1 %module
"Math::GSL::Randist"
4 void gsl_ran_dir_2d
(const gsl_rng
* r
, double
*OUTPUT, double
*OUTPUT);
5 void gsl_ran_dir_2d_trig_method
(const gsl_rng
* r
, double
*OUTPUT, double
*OUTPUT);
6 void gsl_ran_dir_3d
(const gsl_rng
* r
, double
*OUTPUT, double
*OUTPUT, double
*OUTPUT);
7 void gsl_ran_bivariate_gaussian
(const gsl_rng
* r
, double sigma_x
, double sigma_y
, double rho
, double
*OUTPUT, double
*OUTPUT);
16 croak
("Argument $argnum is not a reference.");
17 if
(SvTYPE
(SvRV
($input
)) != SVt_PVAV
)
18 croak
("Argument $argnum is not an array.");
20 tempav
= (AV
*)SvRV
($input
);
22 $
1 = (int
**) malloc
((len
+2)*sizeof
(int
*));
23 for
(i
= 0; i
<= len
; i
++) {
24 tv
= av_fetch
(tempav
, i
, 0);
26 memset
((int
*)($
1+i
), x
, 1);
27 //printf
("curr = %d\n", (int
)($
1+i
) );
30 %typemap
(freearg
) void
* {
35 #include
"gsl/gsl_randist.h"
37 %include
"gsl/gsl_randist.h"
41 our @EXPORT_OK
= qw
/gsl_ran_bernoulli gsl_ran_bernoulli_pdf gsl_ran_beta
42 gsl_ran_beta_pdf gsl_ran_binomial gsl_ran_binomial_knuth
43 gsl_ran_binomial_tpe gsl_ran_binomial_pdf gsl_ran_exponential
44 gsl_ran_exponential_pdf gsl_ran_exppow gsl_ran_exppow_pdf
45 gsl_ran_cauchy gsl_ran_cauchy_pdf gsl_ran_chisq
46 gsl_ran_chisq_pdf gsl_ran_dirichlet gsl_ran_dirichlet_pdf
47 gsl_ran_dirichlet_lnpdf gsl_ran_erlang gsl_ran_erlang_pdf
48 gsl_ran_fdist gsl_ran_fdist_pdf gsl_ran_flat
49 gsl_ran_flat_pdf gsl_ran_gamma gsl_ran_gamma_int
50 gsl_ran_gamma_pdf gsl_ran_gamma_mt gsl_ran_gamma_knuth
51 gsl_ran_gaussian gsl_ran_gaussian_ratio_method gsl_ran_gaussian_ziggurat
52 gsl_ran_gaussian_pdf gsl_ran_ugaussian gsl_ran_ugaussian_ratio_method
53 gsl_ran_ugaussian_pdf gsl_ran_gaussian_tail gsl_ran_gaussian_tail_pdf
54 gsl_ran_ugaussian_tail gsl_ran_ugaussian_tail_pdf gsl_ran_bivariate_gaussian
55 gsl_ran_bivariate_gaussian_pdf gsl_ran_landau gsl_ran_landau_pdf
56 gsl_ran_geometric gsl_ran_geometric_pdf gsl_ran_hypergeometric
57 gsl_ran_hypergeometric_pdf gsl_ran_gumbel1 gsl_ran_gumbel1_pdf
58 gsl_ran_gumbel2 gsl_ran_gumbel2_pdf gsl_ran_logistic
59 gsl_ran_logistic_pdf gsl_ran_lognormal gsl_ran_lognormal_pdf
60 gsl_ran_logarithmic gsl_ran_logarithmic_pdf gsl_ran_multinomial
61 gsl_ran_multinomial_pdf gsl_ran_multinomial_lnpdf
62 gsl_ran_negative_binomial gsl_ran_negative_binomial_pdf gsl_ran_pascal
63 gsl_ran_pascal_pdf gsl_ran_pareto gsl_ran_pareto_pdf
64 gsl_ran_poisson gsl_ran_poisson_array
65 gsl_ran_poisson_pdf gsl_ran_rayleigh gsl_ran_rayleigh_pdf
66 gsl_ran_rayleigh_tail gsl_ran_rayleigh_tail_pdf gsl_ran_tdist
67 gsl_ran_tdist_pdf gsl_ran_laplace gsl_ran_laplace_pdf
68 gsl_ran_levy gsl_ran_levy_skew gsl_ran_weibull
69 gsl_ran_weibull_pdf gsl_ran_dir_2d gsl_ran_dir_2d_trig_method
70 gsl_ran_dir_3d gsl_ran_dir_nd gsl_ran_shuffle
71 gsl_ran_choose gsl_ran_sample
