we must do RelationGetBufferForTuple
2567 * while not holding the lock on the old page, and we must rely on it
2568 * to get the locks on both pages in the correct order.
2570 if (newtupsize > pagefree)
2572 /* Assume there's no chance to put heaptup on same page. */
2573 newbuf = RelationGetBufferForTuple(relation, heaptup->t_len,
2574 buffer, true);
2576 else
2578 /* Re-acquire the lock on the old tuple's page. */
2579 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
2580 /* Re-check using the up-to-date free space */
2581 pagefree = PageGetHeapFreeSpace((Page) dp);
2582 if (newtupsize > pagefree)
2585 * Rats, it doesn't fit anymore. We must now unlock and
2586 * relock to avoid deadlock. Fortunately, this path should
2587 * seldom be taken.
2589 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
2590 newbuf = RelationGetBufferForTuple(relation, heaptup->t_len,
2591 buffer, true);
2593 else
2595 /* OK, it fits here, so we're done. */
2596 newbuf = buffer;
2600 else
2602 /* No TOAST work needed, and it'll fit on same page */
2603 already_marked = false;
2604 newbuf = buffer;
2605 heaptup = newtup;
2609 * At this point newbuf and buffer are both pinned and locked, and newbuf
2610 * has enough space for the new tuple. If they are the same buffer, only
2611 * one pin is held.
2614 if (newbuf == buffer)
2617 * Since the new tuple is going into the same page, we might be able
2618 * to do a HOT update. Check if any of the index columns have been
2619 * changed. If not, then HOT update is possible.
2621 if (HeapSatisfiesHOTUpdate(relation, hot_attrs, &oldtup, heaptup))
2622 use_hot_update = true;
2624 else
2626 /* Set a hint that the old page could use prune/defrag */
2627 PageSetFull(dp);
2630 /* NO EREPORT(ERROR) from here till changes are logged */
2631 START_CRIT_SECTION();
2634 * If this transaction commits, the old tuple will become DEAD sooner or
2635 * later. Set flag that this page is a candidate for pruning once our xid
2636 * falls below the OldestXmin horizon. If the transaction finally aborts,
2637 * the subsequent page pruning will be a no-op and the hint will be
2638 * cleared.
2640 * XXX Should we set hint on newbuf as well? If the transaction aborts,
2641 * there would be a prunable tuple in the newbuf; but for now we choose
2642 * not to optimize for aborts. Note that heap_xlog_update must be kept in
2643 * sync if this decision changes.
2645 PageSetPrunable(dp, xid);
2647 if (use_hot_update)
2649 /* Mark the old tuple as HOT-updated */
2650 HeapTupleSetHotUpdated(&oldtup);
2651 /* And mark the new tuple as heap-only */
2652 HeapTupleSetHeapOnly(heaptup);
2653 /* Mark the caller's copy too, in case different from heaptup */
2654 HeapTupleSetHeapOnly(newtup);
2656 else
2658 /* Make sure tuples are correctly marked as not-HOT */
2659 HeapTupleClearHotUpdated(&oldtup);
2660 HeapTupleClearHeapOnly(heaptup);
2661 HeapTupleClearHeapOnly(newtup);
2664 RelationPutHeapTuple(relation, newbuf, heaptup); /* insert new tuple */
2666 if (!already_marked)
2668 /* Clear obsolete visibility flags ... */
2669 oldtup.t_data->t_infomask &= ~(HEAP_XMAX_COMMITTED |
2670 HEAP_XMAX_INVALID |
2671 HEAP_XMAX_IS_MULTI |
2672 HEAP_IS_LOCKED |
2673 HEAP_MOVED);
2674 /* ... and store info about transaction updating this tuple */
2675 HeapTupleHeaderSetXmax(oldtup.t_data, xid);
2676 HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
2679 /* record address of new tuple in t_ctid of old one */
2680 oldtup.t_data->t_ctid = heaptup->t_self;
2682 if (newbuf != buffer)
2683 MarkBufferDirty(newbuf);
2684 MarkBufferDirty(buffer);
2686 /* XLOG stuff */
2687 if (!relation->rd_istemp)
2689 XLogRecPtr recptr = log_heap_update(relation, buffer, oldtup.t_self,
2690 newbuf, heaptup, false);
2692 if (newbuf != buffer)
2694 PageSetLSN(BufferGetPage(newbuf), recptr);
2695 PageSetTLI(BufferGetPage(newbuf), ThisTimeLineID);
2697 PageSetLSN(BufferGetPage(buffer), recptr);
2698 PageSetTLI(BufferGetPage(buffer), ThisTimeLineID);
2701 END_CRIT_SECTION();
2703 if (newbuf != buffer)
2704 LockBuffer(newbuf, BUFFER_LOCK_UNLOCK);
2705 LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
2708 * Mark old tuple for invalidation from system caches at next command
2709 * boundary. We have to do this before releasing the buffer because we
2710 * need to look at the contents of the tuple.
2712 CacheInvalidateHeapTuple(relation, &oldtup);
2714 /* Now we can release the buffer(s) */
2715 if (newbuf != buffer)
2716 ReleaseBuffer(newbuf);
2717 ReleaseBuffer(buffer);
2720 * If new tuple is cachable, mark it for invalidation from the caches in
2721 * case we abort. Note it is OK to do this after releasing the buffer,
2722 * because the heaptup data structure is all in local memory, not in the
2723 * shared buffer.
2725 CacheInvalidateHeapTuple(relation, heaptup);
2728 * Release the lmgr tuple lock, if we had it.
2730 if (have_tuple_lock)
2731 UnlockTuple(relation, &(oldtup.t_self), ExclusiveLock);
2733 pgstat_count_heap_update(relation, use_hot_update);
2736 * If heaptup is a private copy, release it. Don't forget to copy t_self
2737 * back to the caller's image, too.
2739 if (heaptup != newtup)
2741 newtup->t_self = heaptup->t_self;
2742 heap_freetuple(heaptup);
2745 bms_free(hot_attrs);
2747 return HeapTupleMayBeUpdated;
2751 * Check if the specified attribute's value is same in both given tuples.
2752 * Subroutine for HeapSatisfiesHOTUpdate.
2754 static bool
2755 heap_tuple_attr_equals(TupleDesc tupdesc, int attrnum,
2756 HeapTuple tup1, HeapTuple tup2)
2758 Datum value1,
2759 value2;
2760 bool isnull1,
2761 isnull2;
2762 Form_pg_attribute att;
2765 * If it's a whole-tuple reference, say "not equal". It's not really
2766 * worth supporting this case, since it could only succeed after a no-op
2767 * update, which is hardly a case worth optimizing for.
2769 if (attrnum == 0)
2770 return false;
2773 * Likewise, automatically say "not equal" for any system attribute other
2774 * than OID and tableOID; we cannot expect these to be consistent in a HOT
2775 * chain, or even to be set correctly yet in the new tuple.
2777 if (attrnum < 0)
2779 if (attrnum != ObjectIdAttributeNumber &&
2780 attrnum != TableOidAttributeNumber)
2781 return false;
2785 * Extract the corresponding values. XXX this is pretty inefficient if
2786 * there are many indexed columns. Should HeapSatisfiesHOTUpdate do a
2787 * single heap_deform_tuple call on each tuple, instead? But that doesn't
2788 * work for system columns ...
2790 value1 = heap_getattr(tup1, attrnum, tupdesc, &isnull1);
2791 value2 = heap_getattr(tup2, attrnum, tupdesc, &isnull2);
2794 * If one value is NULL and other is not, then they are certainly not
2795 * equal
2797 if (isnull1 != isnull2)
2798 return false;
2801 * If both are NULL, they can be considered equal.
2803 if (isnull1)
2804 return true;
2807 * We do simple binary comparison of the two datums. This may be overly
2808 * strict because there can be multiple binary representations for the
2809 * same logical value. But we should be OK as long as there are no false
2810 * positives. Using a type-specific equality operator is messy because
2811 * there could be multiple notions of equality in different operator
2812 * classes; furthermore, we cannot safely invoke user-defined functions
2813 * while holding exclusive buffer lock.
2815 if (attrnum <= 0)
2817 /* The only allowed system columns are OIDs, so do this */
2818 return (DatumGetObjectId(value1) == DatumGetObjectId(value2));
2820 else
2822 Assert(attrnum <= tupdesc->natts);
2823 att = tupdesc->attrs[attrnum - 1];
2824 return datumIsEqual(value1, value2, att->attbyval, att->attlen);
2829 * Check if the old and new tuples represent a HOT-safe update. To be able
2830 * to do a HOT update, we must not have changed any columns used in index
2831 * definitions.
2833 * The set of attributes to be checked is passed in (we dare not try to
2834 * compute it while holding exclusive buffer lock...) NOTE that hot_attrs
2835 * is destructively modified! That is OK since this is invoked at most once
2836 * by heap_update().
2838 * Returns true if safe to do HOT update.
2840 static bool
2841 HeapSatisfiesHOTUpdate(Relation relation, Bitmapset *hot_attrs,
2842 HeapTuple oldtup, HeapTuple newtup)
2844 int attrnum;
2846 while ((attrnum = bms_first_member(hot_attrs)) >= 0)
2848 /* Adjust for system attributes */
2849 attrnum += FirstLowInvalidHeapAttributeNumber;
2851 /* If the attribute value has changed, we can't do HOT update */
2852 if (!heap_tuple_attr_equals(RelationGetDescr(relation), attrnum,
2853 oldtup, newtup))
2854 return false;
2857 return true;
2861 * simple_heap_update - replace a tuple
2863 * This routine may be used to update a tuple when concurrent updates of
2864 * the target tuple are not expected (for example, because we have a lock
2865 * on the relation associated with the tuple). Any failure is reported
2866 * via ereport().
2868 void
2869 simple_heap_update(Relation relation, ItemPointer otid, HeapTuple tup)
2871 HTSU_Result result;
2872 ItemPointerData update_ctid;
2873 TransactionId update_xmax;
2875 result = heap_update(relation, otid, tup,
2876 &update_ctid, &update_xmax,
2877 GetCurrentCommandId(true), InvalidSnapshot,
2878 true /* wait for commit */ );
2879 switch (result)
2881 case HeapTupleSelfUpdated:
2882 /* Tuple was already updated in current command? */
2883 elog(ERROR, "tuple already updated by self");
2884 break;
2886 case HeapTupleMayBeUpdated:
2887 /* done successfully */
2888 break;
2890 case HeapTupleUpdated:
2891 elog(ERROR, "tuple concurrently updated");
2892 break;
2894 default:
2895 elog(ERROR, "unrecognized heap_update status: %u", result);
2896 break;
2901 * heap_lock_tuple - lock a tuple in shared or exclusive mode
2903 * Note that this acquires a buffer pin, which the caller must release.
2905 * Input parameters:
2906 * relation: relation containing tuple (caller must hold suitable lock)
2907 * tuple->t_self: TID of tuple to lock (rest of struct need not be valid)
2908 * cid: current command ID (used for visibility test, and stored into
2909 * tuple's cmax if lock is successful)
2910 * mode: indicates if shared or exclusive tuple lock is desired
2911 * nowait: if true, ereport rather than blocking if lock not available
2913 * Output parameters:
2914 * *tuple: all fields filled in
2915 * *buffer: set to buffer holding tuple (pinned but not locked at exit)
2916 * *ctid: set to tuple's t_ctid, but only in failure cases
2917 * *update_xmax: set to tuple's xmax, but only in failure cases
2919 * Function result may be:
2920 * HeapTupleMayBeUpdated: lock was successfully acquired
2921 * HeapTupleSelfUpdated: lock failed because tuple updated by self
2922 * HeapTupleUpdated: lock failed because tuple updated by other xact
2924 * In the failure cases, the routine returns the tuple's t_ctid and t_xmax.
2925 * If t_ctid is the same as t_self, the tuple was deleted; if different, the
2926 * tuple was updated, and t_ctid is the location of the replacement tuple.
2927 * (t_xmax is needed to verify that the replacement tuple matches.)
2930 * NOTES: because the shared-memory lock table is of finite size, but users
2931 * could reasonably want to lock large numbers of tuples, we do not rely on
2932 * the standard lock manager to store tuple-level locks over the long term.
2933 * Instead, a tuple is marked as locked by setting the current transaction's
2934 * XID as its XMAX, and setting additional infomask bits to distinguish this
2935 * usage from the more normal case of having deleted the tuple. When
2936 * multiple transactions concurrently share-lock a tuple, the first locker's
2937 * XID is replaced in XMAX with a MultiTransactionId representing the set of
2938 * XIDs currently holding share-locks.
2940 * When it is necessary to wait for a tuple-level lock to be released, the
2941 * basic delay is provided by XactLockTableWait or MultiXactIdWait on the
2942 * contents of the tuple's XMAX. However, that mechanism will release all
2943 * waiters concurrently, so there would be a race condition as to which
2944 * waiter gets the tuple, potentially leading to indefinite starvation of
2945 * some waiters. The possibility of share-locking makes the problem much
2946 * worse --- a steady stream of share-lockers can easily block an exclusive
2947 * locker forever. To provide more reliable semantics about who gets a
2948 * tuple-level lock first, we use the standard lock manager. The protocol
2949 * for waiting for a tuple-level lock is really
2950 * LockTuple()
2951 * XactLockTableWait()
2952 * mark tuple as locked by me
2953 * UnlockTuple()
2954 * When there are multiple waiters, arbitration of who is to get the lock next
2955 * is provided by LockTuple(). However, at most one tuple-level lock will
2956 * be held or awaited per backend at any time, so we don't risk overflow
2957 * of the lock table. Note that incoming share-lockers are required to
2958 * do LockTuple as well, if there is any conflict, to ensure that they don't
2959 * starve out waiting exclusive-lockers. However, if there is not any active
2960 * conflict for a tuple, we don't incur any extra overhead.
2962 HTSU_Result
2963 heap_lock_tuple(Relation relation, HeapTuple tuple, Buffer *buffer,
2964 ItemPointer ctid, TransactionId *update_xmax,
2965 CommandId cid, LockTupleMode mode, bool nowait)
2967 HTSU_Result result;
2968 ItemPointer tid = &(tuple->t_self);
2969 ItemId lp;
2970 PageHeader dp;
2971 TransactionId xid;
2972 TransactionId xmax;
2973 uint16 old_infomask;
2974 uint16 new_infomask;
2975 LOCKMODE tuple_lock_type;
2976 bool have_tuple_lock = false;
2978 tuple_lock_type = (mode == LockTupleShared) ? ShareLock : ExclusiveLock;
2980 *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
2981 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
2983 dp = (PageHeader) BufferGetPage(*buffer);
2984 lp = PageGetItemId(dp, ItemPointerGetOffsetNumber(tid));
2985 Assert(ItemIdIsNormal(lp));
2987 tuple->t_data = (HeapTupleHeader) PageGetItem((Page) dp, lp);
2988 tuple->t_len = ItemIdGetLength(lp);
2989 tuple->t_tableOid = RelationGetRelid(relation);
2992 result = HeapTupleSatisfiesUpdate(tuple->t_data, cid, *buffer);
2994 if (result == HeapTupleInvisible)
2996 UnlockReleaseBuffer(*buffer);
2997 elog(ERROR, "attempted to lock invisible tuple");
2999 else if (result == HeapTupleBeingUpdated)
3001 TransactionId xwait;
3002 uint16 infomask;
3004 /* must copy state data before unlocking buffer */
3005 xwait = HeapTupleHeaderGetXmax(tuple->t_data);
3006 infomask = tuple->t_data->t_infomask;
3008 LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
3011 * If we wish to acquire share lock, and the tuple is already
3012 * share-locked by a multixact that includes any subtransaction of the
3013 * current top transaction, then we effectively hold the desired lock
3014 * already. We *must* succeed without trying to take the tuple lock,
3015 * else we will deadlock against anyone waiting to acquire exclusive
3016 * lock. We don't need to make any state changes in this case.
3018 if (mode == LockTupleShared &&
3019 (infomask & HEAP_XMAX_IS_MULTI) &&
3020 MultiXactIdIsCurrent((MultiXactId) xwait))
3022 Assert(infomask & HEAP_XMAX_SHARED_LOCK);
3023 /* Probably can't hold tuple lock here, but may as well check */
3024 if (have_tuple_lock)
3025 UnlockTuple(relation, tid, tuple_lock_type);
3026 return HeapTupleMayBeUpdated;
3030 * Acquire tuple lock to establish our priority for the tuple.
3031 * LockTuple will release us when we are next-in-line for the tuple.
3032 * We must do this even if we are share-locking.
3034 * If we are forced to "start over" below, we keep the tuple lock;
3035 * this arranges that we stay at the head of the line while rechecking
3036 * tuple state.
3038 if (!have_tuple_lock)
3040 if (nowait)
3042 if (!ConditionalLockTuple(relation, tid, tuple_lock_type))
3043 ereport(ERROR,
3044 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
3045 errmsg("could not obtain lock on row in relation \"%s\"",
3046 RelationGetRelationName(relation))));
3048 else
3049 LockTuple(relation, tid, tuple_lock_type);
3050 have_tuple_lock = true;
3053 if (mode == LockTupleShared && (infomask & HEAP_XMAX_SHARED_LOCK))
3056 * Acquiring sharelock when there's at least one sharelocker
3057 * already. We need not wait for him/them to complete.
3059 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
3062 * Make sure it's still a shared lock, else start over. (It's OK
3063 * if the ownership of the shared lock has changed, though.)
3065 if (!(tuple->t_data->t_infomask & HEAP_XMAX_SHARED_LOCK))
3066 goto l3;
3068 else if (infomask & HEAP_XMAX_IS_MULTI)
3070 /* wait for multixact to end */
3071 if (nowait)
3073 if (!ConditionalMultiXactIdWait((MultiXactId) xwait))
3074 ereport(ERROR,
3075 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
3076 errmsg("could not obtain lock on row in relation \"%s\"",
3077 RelationGetRelationName(relation))));
3079 else
3080 MultiXactIdWait((MultiXactId) xwait);
3082 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
3085 * If xwait had just locked the tuple then some other xact could
3086 * update this tuple before we get to this point. Check for xmax
3087 * change, and start over if so.
3089 if (!(tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI) ||
3090 !TransactionIdEquals(HeapTupleHeaderGetXmax(tuple->t_data),
3091 xwait))
3092 goto l3;
3095 * You might think the multixact is necessarily done here, but not
3096 * so: it could have surviving members, namely our own xact or
3097 * other subxacts of this backend. It is legal for us to lock the
3098 * tuple in either case, however. We don't bother changing the
3099 * on-disk hint bits since we are about to overwrite the xmax
3100 * altogether.
3103 else
3105 /* wait for regular transaction to end */
3106 if (nowait)
3108 if (!ConditionalXactLockTableWait(xwait))
3109 ereport(ERROR,
3110 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
3111 errmsg("could not obtain lock on row in relation \"%s\"",
3112 RelationGetRelationName(relation))));
3114 else
3115 XactLockTableWait(xwait);
3117 LockBuffer(*buffer, BUFFER_LOCK_EXCLUSIVE);
3120 * xwait is done, but if xwait had just locked the tuple then some
3121 * other xact could update this tuple before we get to this point.
3122 * Check for xmax change, and start over if so.
3124 if ((tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI) ||
3125 !TransactionIdEquals(HeapTupleHeaderGetXmax(tuple->t_data),
3126 xwait))
3127 goto l3;
3129 /* Otherwise check if it committed or aborted */
3130 UpdateXmaxHintBits(tuple->t_data, *buffer, xwait);
3134 * We may lock if previous xmax aborted, or if it committed but only
3135 * locked the tuple without updating it. The case where we didn't
3136 * wait because we are joining an existing shared lock is correctly
3137 * handled, too.