72 gsl_ran_discrete_t gsl_ran_discrete_free gsl_ran_discrete_preproc
73 gsl_ran_discrete gsl_ran_discrete_pdf
77 all
=> [ @EXPORT_OK
],
78 logarithmic
=> [ gsl_ran_logarithmic
, gsl_ran_logarithmic_pdf
],
79 choose
=> [ gsl_ran_choose
],
80 exponential
=> [ gsl_ran_exponential
, gsl_ran_exponential_pdf
],
81 gumbel1
=> [ gsl_ran_gumbel1
, gsl_ran_gumbel1_pdf
],
82 exppow
=> [ gsl_ran_exppow
, gsl_ran_exppow_pdf
],
83 sample
=> [ gsl_ran_sample
],
84 logistic
=> [ gsl_ran_logistic
, gsl_ran_logistic_pdf
],
86 gsl_ran_gaussian
, gsl_ran_gaussian_ratio_method
, gsl_ran_gaussian_ziggurat
,
87 gsl_ran_gaussian_pdf
, gsl_ran_gaussian_tail
, gsl_ran_gaussian_tail_pdf
89 poisson
=> [ gsl_ran_poisson
, gsl_ran_poisson_array
, gsl_ran_poisson_pdf
],
90 binomial
=> [ gsl_ran_binomial
, gsl_ran_binomial_knuth
, gsl_ran_binomial_tpe
,
91 gsl_ran_binomial_pdf
],
92 fdist
=> [ gsl_ran_fdist
, gsl_ran_fdist_pdf
],
93 chisq
=> [ gsl_ran_chisq
, gsl_ran_chisq_pdf
],
94 gamma
=> [ gsl_ran_gamma
, gsl_ran_gamma_int
, gsl_ran_gamma_pdf
, gsl_ran_gamma_mt
, gsl_ran_gamma_knuth
],
95 hypergeometric
=> [ gsl_ran_hypergeometric
, gsl_ran_hypergeometric_pdf
],
96 dirichlet
=> [ gsl_ran_dirichlet
, gsl_ran_dirichlet_pdf
, gsl_ran_dirichlet_lnpdf
],
97 negative
=> [ gsl_ran_negative_binomial
, gsl_ran_negative_binomial_pdf
],
98 flat
=> [ gsl_ran_flat
, gsl_ran_flat_pdf
],
99 geometric
=> [ gsl_ran_geometric
, gsl_ran_geometric_pdf
],
100 discrete
=> [ gsl_ran_discrete
, gsl_ran_discrete_pdf
],
101 tdist
=> [ gsl_ran_tdist
, gsl_ran_tdist_pdf
],
102 ugaussian
=> [ gsl_ran_ugaussian
, gsl_ran_ugaussian_ratio_method
, gsl_ran_ugaussian_pdf
,
103 gsl_ran_ugaussian_tail
, gsl_ran_ugaussian_tail_pdf
],
104 rayleigh
=> [ gsl_ran_rayleigh
, gsl_ran_rayleigh_pdf
, gsl_ran_rayleigh_tail
,
105 gsl_ran_rayleigh_tail_pdf
],
106 dir
=> [ gsl_ran_dir_2d
, gsl_ran_dir_2d_trig_method
, gsl_ran_dir_3d
, gsl_ran_dir_nd
],
107 pascal
=> [ gsl_ran_pascal
, gsl_ran_pascal_pdf
],
108 gumbel2
=> [ gsl_ran_gumbel2
, gsl_ran_gumbel2_pdf
],
109 shuffle
=> [ gsl_ran_shuffle
],
110 landau
=> [ gsl_ran_landau
, gsl_ran_landau_pdf
],
111 bernoulli
=> [ gsl_ran_bernoulli
, gsl_ran_bernoulli_pdf
],
112 weibull
=> [ gsl_ran_weibull
, gsl_ran_weibull_pdf
],
113 multinomial
=> [ gsl_ran_multinomial
, gsl_ran_multinomial_pdf
, gsl_ran_multinomial_lnpdf
],
114 beta
=> [ gsl_ran_beta
, gsl_ran_beta_pdf
],
115 lognormal
=> [ gsl_ran_lognormal
, gsl_ran_lognormal_pdf
],
116 laplace
=> [ gsl_ran_laplace
, gsl_ran_laplace_pdf
],
117 erlang
=> [ gsl_ran_erlang
, gsl_ran_erlang_pdf
],
118 cauchy
=> [ gsl_ran_cauchy
, gsl_ran_cauchy_pdf
],
119 levy
=> [ gsl_ran_levy
, gsl_ran_levy_skew
],
120 bivariate
=> [ gsl_ran_bivariate_gaussian
, gsl_ran_bivariate_gaussian_pdf
],
121 pareto