3139 if (tuple->t_data->t_infomask & (HEAP_XMAX_INVALID |
3140 HEAP_IS_LOCKED))
3141 result = HeapTupleMayBeUpdated;
3142 else
3143 result = HeapTupleUpdated;
3146 if (result != HeapTupleMayBeUpdated)
3148 Assert(result == HeapTupleSelfUpdated || result == HeapTupleUpdated);
3149 Assert(!(tuple->t_data->t_infomask & HEAP_XMAX_INVALID));
3150 *ctid = tuple->t_data->t_ctid;
3151 *update_xmax = HeapTupleHeaderGetXmax(tuple->t_data);
3152 LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
3153 if (have_tuple_lock)
3154 UnlockTuple(relation, tid, tuple_lock_type);
3155 return result;
3159 * We might already hold the desired lock (or stronger), possibly under a
3160 * different subtransaction of the current top transaction. If so, there
3161 * is no need to change state or issue a WAL record. We already handled
3162 * the case where this is true for xmax being a MultiXactId, so now check
3163 * for cases where it is a plain TransactionId.
3165 * Note in particular that this covers the case where we already hold
3166 * exclusive lock on the tuple and the caller only wants shared lock. It
3167 * would certainly not do to give up the exclusive lock.
3169 xmax = HeapTupleHeaderGetXmax(tuple->t_data);
3170 old_infomask = tuple->t_data->t_infomask;
3172 if (!(old_infomask & (HEAP_XMAX_INVALID |
3173 HEAP_XMAX_COMMITTED |
3174 HEAP_XMAX_IS_MULTI)) &&
3175 (mode == LockTupleShared ?
3176 (old_infomask & HEAP_IS_LOCKED) :
3177 (old_infomask & HEAP_XMAX_EXCL_LOCK)) &&
3178 TransactionIdIsCurrentTransactionId(xmax))
3180 LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
3181 /* Probably can't hold tuple lock here, but may as well check */
3182 if (have_tuple_lock)
3183 UnlockTuple(relation, tid, tuple_lock_type);
3184 return HeapTupleMayBeUpdated;
3188 * Compute the new xmax and infomask to store into the tuple. Note we do
3189 * not modify the tuple just yet, because that would leave it in the wrong
3190 * state if multixact.c elogs.
3192 xid = GetCurrentTransactionId();
3194 new_infomask = old_infomask & ~(HEAP_XMAX_COMMITTED |
3195 HEAP_XMAX_INVALID |
3196 HEAP_XMAX_IS_MULTI |
3197 HEAP_IS_LOCKED |
3198 HEAP_MOVED);
3200 if (mode == LockTupleShared)
3203 * If this is the first acquisition of a shared lock in the current
3204 * transaction, set my per-backend OldestMemberMXactId setting. We can
3205 * be certain that the transaction will never become a member of any
3206 * older MultiXactIds than that. (We have to do this even if we end
3207 * up just using our own TransactionId below, since some other backend
3208 * could incorporate our XID into a MultiXact immediately afterwards.)
3210 MultiXactIdSetOldestMember();
3212 new_infomask |= HEAP_XMAX_SHARED_LOCK;
3215 * Check to see if we need a MultiXactId because there are multiple
3216 * lockers.
3218 * HeapTupleSatisfiesUpdate will have set the HEAP_XMAX_INVALID bit if
3219 * the xmax was a MultiXactId but it was not running anymore. There is
3220 * a race condition, which is that the MultiXactId may have finished
3221 * since then, but that uncommon case is handled within
3222 * MultiXactIdExpand.
3224 * There is a similar race condition possible when the old xmax was a
3225 * regular TransactionId. We test TransactionIdIsInProgress again
3226 * just to narrow the window, but it's still possible to end up
3227 * creating an unnecessary MultiXactId. Fortunately this is harmless.
3229 if (!(old_infomask & (HEAP_XMAX_INVALID | HEAP_XMAX_COMMITTED)))
3231 if (old_infomask & HEAP_XMAX_IS_MULTI)
3234 * If the XMAX is already a MultiXactId, then we need to
3235 * expand it to include our own TransactionId.
3237 xid = MultiXactIdExpand((MultiXactId) xmax, xid);
3238 new_infomask |= HEAP_XMAX_IS_MULTI;
3240 else if (TransactionIdIsInProgress(xmax))
3243 * If the XMAX is a valid TransactionId, then we need to
3244 * create a new MultiXactId that includes both the old locker
3245 * and our own TransactionId.
3247 xid = MultiXactIdCreate(xmax, xid);
3248 new_infomask |= HEAP_XMAX_IS_MULTI;
3250 else
3253 * Can get here iff HeapTupleSatisfiesUpdate saw the old xmax
3254 * as running, but it finished before
3255 * TransactionIdIsInProgress() got to run. Treat it like
3256 * there's no locker in the tuple.
3260 else
3263 * There was no previous locker, so just insert our own
3264 * TransactionId.
3268 else
3270 /* We want an exclusive lock on the tuple */
3271 new_infomask |= HEAP_XMAX_EXCL_LOCK;
3274 START_CRIT_SECTION();
3277 * Store transaction information of xact locking the tuple.
3279 * Note: Cmax is meaningless in this context, so don't set it; this avoids
3280 * possibly generating a useless combo CID.
3282 tuple->t_data->t_infomask = new_infomask;
3283 HeapTupleHeaderClearHotUpdated(tuple->t_data);
3284 HeapTupleHeaderSetXmax(tuple->t_data, xid);
3285 /* Make sure there is no forward chain link in t_ctid */
3286 tuple->t_data->t_ctid = *tid;
3288 MarkBufferDirty(*buffer);
3291 * XLOG stuff. You might think that we don't need an XLOG record because
3292 * there is no state change worth restoring after a crash. You would be
3293 * wrong however: we have just written either a TransactionId or a
3294 * MultiXactId that may never have been seen on disk before, and we need
3295 * to make sure that there are XLOG entries covering those ID numbers.
3296 * Else the same IDs might be re-used after a crash, which would be
3297 * disastrous if this page made it to disk before the crash. Essentially
3298 * we have to enforce the WAL log-before-data rule even in this case.
3299 * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG
3300 * entries for everything anyway.)
3302 if (!relation->rd_istemp)
3304 xl_heap_lock xlrec;
3305 XLogRecPtr recptr;
3306 XLogRecData rdata[2];
3308 xlrec.target.node = relation->rd_node;
3309 xlrec.target.tid = tuple->t_self;
3310 xlrec.locking_xid = xid;
3311 xlrec.xid_is_mxact = ((new_infomask & HEAP_XMAX_IS_MULTI) != 0);
3312 xlrec.shared_lock = (mode == LockTupleShared);
3313 rdata[0].data = (char *) &xlrec;
3314 rdata[0].len = SizeOfHeapLock;
3315 rdata[0].buffer = InvalidBuffer;
3316 rdata[0].next = &(rdata[1]);
3318 rdata[1].data = NULL;
3319 rdata[1].len = 0;
3320 rdata[1].buffer = *buffer;
3321 rdata[1].buffer_std = true;
3322 rdata[1].next = NULL;
3324 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK, rdata);
3326 PageSetLSN(dp, recptr);
3327 PageSetTLI(dp, ThisTimeLineID);
3330 END_CRIT_SECTION();
3332 LockBuffer(*buffer, BUFFER_LOCK_UNLOCK);
3335 * Now that we have successfully marked the tuple as locked, we can
3336 * release the lmgr tuple lock, if we had it.
3338 if (have_tuple_lock)
3339 UnlockTuple(relation, tid, tuple_lock_type);
3341 return HeapTupleMayBeUpdated;
3346 * heap_inplace_update - update a tuple "in place" (ie, overwrite it)
3348 * Overwriting violates both MVCC and transactional safety, so the uses
3349 * of this function in Postgres are extremely limited. Nonetheless we
3350 * find some places to use it.
3352 * The tuple cannot change size, and therefore it's reasonable to assume
3353 * that its null bitmap (if any) doesn't change either. So we just
3354 * overwrite the data portion of the tuple without touching the null
3355 * bitmap or any of the header fields.
3357 * tuple is an in-memory tuple structure containing the data to be written
3358 * over the target tuple. Also, tuple->t_self identifies the target tuple.
3360 void
3361 heap_inplace_update(Relation relation, HeapTuple tuple)
3363 Buffer buffer;
3364 Page page;
3365 OffsetNumber offnum;
3366 ItemId lp = NULL;
3367 HeapTupleHeader htup;
3368 uint32 oldlen;
3369 uint32 newlen;
3371 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&(tuple->t_self)));
3372 LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
3373 page = (Page) BufferGetPage(buffer);
3375 offnum = ItemPointerGetOffsetNumber(&(tuple->t_self));
3376 if (PageGetMaxOffsetNumber(page) >= offnum)
3377 lp = PageGetItemId(page, offnum);
3379 if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
3380 elog(ERROR, "heap_inplace_update: invalid lp");
3382 htup = (HeapTupleHeader) PageGetItem(page, lp);
3384 oldlen = ItemIdGetLength(lp) - htup->t_hoff;
3385 newlen = tuple->t_len - tuple->t_data->t_hoff;
3386 if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff)
3387 elog(ERROR, "heap_inplace_update: wrong tuple length");
3389 /* NO EREPORT(ERROR) from here till changes are logged */
3390 START_CRIT_SECTION();
3392 memcpy((char *) htup + htup->t_hoff,
3393 (char *) tuple->t_data + tuple->t_data->t_hoff,
3394 newlen);
3396 MarkBufferDirty(buffer);
3398 /* XLOG stuff */
3399 if (!relation->rd_istemp)
3401 xl_heap_inplace xlrec;
3402 XLogRecPtr recptr;
3403 XLogRecData rdata[2];
3405 xlrec.target.node = relation->rd_node;
3406 xlrec.target.tid = tuple->t_self;
3408 rdata[0].data = (char *) &xlrec;
3409 rdata[0].len = SizeOfHeapInplace;
3410 rdata[0].buffer = InvalidBuffer;
3411 rdata[0].next = &(rdata[1]);
3413 rdata[1].data = (char *) htup + htup->t_hoff;
3414 rdata[1].len = newlen;
3415 rdata[1].buffer = buffer;
3416 rdata[1].buffer_std = true;
3417 rdata[1].next = NULL;
3419 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE, rdata);
3421 PageSetLSN(page, recptr);
3422 PageSetTLI(page, ThisTimeLineID);
3425 END_CRIT_SECTION();
3427 UnlockReleaseBuffer(buffer);
3429 /* Send out shared cache inval if necessary */
3430 if (!IsBootstrapProcessingMode())
3431 CacheInvalidateHeapTuple(relation, tuple);
3436 * heap_freeze_tuple
3438 * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
3439 * are older than the specified cutoff XID. If so, replace them with
3440 * FrozenTransactionId or InvalidTransactionId as appropriate, and return
3441 * TRUE. Return FALSE if nothing was changed.
3443 * It is assumed that the caller has checked the tuple with
3444 * HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD
3445 * (else we should be removing the tuple, not freezing it).
3447 * NB: cutoff_xid *must* be <= the current global xmin, to ensure that any
3448 * XID older than it could neither be running nor seen as running by any
3449 * open transaction. This ensures that the replacement will not change
3450 * anyone's idea of the tuple state. Also, since we assume the tuple is
3451 * not HEAPTUPLE_DEAD, the fact that an XID is not still running allows us
3452 * to assume that it is either committed good or aborted, as appropriate;
3453 * so we need no external state checks to decide what to do. (This is good
3454 * because this function is applied during WAL recovery, when we don't have
3455 * access to any such state, and can't depend on the hint bits to be set.)
3457 * In lazy VACUUM, we call this while initially holding only a shared lock
3458 * on the tuple's buffer. If any change is needed, we trade that in for an
3459 * exclusive lock before making the change. Caller should pass the buffer ID
3460 * if shared lock is held, InvalidBuffer if exclusive lock is already held.
3462 * Note: it might seem we could make the changes without exclusive lock, since
3463 * TransactionId read/write is assumed atomic anyway. However there is a race
3464 * condition: someone who just fetched an old XID that we overwrite here could
3465 * conceivably not finish checking the XID against pg_clog before we finish
3466 * the VACUUM and perhaps truncate off the part of pg_clog he needs. Getting
3467 * exclusive lock ensures no other backend is in process of checking the
3468 * tuple status. Also, getting exclusive lock makes it safe to adjust the
3469 * infomask bits.
3471 bool
3472 heap_freeze_tuple(HeapTupleHeader tuple, TransactionId cutoff_xid,
3473 Buffer buf)
3475 bool changed = false;
3476 TransactionId xid;
3478 xid = HeapTupleHeaderGetXmin(tuple);
3479 if (TransactionIdIsNormal(xid) &&
3480 TransactionIdPrecedes(xid, cutoff_xid))
3482 if (buf != InvalidBuffer)
3484 /* trade in share lock for exclusive lock */
3485 LockBuffer(buf, BUFFER_LOCK_UNLOCK);
3486 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
3487 buf = InvalidBuffer;
3489 HeapTupleHeaderSetXmin(tuple, FrozenTransactionId);
3492 * Might as well fix the hint bits too; usually XMIN_COMMITTED will
3493 * already be set here, but there's a small chance not.
3495 Assert(!(tuple->t_infomask & HEAP_XMIN_INVALID));
3496 tuple->t_infomask |= HEAP_XMIN_COMMITTED;
3497 changed = true;
3501 * When we release shared lock, it's possible for someone else to change
3502 * xmax before we get the lock back, so repeat the check after acquiring
3503 * exclusive lock. (We don't need this pushup for xmin, because only
3504 * VACUUM could be interested in changing an existing tuple's xmin, and
3505 * there's only one VACUUM allowed on a table at a time.)
3507 recheck_xmax:
3508 if (!(tuple->t_infomask & HEAP_XMAX_IS_MULTI))
3510 xid = HeapTupleHeaderGetXmax(tuple);
3511 if (TransactionIdIsNormal(xid) &&
3512 TransactionIdPrecedes(xid, cutoff_xid))
3514 if (buf != InvalidBuffer)
3516 /* trade in share lock for exclusive lock */
3517 LockBuffer(buf, BUFFER_LOCK_UNLOCK);
3518 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
3519 buf = InvalidBuffer;
3520 goto recheck_xmax; /* see comment above */
3522 HeapTupleHeaderSetXmax(tuple, InvalidTransactionId);
3525 * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED
3526 * + LOCKED. Normalize to INVALID just to be sure no one gets
3527 * confused.
3529 tuple->t_infomask &= ~HEAP_XMAX_COMMITTED;
3530 tuple->t_infomask |= HEAP_XMAX_INVALID;
3531 HeapTupleHeaderClearHotUpdated(tuple);
3532 changed = true;
3535 else
3537 /*----------
3538 * XXX perhaps someday we should zero out very old MultiXactIds here?
3540 * The only way a stale MultiXactId could pose a problem is if a
3541 * tuple, having once been multiply-share-locked, is not touched by
3542 * any vacuum or attempted lock or deletion for just over 4G MultiXact
3543 * creations, and then in the probably-narrow window where its xmax
3544 * is again a live MultiXactId, someone tries to lock or delete it.
3545 * Even then, another share-lock attempt would work fine. An
3546 * exclusive-lock or delete attempt would face unexpected delay, or
3547 * in the very worst case get a deadlock error. This seems an
3548 * extremely low-probability scenario with minimal downside even if
3549 * it does happen, so for now we don't do the extra bookkeeping that
3550 * would be needed to clean out MultiXactIds.
3551 *----------
3556 * Although xvac per se could only be set by VACUUM, it shares physical
3557 * storage space with cmax, and so could be wiped out by someone setting
3558 * xmax. Hence recheck after changing lock, same as for xmax itself.
3560 recheck_xvac:
3561 if (tuple->t_infomask & HEAP_MOVED)
3563 xid = HeapTupleHeaderGetXvac(tuple);
3564 if (TransactionIdIsNormal(xid) &&
3565 TransactionIdPrecedes(xid, cutoff_xid))
3567 if (buf != InvalidBuffer)
3569 /* trade in share lock for exclusive lock */
3570 LockBuffer(buf, BUFFER_LOCK_UNLOCK);
3571 LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
3572 buf = InvalidBuffer;
3573 goto recheck_xvac; /* see comment above */
3577 * If a MOVED_OFF tuple is not dead, the xvac transaction must
3578 * have failed; whereas a non-dead MOVED_IN tuple must mean the
3579 * xvac transaction succeeded.
3581 if (tuple->t_infomask & HEAP_MOVED_OFF)
3582 HeapTupleHeaderSetXvac(tuple, InvalidTransactionId);
3583 else
3584 HeapTupleHeaderSetXvac(tuple, FrozenTransactionId);
3587 * Might as well fix the hint bits too; usually XMIN_COMMITTED
3588 * will already be set here, but there's a small chance not.
3590 Assert(!(tuple->t_infomask & HEAP_XMIN_INVALID));
3591 tuple->t_infomask |= HEAP_XMIN_COMMITTED;
3592 changed = true;
3596 return changed;
3600 /* ----------------
3601 * heap_markpos - mark scan position
3602 * ----------------
3604 void
3605 heap_markpos(HeapScanDesc scan)
3607 /* Note: no locking manipulations needed */
3609 if (scan->rs_ctup.t_data != NULL)
3611 scan->rs_mctid = scan->rs_ctup.t_self;
3612 if (scan->rs_pageatatime)
3613 scan->rs_mindex = scan->rs_cindex;
3615 else
3616 ItemPointerSetInvalid(&scan->rs_mctid);
3619 /* ----------------
3620 * heap_restrpos - restore position to marked location
3621 * ----------------
3623 void
3624 heap_restrpos(HeapScanDesc scan)
3626 /* XXX no amrestrpos checking that ammarkpos called */
3628 if (!ItemPointerIsValid(&scan->rs_mctid))
3630 scan->rs_ctup.t_data = NULL;
3633 * unpin scan buffers
3635 if (BufferIsValid(scan->rs_cbuf))
3636 ReleaseBuffer(scan->rs_cbuf);
3637 scan->rs_cbuf = InvalidBuffer;
3638 scan->rs_cblock = InvalidBlockNumber;
3639 scan->rs_inited = false;
3641 else
3644 * If we reached end of scan, rs_inited will now be false. We must
3645 * reset it to true to keep heapgettup from doing the wrong thing.
3647 scan->rs_inited = true;
3648 scan->rs_ctup.t_self = scan->rs_mctid;
3649 if (scan->rs_pageatatime)
3651 scan->rs_cindex = scan->rs_mindex;
3652 heapgettup_pagemode(scan,
3653 NoMovementScanDirection,
3654 0, /* needn't recheck scan keys */
3655 NULL);
3657 else
3658 heapgettup(scan,
3659 NoMovementScanDirection,
3660 0, /* needn't recheck scan keys */
3661 NULL);
3666 * Perform XLogInsert for a heap-clean operation. Caller must already
3667 * have modified the buffer and marked it dirty.
3669 * Note: prior to Postgres 8.3, the entries in the nowunused[] array were
3670 * zero-based tuple indexes. Now they are one-based like other uses
3671 * of OffsetNumber.
3673 XLogRecPtr
3674 log_heap_clean(Relation reln, Buffer buffer,
3675 OffsetNumber *redirected, int nredirected,
3676 OffsetNumber *nowdead, int ndead,
3677 OffsetNumber *nowunused, int nunused,
3678 bool redirect_move)
3680 xl_heap_clean xlrec;
3681 uint8 info;
3682 XLogRecPtr recptr;
3683 XLogRecData rdata[4];
3685 /* Caller should not call me on a temp relation */
3686 Assert(!reln->rd_istemp);
3688 xlrec.node = reln->rd_node;
3689 xlrec.block = BufferGetBlockNumber(buffer);
3690 xlrec.nredirected = nredirected;
3691 xlrec.ndead = ndead;
3693 rdata[0].data = (char *) &xlrec;
3694 rdata[0].len = SizeOfHeapClean;
3695 rdata[0].buffer = InvalidBuffer;
3696 rdata[0].next = &(rdata[1]);
3699 * The OffsetNumber arrays are not actually in the buffer, but we pretend
3700 * that they are. When XLogInsert stores the whole buffer, the offset
3701 * arrays need not be stored too. Note that even if all three arrays are
3702 * empty, we want to expose the buffer as a candidate for whole-page
3703 * storage, since this record type implies a defragmentation operation
3704 * even if no item pointers changed state.