=> [ gsl_ran_pareto
, gsl_ran_pareto_pdf
]
128 Math
::GSL
::Randist
- Probability Distributions
132 use Math
::GSL
::Randist qw
/:all
/;
136 Here is a list of all the functions included in this module
:
140 =item gsl_ran_bernoulli
($r
, $p
) - This function returns either
0 or
1, the result of a Bernoulli trial with probability $p. The probability distribution for a Bernoulli trial is
, p
(0) = 1 - $p and p
(1) = $p. $r is a gsl_rng structure.
142 =item gsl_ran_bernoulli_pdf
($k
, $p
) - This function computes the probability p
($k
) of obtaining $k from a Bernoulli distribution with probability parameter $p
, using the formula given above.
144 =item gsl_ran_beta
($r
, $a
, $b
) - This function returns a random variate from the beta distribution. The distribution function is
, p
($x
) dx
= {Gamma
($a
+$b
) \ Gamma
($a
) Gamma
($b
)} $x
**{$a-1
} (1-$x
)**{$b-1
} dx for
0 <= $x
<= 1.$r is a gsl_rng structure.
146 =item gsl_ran_beta_pdf
($x
, $a
, $b
) - This function computes the probability density p
($x
) at $x for a beta distribution with parameters $a and $b
, using the formula given above.
148 =item gsl_ran_binomial
($k
, $p
, $n
) - This function returns a random integer from the binomial distribution
, the number of successes in n independent trials with probability $p. The probability distribution for binomial variates is p
($k
) = {$n
! \ $k
! ($n-$k
)! } $p
**$k
(1-$p
)^
{$n-$k
} for
0 <= $k
<= $n.
150 =item gsl_ran_binomial_knuth
152 =item gsl_ran_binomial_tpe
154 =item gsl_ran_binomial_pdf
($k
, $p
, $n
) - This function computes the probability p
($k
) of obtaining $k from a binomial distribution with parameters $p and $n
, using the formula given above.
156 =item gsl_ran_exponential
($r
, $mu
) - This function returns a random variate from the exponential distribution with mean $mu. The distribution is
, p
($x
) dx
= {1 \ $mu
} exp
(-$x
/$mu
) dx for $x
>= 0. $r is a gsl_rng structure.
158 =item gsl_ran_exponential_pdf
($x
, $mu
) - This function computes the probability density p
($x
) at $x for an exponential distribution with mean $mu
, using the formula given above.
160 =item gsl_ran_exppow
($r
, $a
, $b
) - This function returns a random variate from the exponential power distribution with scale parameter $a and exponent $b. The distribution is
, p
(x
) dx
= {1 / 2 $a Gamma
(1+1/$b
)} exp
(-|$x
/$a|
**$b
) dx for $x
>= 0. For $b
= 1 this reduces to the Laplace distribution. For $b
= 2 it has the same form as a gaussian distribution
, but with $a
= sqrt
(2) sigma. $r is a gsl_rng structure.
162 =item gsl_ran_exppow_pdf
($x
, $a
, $b
) - This function computes the probability density p
($x
) at $x for an exponential power distribution with scale parameter $a and exponent $b
, using the formula given above.