3706 if (nredirected > 0)
3708 rdata[1].data = (char *) redirected;
3709 rdata[1].len = nredirected * sizeof(OffsetNumber) * 2;
3711 else
3713 rdata[1].data = NULL;
3714 rdata[1].len = 0;
3716 rdata[1].buffer = buffer;
3717 rdata[1].buffer_std = true;
3718 rdata[1].next = &(rdata[2]);
3720 if (ndead > 0)
3722 rdata[2].data = (char *) nowdead;
3723 rdata[2].len = ndead * sizeof(OffsetNumber);
3725 else
3727 rdata[2].data = NULL;
3728 rdata[2].len = 0;
3730 rdata[2].buffer = buffer;
3731 rdata[2].buffer_std = true;
3732 rdata[2].next = &(rdata[3]);
3734 if (nunused > 0)
3736 rdata[3].data = (char *) nowunused;
3737 rdata[3].len = nunused * sizeof(OffsetNumber);
3739 else
3741 rdata[3].data = NULL;
3742 rdata[3].len = 0;
3744 rdata[3].buffer = buffer;
3745 rdata[3].buffer_std = true;
3746 rdata[3].next = NULL;
3748 info = redirect_move ? XLOG_HEAP2_CLEAN_MOVE : XLOG_HEAP2_CLEAN;
3749 recptr = XLogInsert(RM_HEAP2_ID, info, rdata);
3751 return recptr;
3755 * Perform XLogInsert for a heap-freeze operation. Caller must already
3756 * have modified the buffer and marked it dirty.
3758 XLogRecPtr
3759 log_heap_freeze(Relation reln, Buffer buffer,
3760 TransactionId cutoff_xid,
3761 OffsetNumber *offsets, int offcnt)
3763 xl_heap_freeze xlrec;
3764 XLogRecPtr recptr;
3765 XLogRecData rdata[2];
3767 /* Caller should not call me on a temp relation */
3768 Assert(!reln->rd_istemp);
3770 xlrec.node = reln->rd_node;
3771 xlrec.block = BufferGetBlockNumber(buffer);
3772 xlrec.cutoff_xid = cutoff_xid;
3774 rdata[0].data = (char *) &xlrec;
3775 rdata[0].len = SizeOfHeapFreeze;
3776 rdata[0].buffer = InvalidBuffer;
3777 rdata[0].next = &(rdata[1]);
3780 * The tuple-offsets array is not actually in the buffer, but pretend that
3781 * it is. When XLogInsert stores the whole buffer, the offsets array need
3782 * not be stored too.
3784 if (offcnt > 0)
3786 rdata[1].data = (char *) offsets;
3787 rdata[1].len = offcnt * sizeof(OffsetNumber);
3789 else
3791 rdata[1].data = NULL;
3792 rdata[1].len = 0;
3794 rdata[1].buffer = buffer;
3795 rdata[1].buffer_std = true;
3796 rdata[1].next = NULL;
3798 recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_FREEZE, rdata);
3800 return recptr;
3804 * Perform XLogInsert for a heap-update operation. Caller must already
3805 * have modified the buffer(s) and marked them dirty.
3807 static XLogRecPtr
3808 log_heap_update(Relation reln, Buffer oldbuf, ItemPointerData from,
3809 Buffer newbuf, HeapTuple newtup, bool move)
3812 * Note: xlhdr is declared to have adequate size and correct alignment for
3813 * an xl_heap_header. However the two tids, if present at all, will be
3814 * packed in with no wasted space after the xl_heap_header; they aren't
3815 * necessarily aligned as implied by this struct declaration.
3817 struct
3819 xl_heap_header hdr;
3820 TransactionId tid1;
3821 TransactionId tid2;
3822 } xlhdr;
3823 int hsize = SizeOfHeapHeader;
3824 xl_heap_update xlrec;
3825 uint8 info;
3826 XLogRecPtr recptr;
3827 XLogRecData rdata[4];
3828 Page page = BufferGetPage(newbuf);
3830 /* Caller should not call me on a temp relation */
3831 Assert(!reln->rd_istemp);
3833 if (move)
3835 Assert(!HeapTupleIsHeapOnly(newtup));
3836 info = XLOG_HEAP_MOVE;
3838 else if (HeapTupleIsHeapOnly(newtup))
3839 info = XLOG_HEAP_HOT_UPDATE;
3840 else
3841 info = XLOG_HEAP_UPDATE;
3843 xlrec.target.node = reln->rd_node;
3844 xlrec.target.tid = from;
3845 xlrec.newtid = newtup->t_self;
3847 rdata[0].data = (char *) &xlrec;
3848 rdata[0].len = SizeOfHeapUpdate;
3849 rdata[0].buffer = InvalidBuffer;
3850 rdata[0].next = &(rdata[1]);
3852 rdata[1].data = NULL;
3853 rdata[1].len = 0;
3854 rdata[1].buffer = oldbuf;
3855 rdata[1].buffer_std = true;
3856 rdata[1].next = &(rdata[2]);
3858 xlhdr.hdr.t_infomask2 = newtup->t_data->t_infomask2;
3859 xlhdr.hdr.t_infomask = newtup->t_data->t_infomask;
3860 xlhdr.hdr.t_hoff = newtup->t_data->t_hoff;
3861 if (move) /* remember xmax & xmin */
3863 TransactionId xid[2]; /* xmax, xmin */
3865 if (newtup->t_data->t_infomask & (HEAP_XMAX_INVALID | HEAP_IS_LOCKED))
3866 xid[0] = InvalidTransactionId;
3867 else
3868 xid[0] = HeapTupleHeaderGetXmax(newtup->t_data);
3869 xid[1] = HeapTupleHeaderGetXmin(newtup->t_data);
3870 memcpy((char *) &xlhdr + hsize,
3871 (char *) xid,
3872 2 * sizeof(TransactionId));
3873 hsize += 2 * sizeof(TransactionId);
3877 * As with insert records, we need not store the rdata[2] segment if we
3878 * decide to store the whole buffer instead.
3880 rdata[2].data = (char *) &xlhdr;
3881 rdata[2].len = hsize;
3882 rdata[2].buffer = newbuf;
3883 rdata[2].buffer_std = true;
3884 rdata[2].next = &(rdata[3]);
3886 /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
3887 rdata[3].data = (char *) newtup->t_data + offsetof(HeapTupleHeaderData, t_bits);
3888 rdata[3].len = newtup->t_len - offsetof(HeapTupleHeaderData, t_bits);
3889 rdata[3].buffer = newbuf;
3890 rdata[3].buffer_std = true;
3891 rdata[3].next = NULL;
3893 /* If new tuple is the single and first tuple on page... */
3894 if (ItemPointerGetOffsetNumber(&(newtup->t_self)) == FirstOffsetNumber &&
3895 PageGetMaxOffsetNumber(page) == FirstOffsetNumber)
3897 info |= XLOG_HEAP_INIT_PAGE;
3898 rdata[2].buffer = rdata[3].buffer = InvalidBuffer;
3901 recptr = XLogInsert(RM_HEAP_ID, info, rdata);
3903 return recptr;
3907 * Perform XLogInsert for a heap-move operation. Caller must already
3908 * have modified the buffers and marked them dirty.
3910 XLogRecPtr
3911 log_heap_move(Relation reln, Buffer oldbuf, ItemPointerData from,
3912 Buffer newbuf, HeapTuple newtup)
3914 return log_heap_update(reln, oldbuf, from, newbuf, newtup, true);
3918 * Perform XLogInsert of a HEAP_NEWPAGE record to WAL. Caller is responsible
3919 * for writing the page to disk after calling this routine.
3921 * Note: all current callers build pages in private memory and write them
3922 * directly to smgr, rather than using bufmgr. Therefore there is no need
3923 * to pass a buffer ID to XLogInsert, nor to perform MarkBufferDirty within
3924 * the critical section.
3926 * Note: the NEWPAGE log record is used for both heaps and indexes, so do
3927 * not do anything that assumes we are touching a heap.
3929 XLogRecPtr
3930 log_newpage(RelFileNode *rnode, BlockNumber blkno, Page page)
3932 xl_heap_newpage xlrec;
3933 XLogRecPtr recptr;
3934 XLogRecData rdata[2];
3936 /* NO ELOG(ERROR) from here till newpage op is logged */
3937 START_CRIT_SECTION();
3939 xlrec.node = *rnode;
3940 xlrec.blkno = blkno;
3942 rdata[0].data = (char *) &xlrec;
3943 rdata[0].len = SizeOfHeapNewpage;
3944 rdata[0].buffer = InvalidBuffer;
3945 rdata[0].next = &(rdata[1]);
3947 rdata[1].data = (char *) page;
3948 rdata[1].len = BLCKSZ;
3949 rdata[1].buffer = InvalidBuffer;
3950 rdata[1].next = NULL;
3952 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_NEWPAGE, rdata);
3954 PageSetLSN(page, recptr);
3955 PageSetTLI(page, ThisTimeLineID);
3957 END_CRIT_SECTION();
3959 return recptr;
3963 * Handles CLEAN and CLEAN_MOVE record types
3965 static void
3966 heap_xlog_clean(XLogRecPtr lsn, XLogRecord *record, bool clean_move)
3968 xl_heap_clean *xlrec = (xl_heap_clean *) XLogRecGetData(record);
3969 Relation reln;
3970 Buffer buffer;
3971 Page page;
3972 OffsetNumber *end;
3973 OffsetNumber *redirected;
3974 OffsetNumber *nowdead;
3975 OffsetNumber *nowunused;
3976 int nredirected;
3977 int ndead;
3978 int nunused;
3980 if (record->xl_info & XLR_BKP_BLOCK_1)
3981 return;
3983 reln = XLogOpenRelation(xlrec->node);
3984 buffer = XLogReadBuffer(reln, xlrec->block, false);
3985 if (!BufferIsValid(buffer))
3986 return;
3987 page = (Page) BufferGetPage(buffer);
3989 if (XLByteLE(lsn, PageGetLSN(page)))
3991 UnlockReleaseBuffer(buffer);
3992 return;
3995 nredirected = xlrec->nredirected;
3996 ndead = xlrec->ndead;
3997 end = (OffsetNumber *) ((char *) xlrec + record->xl_len);
3998 redirected = (OffsetNumber *) ((char *) xlrec + SizeOfHeapClean);
3999 nowdead = redirected + (nredirected * 2);
4000 nowunused = nowdead + ndead;
4001 nunused = (end - nowunused);
4002 Assert(nunused >= 0);
4004 /* Update all item pointers per the record, and repair fragmentation */
4005 heap_page_prune_execute(reln, buffer,
4006 redirected, nredirected,
4007 nowdead, ndead,
4008 nowunused, nunused,
4009 clean_move);
4012 * Note: we don't worry about updating the page's prunability hints.