164 =item gsl_ran_cauchy
($r
, $a
) - This function returns a random variate from the Cauchy distribution with scale parameter $a. The probability distribution for Cauchy random variates is
, p
(x
) dx
= {1 / a pi
(1 + (x
/$a
)**2) } dx for x in the range
-infinity to
+infinity. The Cauchy distribution is also known as the Lorentz distribution. $r is a gsl_rng structure.
166 =item gsl_ran_cauchy_pdf
($x
, $a
) - This function computes the probability density p
($x
) at $x for a Cauchy distribution with scale parameter $a
, using the formula given above.
168 =item gsl_ran_chisq
($r
, $nu
) - This function returns a random variate from the chi-squared distribution with $nu degrees of freedom. The distribution function is
, p
(x
) dx
= {1 / 2 Gamma
($nu
/2) } (x
/2)**{$nu
/2 - 1} exp
(-x
/2) dx for $x
>= 0. $r is a gsl_rng structure.
170 =item gsl_ran_chisq_pdf
($x
, $nu
) - This function computes the probability density p
($x
) at $x for a chi-squared distribution with $nu degrees of freedom
, using the formula given above.
172 =item gsl_ran_dirichlet
174 =item gsl_ran_dirichlet_pdf
176 =item gsl_ran_dirichlet_lnpdf
180 =item gsl_ran_erlang_pdf
182 =item gsl_ran_fdist
($r
, $nu1
, $nu2
) - This function returns a random variate from the F-distribution with degrees of freedom nu1 and nu2. The distribution function is
, p
(x
) dx
= { Gamma
(($nu_1
+ $nu_2
)/2) / Gamma
($nu_1
/2) Gamma
($nu_2
/2) } $nu_1
**{$nu_1
/2} $nu_2
**{$nu_2
/2} x
**{$nu_1
/2 - 1} ($nu_2
+ $nu_1 x
)**{-$nu_1
/2 -$nu_2
/2} for $x
>= 0. $r is a gsl_rng structure.
184 =item gsl_ran_fdist_pdf
($x
, $nu1
, $nu2
) - This function computes the probability density p
(x
) at x for an F-distribution with nu1 and nu2 degrees of freedom
, using the formula given above.
186 =item gsl_ran_flat
($r
, $a
, $b
) - This function returns a random variate from the flat
(uniform
) distribution from a to b. The distribution is
, p
(x
) dx
= {1 / ($b-$a
)} dx if $a
<= x
< $b and
0 otherwise. $r is a gsl_rng structure.
188 =item gsl_ran_flat_pdf
($x
, $a
, $b
) - This function computes the probability density p
($x
) at $x for a uniform distribution from $a to $b
, using the formula given above.
190 =item gsl_ran_gamma
($r
, $a
, $b
) - This function returns a random variate from the flat
(uniform
) distribution from $a to $b. The distribution is
, p
(x
) dx
= {1 / ($b-$a
)} dx if $a
<= x
< $b and
0 otherwise. $r is a gsl_rng structure.
192 =item gsl_ran_gamma_int
194 =item gsl_ran_gamma_pdf
($x
, $a
, $b
) - This function computes the probability density p
($x
) at $x for a uniform distribution from $a to $b
, using the formula given above.
196 =item gsl_ran_gamma_mt
198 =item gsl_ran_gamma_knuth
200 =item gsl_ran_gaussian
($r
, $sigma
) - This function returns a Gaussian random variate
, with mean zero and standard deviation $sigma. The probability distribution for Gaussian random variates is
, p
(x
) dx
= {1 / sqrt
{2 pi $sigma
**2}} exp
(-x
**2 / 2 $sigma
**2) dx for x in the range
-infinity to
+infinity. $r is a gsl_rng structure.
202 =item gsl_ran_gaussian_ratio_method
($r
, $sigma
) - This function computes a Gaussian random variate using the alternative Kinderman-Monahan-Leva ratio method.
204 =item gsl_ran_gaussian_ziggurat
($r
, $sigma
) - This function computes a Gaussian random variate using the alternative Marsaglia-Tsang ziggurat ratio method. The Ziggurat algorithm is the fastest available algorithm in most cases. $r is a gsl_rng structure.
206 =item gsl_ran_gaussian_pdf
($x
, $sigma
) - This function computes the probability density p
($x
) at $x for a Gaussian distribution with standard deviation sigma
, using the formula given above.