4013 * At worst this will cause an extra prune cycle to occur soon.
4016 PageSetLSN(page, lsn);
4017 PageSetTLI(page, ThisTimeLineID);
4018 MarkBufferDirty(buffer);
4019 UnlockReleaseBuffer(buffer);
4022 static void
4023 heap_xlog_freeze(XLogRecPtr lsn, XLogRecord *record)
4025 xl_heap_freeze *xlrec = (xl_heap_freeze *) XLogRecGetData(record);
4026 TransactionId cutoff_xid = xlrec->cutoff_xid;
4027 Relation reln;
4028 Buffer buffer;
4029 Page page;
4031 if (record->xl_info & XLR_BKP_BLOCK_1)
4032 return;
4034 reln = XLogOpenRelation(xlrec->node);
4035 buffer = XLogReadBuffer(reln, xlrec->block, false);
4036 if (!BufferIsValid(buffer))
4037 return;
4038 page = (Page) BufferGetPage(buffer);
4040 if (XLByteLE(lsn, PageGetLSN(page)))
4042 UnlockReleaseBuffer(buffer);
4043 return;
4046 if (record->xl_len > SizeOfHeapFreeze)
4048 OffsetNumber *offsets;
4049 OffsetNumber *offsets_end;
4051 offsets = (OffsetNumber *) ((char *) xlrec + SizeOfHeapFreeze);
4052 offsets_end = (OffsetNumber *) ((char *) xlrec + record->xl_len);
4054 while (offsets < offsets_end)
4056 /* offsets[] entries are one-based */
4057 ItemId lp = PageGetItemId(page, *offsets);
4058 HeapTupleHeader tuple = (HeapTupleHeader) PageGetItem(page, lp);
4060 (void) heap_freeze_tuple(tuple, cutoff_xid, InvalidBuffer);
4061 offsets++;
4065 PageSetLSN(page, lsn);
4066 PageSetTLI(page, ThisTimeLineID);
4067 MarkBufferDirty(buffer);
4068 UnlockReleaseBuffer(buffer);
4071 static void
4072 heap_xlog_newpage(XLogRecPtr lsn, XLogRecord *record)
4074 xl_heap_newpage *xlrec = (xl_heap_newpage *) XLogRecGetData(record);
4075 Relation reln;
4076 Buffer buffer;
4077 Page page;
4080 * Note: the NEWPAGE log record is used for both heaps and indexes, so do
4081 * not do anything that assumes we are touching a heap.
4083 reln = XLogOpenRelation(xlrec->node);
4084 buffer = XLogReadBuffer(reln, xlrec->blkno, true);
4085 Assert(BufferIsValid(buffer));
4086 page = (Page) BufferGetPage(buffer);
4088 Assert(record->xl_len == SizeOfHeapNewpage + BLCKSZ);
4089 memcpy(page, (char *) xlrec + SizeOfHeapNewpage, BLCKSZ);
4091 PageSetLSN(page, lsn);
4092 PageSetTLI(page, ThisTimeLineID);
4093 MarkBufferDirty(buffer);
4094 UnlockReleaseBuffer(buffer);
4097 static void
4098 heap_xlog_delete(XLogRecPtr lsn, XLogRecord *record)
4100 xl_heap_delete *xlrec = (xl_heap_delete *) XLogRecGetData(record);
4101 Relation reln;
4102 Buffer buffer;
4103 Page page;
4104 OffsetNumber offnum;
4105 ItemId lp = NULL;
4106 HeapTupleHeader htup;
4108 if (record->xl_info & XLR_BKP_BLOCK_1)
4109 return;
4111 reln = XLogOpenRelation(xlrec->target.node);
4112 buffer = XLogReadBuffer(reln,
4113 ItemPointerGetBlockNumber(&(xlrec->target.tid)),
4114 false);
4115 if (!BufferIsValid(buffer))
4116 return;
4117 page = (Page) BufferGetPage(buffer);
4119 if (XLByteLE(lsn, PageGetLSN(page))) /* changes are applied */
4121 UnlockReleaseBuffer(buffer);
4122 return;
4125 offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid));
4126 if (PageGetMaxOffsetNumber(page) >= offnum)
4127 lp = PageGetItemId(page, offnum);
4129 if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
4130 elog(PANIC, "heap_delete_redo: invalid lp");
4132 htup = (HeapTupleHeader) PageGetItem(page, lp);
4134 htup->t_infomask &= ~(HEAP_XMAX_COMMITTED |
4135 HEAP_XMAX_INVALID |
4136 HEAP_XMAX_IS_MULTI |
4137 HEAP_IS_LOCKED |
4138 HEAP_MOVED);
4139 HeapTupleHeaderClearHotUpdated(htup);
4140 HeapTupleHeaderSetXmax(htup, record->xl_xid);
4141 HeapTupleHeaderSetCmax(htup, FirstCommandId, false);
4143 /* Mark the page as a candidate for pruning */
4144 PageSetPrunable(page, record->xl_xid);
4146 /* Make sure there is no forward chain link in t_ctid */
4147 htup->t_ctid = xlrec->target.tid;
4148 PageSetLSN(page, lsn);
4149 PageSetTLI(page, ThisTimeLineID);
4150 MarkBufferDirty(buffer);
4151 UnlockReleaseBuffer(buffer);
4154 static void
4155 heap_xlog_insert(XLogRecPtr lsn, XLogRecord *record)
4157 xl_heap_insert *xlrec = (xl_heap_insert *) XLogRecGetData(record);
4158 Relation reln;
4159 Buffer buffer;
4160 Page page;
4161 OffsetNumber offnum;
4162 struct
4164 HeapTupleHeaderData hdr;
4165 char data[MaxHeapTupleSize];
4166 } tbuf;
4167 HeapTupleHeader htup;
4168 xl_heap_header xlhdr;
4169 uint32 newlen;
4171 if (record->xl_info & XLR_BKP_BLOCK_1)
4172 return;
4174 reln = XLogOpenRelation(xlrec->target.node);
4176 if (record->xl_info & XLOG_HEAP_INIT_PAGE)
4178 buffer = XLogReadBuffer(reln,
4179 ItemPointerGetBlockNumber(&(xlrec->target.tid)),
4180 true);
4181 Assert(BufferIsValid(buffer));
4182 page = (Page) BufferGetPage(buffer);
4184 PageInit(page, BufferGetPageSize(buffer), 0);
4186 else
4188 buffer = XLogReadBuffer(reln,
4189 ItemPointerGetBlockNumber(&(xlrec->target.tid)),
4190 false);
4191 if (!BufferIsValid(buffer))
4192 return;
4193 page = (Page) BufferGetPage(buffer);
4195 if (XLByteLE(lsn, PageGetLSN(page))) /* changes are applied */
4197 UnlockReleaseBuffer(buffer);
4198 return;
4202 offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid));
4203 if (PageGetMaxOffsetNumber(page) + 1 < offnum)
4204 elog(PANIC, "heap_insert_redo: invalid max offset number");
4206 newlen = record->xl_len - SizeOfHeapInsert - SizeOfHeapHeader;
4207 Assert(newlen <= MaxHeapTupleSize);
4208 memcpy((char *) &xlhdr,
4209 (char *) xlrec + SizeOfHeapInsert,
4210 SizeOfHeapHeader);
4211 htup = &tbuf.hdr;
4212 MemSet((char *) htup, 0, sizeof(HeapTupleHeaderData));
4213 /* PG73FORMAT: get bitmap [+ padding] [+ oid] + data */
4214 memcpy((char *) htup + offsetof(HeapTupleHeaderData, t_bits),
4215 (char *) xlrec + SizeOfHeapInsert + SizeOfHeapHeader,
4216 newlen);
4217 newlen += offsetof(HeapTupleHeaderData, t_bits);
4218 htup->t_infomask2 = xlhdr.t_infomask2;
4219 htup->t_infomask = xlhdr.t_infomask;
4220 htup->t_hoff = xlhdr.t_hoff;
4221 HeapTupleHeaderSetXmin(htup, record->xl_xid);
4222 HeapTupleHeaderSetCmin(htup, FirstCommandId);
4223 htup->t_ctid = xlrec->target.tid;
4225 offnum = PageAddItem(page, (Item) htup, newlen, offnum, true, true);
4226 if (offnum == InvalidOffsetNumber)
4227 elog(PANIC, "heap_insert_redo: failed to add tuple");
4228 PageSetLSN(page, lsn);
4229 PageSetTLI(page, ThisTimeLineID);
4230 MarkBufferDirty(buffer);
4231 UnlockReleaseBuffer(buffer);
4235 * Handles UPDATE, HOT_UPDATE & MOVE
4237 static void
4238 heap_xlog_update(XLogRecPtr lsn, XLogRecord *record, bool move, bool hot_update)
4240 xl_heap_update *xlrec = (xl_heap_update *) XLogRecGetData(record);
4241 Relation reln = XLogOpenRelation(xlrec->target.node);
4242 Buffer buffer;
4243 bool samepage = (ItemPointerGetBlockNumber(&(xlrec->newtid)) ==
4244 ItemPointerGetBlockNumber(&(xlrec->target.tid)));
4245 Page page;
4246 OffsetNumber offnum;
4247 ItemId lp = NULL;
4248 HeapTupleHeader htup;
4249 struct
4251 HeapTupleHeaderData hdr;
4252 char data[MaxHeapTupleSize];
4253 } tbuf;
4254 xl_heap_header xlhdr;
4255 int hsize;
4256 uint32 newlen;
4258 if (record->xl_info & XLR_BKP_BLOCK_1)
4260 if (samepage)
4261 return; /* backup block covered both changes */
4262 goto newt;
4265 /* Deal with old tuple version */
4267 buffer = XLogReadBuffer(reln,
4268 ItemPointerGetBlockNumber(&(xlrec->target.tid)),
4269 false);
4270 if (!BufferIsValid(buffer))
4271 goto newt;
4272 page = (Page) BufferGetPage(buffer);
4274 if (XLByteLE(lsn, PageGetLSN(page))) /* changes are applied */
4276 UnlockReleaseBuffer(buffer);
4277 if (samepage)
4278 return;
4279 goto newt;
4282 offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid));
4283 if (PageGetMaxOffsetNumber(page) >= offnum)
4284 lp = PageGetItemId(page, offnum);
4286 if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
4287 elog(PANIC, "heap_update_redo: invalid lp");
4289 htup = (HeapTupleHeader) PageGetItem(page, lp);
4291 if (move)
4293 htup->t_infomask &= ~(HEAP_XMIN_COMMITTED |
4294 HEAP_XMIN_INVALID |
4295 HEAP_MOVED_IN);
4296 htup->t_infomask |= HEAP_MOVED_OFF;
4297 HeapTupleHeaderClearHotUpdated(htup);
4298 HeapTupleHeaderSetXvac(htup, record->xl_xid);
4299 /* Make sure there is no forward chain link in t_ctid */
4300 htup->t_ctid = xlrec->target.tid;
4302 else
4304 htup->t_infomask &= ~(HEAP_XMAX_COMMITTED |
4305 HEAP_XMAX_INVALID |
4306 HEAP_XMAX_IS_MULTI |
4307 HEAP_IS_LOCKED |
4308 HEAP_MOVED);
4309 if (hot_update)
4310 HeapTupleHeaderSetHotUpdated(htup);
4311 else
4312 HeapTupleHeaderClearHotUpdated(htup);
4313 HeapTupleHeaderSetXmax(htup, record->xl_xid);
4314 HeapTupleHeaderSetCmax(htup, FirstCommandId, false);
4315 /* Set forward chain link in t_ctid */
4316 htup->t_ctid = xlrec->newtid;
4319 /* Mark the page as a candidate for pruning */
4320 PageSetPrunable(page, record->xl_xid);
4323 * this test is ugly, but necessary to avoid thinking that insert change
4324 * is already applied
4326 if (samepage)
4327 goto newsame;
4328 PageSetLSN(page, lsn);
4329 PageSetTLI(page, ThisTimeLineID);
4330 MarkBufferDirty(buffer);
4331 UnlockReleaseBuffer(buffer);
4333 /* Deal with new tuple */
4335 newt:;
4337 if (record->xl_info & XLR_BKP_BLOCK_2)
4338 return;
4340 if (record->xl_info & XLOG_HEAP_INIT_PAGE)
4342 buffer = XLogReadBuffer(reln,
4343 ItemPointerGetBlockNumber(&(xlrec->newtid)),
4344 true);
4345 Assert(BufferIsValid(buffer));
4346 page = (Page) BufferGetPage(buffer);
4348 PageInit(page, BufferGetPageSize(buffer), 0);
4350 else
4352 buffer = XLogReadBuffer(reln,
4353 ItemPointerGetBlockNumber(&(xlrec->newtid)),
4354 false);
4355 if (!BufferIsValid(buffer))
4356 return;
4357 page = (Page) BufferGetPage(buffer);
4359 if (XLByteLE(lsn, PageGetLSN(page))) /* changes are applied */
4361 UnlockReleaseBuffer(buffer);
4362 return;
4366 newsame:;
4368 offnum = ItemPointerGetOffsetNumber(&(xlrec->newtid));
4369 if (PageGetMaxOffsetNumber(page) + 1 < offnum)
4370 elog(PANIC, "heap_update_redo: invalid max offset number");
4372 hsize = SizeOfHeapUpdate + SizeOfHeapHeader;
4373 if (move)
4374 hsize += (2 * sizeof(TransactionId));
4376 newlen = record->xl_len - hsize;
4377 Assert(newlen <= MaxHeapTupleSize);
4378 memcpy((char *) &xlhdr,
4379 (char *) xlrec + SizeOfHeapUpdate,
4380 SizeOfHeapHeader);
4381 htup = &tbuf.hdr;
4382 MemSet((char *) htup, 0, sizeof(HeapTupleHeaderData));
4383 /* PG73FORMAT: get bitmap [+ padding] [+ oid] + data */
4384 memcpy((char *) htup + offsetof(HeapTupleHeaderData, t_bits),
4385 (char *) xlrec + hsize,
4386 newlen);
4387 newlen += offsetof(HeapTupleHeaderData, t_bits);
4388 htup->t_infomask2 = xlhdr.t_infomask2;
4389 htup->t_infomask = xlhdr.t_infomask;
4390 htup->t_hoff = xlhdr.t_hoff;
4392 if (move)
4394 TransactionId xid[2]; /* xmax, xmin */
4396 memcpy((char *) xid,
4397 (char *) xlrec + SizeOfHeapUpdate + SizeOfHeapHeader,
4398 2 * sizeof(TransactionId));
4399 HeapTupleHeaderSetXmin(htup, xid[1]);
4400 HeapTupleHeaderSetXmax(htup, xid[0]);
4401 HeapTupleHeaderSetXvac(htup, record->xl_xid);
4403 else
4405 HeapTupleHeaderSetXmin(htup, record->xl_xid);
4406 HeapTupleHeaderSetCmin(htup, FirstCommandId);
4408 /* Make sure there is no forward chain link in t_ctid */
4409 htup->t_ctid = xlrec->newtid;
4411 offnum = PageAddItem(page, (Item) htup, newlen, offnum, true, true);
4412 if (offnum == InvalidOffsetNumber)
4413 elog(PANIC, "heap_update_redo: failed to add tuple");
4414 PageSetLSN(page, lsn);
4415 PageSetTLI(page, ThisTimeLineID);
4416 MarkBufferDirty(buffer);
4417 UnlockReleaseBuffer(buffer);
4420 static void
4421 heap_xlog_lock(XLogRecPtr lsn, XLogRecord *record)
4423 xl_heap_lock *xlrec = (xl_heap_lock *) XLogRecGetData(record);
4424 Relation reln;
4425 Buffer buffer;
4426 Page page;
4427 OffsetNumber offnum;
4428 ItemId lp = NULL;
4429 HeapTupleHeader htup;
4431 if (record->xl_info & XLR_BKP_BLOCK_1)
4432 return;
4434 reln = XLogOpenRelation(xlrec->target.node);
4435 buffer = XLogReadBuffer(reln,
4436 ItemPointerGetBlockNumber(&(xlrec->target.tid)),
4437 false);
4438 if (!BufferIsValid(buffer))
4439 return;
4440 page = (Page) BufferGetPage(buffer);
4442 if (XLByteLE(lsn, PageGetLSN(page))) /* changes are applied */
4444 UnlockReleaseBuffer(buffer);
4445 return;
4448 offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid));
4449 if (PageGetMaxOffsetNumber(page) >= offnum)
4450 lp = PageGetItemId(page, offnum);
4452 if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
4453 elog(PANIC, "heap_lock_redo: invalid lp");
4455 htup = (HeapTupleHeader) PageGetItem(page, lp);
4457 htup->t_infomask &= ~(HEAP_XMAX_COMMITTED |
4458 HEAP_XMAX_INVALID |
4459 HEAP_XMAX_IS_MULTI |
4460 HEAP_IS_LOCKED |
4461 HEAP_MOVED);
4462 if (xlrec->xid_is_mxact)
4463 htup->t_infomask |= HEAP_XMAX_IS_MULTI;
4464 if (xlrec->shared_lock)
4465 htup->t_infomask |= HEAP_XMAX_SHARED_LOCK;
4466 else
4467 htup->t_infomask |= HEAP_XMAX_EXCL_LOCK;
4468 HeapTupleHeaderClearHotUpdated(htup);
4469 HeapTupleHeaderSetXmax(htup, xlrec->locking_xid);
4470 HeapTupleHeaderSetCmax(htup, FirstCommandId, false);
4471 /* Make sure there is no forward chain link in t_ctid */
4472 htup->t_ctid = xlrec->target.tid;
4473 PageSetLSN(page, lsn);
4474 PageSetTLI(page, ThisTimeLineID);
4475 MarkBufferDirty(buffer);
4476 UnlockReleaseBuffer(buffer);
4479 static void
4480 heap_xlog_inplace(XLogRecPtr lsn, XLogRecord *record)
4482 xl_heap_inplace *xlrec = (xl_heap_inplace *) XLogRecGetData(record);
4483 Relation reln = XLogOpenRelation(xlrec->target.node);
4484 Buffer buffer;
4485 Page page;
4486 OffsetNumber offnum;
4487 ItemId lp = NULL;
4488 HeapTupleHeader htup;
4489 uint32 oldlen;
4490 uint32 newlen;
4492 if (record->xl_info & XLR_BKP_BLOCK_1)
4493 return;
4495 buffer = XLogReadBuffer(reln,
4496 ItemPointerGetBlockNumber(&(xlrec->target.tid)),
4497 false);
4498 if (!BufferIsValid(buffer))
4499 return;
4500 page = (Page) BufferGetPage(buffer);
4502 if (XLByteLE(lsn, PageGetLSN(page))) /* changes are applied */
4504 UnlockReleaseBuffer(buffer);
4505 return;
4508 offnum = ItemPointerGetOffsetNumber(&(xlrec->target.tid));
4509 if (PageGetMaxOffsetNumber(page) >= offnum)
4510 lp = PageGetItemId(page, offnum);
4512 if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
4513 elog(PANIC, "heap_inplace_redo: invalid lp");
4515 htup = (HeapTupleHeader) PageGetItem(page, lp);
4517 oldlen = ItemIdGetLength(lp) - htup->t_hoff;
4518 newlen = record->xl_len - SizeOfHeapInplace;
4519 if (oldlen != newlen)
4520 elog(PANIC, "heap_inplace_redo: wrong tuple length");
4522 memcpy((char *) htup + htup->t_hoff,
4523 (char *) xlrec + SizeOfHeapInplace,
4524 newlen);
4526 PageSetLSN(page, lsn);
4527 PageSetTLI(page, ThisTimeLineID);
4528 MarkBufferDirty(buffer);
4529 UnlockReleaseBuffer(buffer);
4532 void
4533 heap_redo(XLogRecPtr lsn, XLogRecord *record)
4535 uint8 info = record->xl_info & ~XLR_INFO_MASK;
4537 switch (info & XLOG_HEAP_OPMASK)
4539 case XLOG_HEAP_INSERT:
4540 heap_xlog_insert(lsn, record);
4541 break;
4542 case XLOG_HEAP_DELETE:
4543 heap_xlog_delete(lsn, record);
4544 break;
4545 case XLOG_HEAP_UPDATE:
4546 heap_xlog_update(lsn, record, false, false);
4547 break;
4548 case XLOG_HEAP_MOVE:
4549 heap_xlog_update(lsn, record, true, false);
4550 break;
4551 case XLOG_HEAP_HOT_UPDATE:
4552 heap_xlog_update(lsn, record, false, true);
4553 break;
4554 case XLOG_HEAP_NEWPAGE:
4555 heap_xlog_newpage(lsn, record);
4556 break;
4557 case XLOG_HEAP_LOCK:
4558 heap_xlog_lock(lsn, record);
4559 break;
4560 case XLOG_HEAP_INPLACE:
4561 heap_xlog_inplace(lsn, record);
4562 break;
4563 default:
4564 elog(PANIC, "heap_redo: unknown op code %u", info);
4568 void
4569 heap2_redo(XLogRecPtr lsn, XLogRecord *record)
4571 uint8 info = record->xl_info & ~XLR_INFO_MASK;
4573 switch (info & XLOG_HEAP_OPMASK)
4575 case XLOG_HEAP2_FREEZE:
4576 heap_xlog_freeze(lsn, record);
4577 break;
4578 case XLOG_HEAP2_CLEAN:
4579 heap_xlog_clean(lsn, record, false);
4580 break;
4581 case XLOG_HEAP2_CLEAN_MOVE:
4582 heap_xlog_clean(lsn, record, true);
4583 break;
4584 default:
4585 elog(PANIC, "heap2_redo: unknown op code %u", info);
4589 static void
4590 out_target(StringInfo buf, xl_heaptid *target)
4592 appendStringInfo(buf, "rel %u/%u/%u; tid %u/%u",
4593 target->node.spcNode, target->node.dbNode, target->node.relNode,
4594 ItemPointerGetBlockNumber(&(target->tid)),
4595 ItemPointerGetOffsetNumber(&(target->tid)));
4598 void
4599 heap_desc(StringInfo buf, uint8 xl_info, char *rec)
4601 uint8 info = xl_info & ~XLR_INFO_MASK;
4603 info &= XLOG_HEAP_OPMASK;
4604 if (info == XLOG_HEAP_INSERT)
4606 xl_heap_insert *xlrec = (xl_heap_insert *) rec;
4608 if (xl_info & XLOG_HEAP_INIT_PAGE)
4609 appendStringInfo(buf, "insert(init): ");
4610 else
4611 appendStringInfo(buf, "insert: ");
4612 out_target(buf, &(xlrec->target));
4614 else if (info == XLOG_HEAP_DELETE)
4616 xl_heap_delete *xlrec = (xl_heap_delete *) rec;
4618 appendStringInfo(buf, "delete: ");
4619 out_target(buf, &(xlrec->target));
4621 else if (info == XLOG_HEAP_UPDATE)
4623 xl_heap_update *xlrec = (xl_heap_update *) rec;
4625 if (xl_info & XLOG_HEAP_INIT_PAGE)
4626 appendStringInfo(buf, "update(init): ");
4627 else
4628 appendStringInfo(buf, "update: ");
4629 out_target(buf, &(xlrec->target));
4630 appendStringInfo(buf, "; new %u/%u",
4631 ItemPointerGetBlockNumber(&(xlrec->newtid)),
4632 ItemPointerGetOffsetNumber(&(xlrec->newtid)));
4634 else if (info == XLOG_HEAP_MOVE)
4636 xl_heap_update *xlrec = (xl_heap_update *) rec;
4638 if (xl_info & XLOG_HEAP_INIT_PAGE)
4639 appendStringInfo(buf, "move(init): ");
4640 else
4641 appendStringInfo(buf, "move: ");
4642 out_target(buf, &(xlrec->target));
4643 appendStringInfo(buf, "; new %u/%u",
4644 ItemPointerGetBlockNumber(&(xlrec->newtid)),
4645 ItemPointerGetOffsetNumber(&(xlrec->newtid)));
4647 else if (info == XLOG_HEAP_HOT_UPDATE)
4649 xl_heap_update *xlrec = (xl_heap_update *) rec;
4651 if (xl_info & XLOG_HEAP_INIT_PAGE) /* can this case happen? */
4652 appendStringInfo(buf, "hot_update(init): ");
4653 else
4654 appendStringInfo(buf, "hot_update: ");
4655 out_target(buf, &(xlrec->target));
4656 appendStringInfo(buf, "; new %u/%u",
4657 ItemPointerGetBlockNumber(&(xlrec->newtid)),
4658 ItemPointerGetOffsetNumber(&(xlrec->newtid)));
4660 else if (info == XLOG_HEAP_NEWPAGE)
4662 xl_heap_newpage *xlrec = (xl_heap_newpage *) rec;
4664 appendStringInfo(buf, "newpage: rel %u/%u/%u; blk %u",
4665 xlrec->node.spcNode, xlrec->node.dbNode,
4666 xlrec->node.relNode, xlrec->blkno);
4668 else if (info == XLOG_HEAP_LOCK)
4670 xl_heap_lock *xlrec = (xl_heap_lock *) rec;
4672 if (xlrec->shared_lock)
4673 appendStringInfo(buf, "shared_lock: ");
4674 else
4675 appendStringInfo(buf, "exclusive_lock: ");
4676 if (xlrec->xid_is_mxact)
4677 appendStringInfo(buf, "mxid ");
4678 else
4679 appendStringInfo(buf, "xid ");
4680 appendStringInfo(buf, "%u ", xlrec->locking_xid);
4681 out_target(buf, &(xlrec->target));
4683 else if (info == XLOG_HEAP_INPLACE)
4685 xl_heap_inplace *xlrec = (xl_heap_inplace *) rec;
4687 appendStringInfo(buf, "inplace: ");
4688 out_target(buf, &(xlrec->target));
4690 else
4691 appendStringInfo(buf, "UNKNOWN");
4694 void
4695 heap2_desc(StringInfo buf, uint8 xl_info, char *rec)
4697 uint8 info = xl_info & ~XLR_INFO_MASK;
4699 info &= XLOG_HEAP_OPMASK;
4700 if (info == XLOG_HEAP2_FREEZE)
4702 xl_heap_freeze *xlrec = (xl_heap_freeze *) rec;
4704 appendStringInfo(buf, "freeze: rel %u/%u/%u; blk %u; cutoff %u",
4705 xlrec->node.spcNode, xlrec->node.dbNode,
4706 xlrec->node.relNode, xlrec->block,
4707 xlrec->cutoff_xid);
4709 else if (info == XLOG_HEAP2_CLEAN)
4711 xl_heap_clean *xlrec = (xl_heap_clean *) rec;
4713 appendStringInfo(buf, "clean: rel %u/%u/%u; blk %u",
4714 xlrec->node.spcNode, xlrec->node.dbNode,
4715 xlrec->node.relNode, xlrec->block);
4717 else if (info == XLOG_HEAP2_CLEAN_MOVE)
4719 xl_heap_clean *xlrec = (xl_heap_clean *) rec;
4721 appendStringInfo(buf, "clean_move: rel %u/%u/%u; blk %u",
4722 xlrec->node.spcNode, xlrec->node.dbNode,
4723 xlrec->node.relNode, xlrec->block);
4725 else
4726 appendStringInfo(buf, "UNKNOWN");
4730 * heap_sync - sync a heap, for use when no WAL has been written
4732 * This forces the heap contents (including TOAST heap if any) down to disk.
4733 * If we skipped using WAL, and it's not a temp relation, we must force the
4734 * relation down to disk before it's safe to commit the transaction. This
4735 * requires writing out any dirty buffers and then doing a forced fsync.
4737 * Indexes are not touched. (Currently, index operations associated with
4738 * the commands that use this are WAL-logged and so do not need fsync.
4739 * That behavior might change someday, but in any case it's likely that
4740 * any fsync decisions required would be per-index and hence not appropriate
4741 * to be done here.)
4743 void
4744 heap_sync(Relation rel)
4746 /* temp tables never need fsync */
4747 if (rel->rd_istemp)
4748 return;
4750 /* main heap */
4751 FlushRelationBuffers(rel);
4752 /* FlushRelationBuffers will have opened rd_smgr */
4753 smgrimmedsync(rel->rd_smgr);
4755 /* toast heap, if any */
4756 if (OidIsValid(rel->rd_rel->reltoastrelid))
4758 Relation toastrel;
4760 toastrel = heap_open(rel->rd_rel->reltoastrelid, AccessShareLock);
4761 FlushRelationBuffers(toastrel);
4762 smgrimmedsync(toastrel->rd_smgr);
4763 heap_close(toastrel, AccessShareLock);