208 =item gsl_ran_ugaussian
($r
) - This function computes results for the unit Gaussian distribution. It is equivalent to the gaussian functions above with a standard deviation of one
, sigma
= 1. $r is a gsl_rng structure.
210 =item gsl_ran_ugaussian_ratio_method
($r
) - This function computes results for the unit Gaussian distribution. It is equivalent to the gaussian functions above with a standard deviation of one
, sigma
= 1. $r is a gsl_rng structure.
212 =item gsl_ran_ugaussian_pdf
($x
) - This function computes results for the unit Gaussian distribution. It is equivalent to the gaussian functions above with a standard deviation of one
, sigma
= 1.
214 =item gsl_ran_gaussian_tail
($r
, $a
, $sigma
) - This function provides random variates from the upper tail of a Gaussian distribution with standard deviation sigma. The values returned are larger than the lower limit a
, which must be positive. The probability distribution for Gaussian tail random variates is
, p
(x
) dx
= {1 / N
($a
; $sigma
) sqrt
{2 pi sigma
**2}} exp
(- x
**2/(2 sigma
**2)) dx for x
> $a where N
($a
; $sigma
) is the normalization constant
, N
($a
; $sigma
) = (1/2) erfc
($a
/ sqrt
(2 $sigma
**2)). $r is a gsl_rng structure.
216 =item gsl_ran_gaussian_tail_pdf
($x
, $a
, $gaussian
) - This function computes the probability density p
($x
) at $x for a Gaussian tail distribution with standard deviation sigma and lower limit $a
, using the formula given above.
218 =item gsl_ran_ugaussian_tail
($r
, $a
) - This functions compute results for the tail of a unit Gaussian distribution. It is equivalent to the functions above with a standard deviation of one
, $sigma
= 1. $r is a gsl_rng structure.
220 =item gsl_ran_ugaussian_tail_pdf
($x
, $a
) - This functions compute results for the tail of a unit Gaussian distribution. It is equivalent to the functions above with a standard deviation of one
, $sigma
= 1.
222 =item gsl_ran_bivariate_gaussian
($r
, $sigma_x
, $sigma_y
, $rho
) - This function generates a pair of correlated Gaussian variates
, with mean zero
, correlation coefficient rho and standard deviations $sigma_x and $sigma_y in the x and y directions. The first value returned is x and the second y. The probability distribution for bivariate Gaussian random variates is
, p
(x
,y
) dx dy
= {1 / 2 pi $sigma_x $sigma_y sqrt
{1-$rho
**2}} exp
(-(x
**2/$sigma_x
**2 + y
**2/$sigma_y
**2 - 2 $rho x y
/($sigma_x $sigma_y
))/2(1- $rho
**2)) dx dy for x
,y in the range
-infinity to
+infinity. The correlation coefficient $rho should lie between
1 and
-1. $r is a gsl_rng structure.
224 =item gsl_ran_bivariate_gaussian_pdf
($x
, $y
, $sigma_x
, $sigma_y
, $rho
) - This function computes the probability density p
($x
,$y
) at
($x
,$y
) for a bivariate Gaussian distribution with standard deviations $sigma_x
, $sigma_y and correlation coefficient $rho
, using the formula given above.
226 =item gsl_ran_landau
($r
) - This function returns a random variate from the Landau distribution. The probability distribution for Landau random variates is defined analytically by the complex integral
, p
(x
) = (1/(2 \pi i
)) \int_
{c-i\infty
}^
{c
+i\infty
} ds exp
(s log
(s
) + x s
) For numerical purposes it is more convenient to use the following equivalent form of the integral
, p
(x
) = (1/\pi
) \int_0^\infty dt \exp
(-t \log
(t
) - x t
) \sin
(\pi t
). $r is a gsl_rng structure.
228 =item gsl_ran_landau_pdf
($x
) - This function computes the probability density p
($x
) at $x for the Landau distribution using an approximation to the formula given above.
230 =item gsl_ran_geometric
($r
, $p
) - This function returns a random integer from the geometric distribution
, the number of independent trials with probability $p until the first success. The probability distribution for geometric variates is
, p
(k
) = p
(1-$p
)^
(k-1
) for k
>= 1. Note that the distribution begins with k
=1 with this definition. There is another convention in which the exponent k-1 is replaced by k. $r is a gsl_rng structure.
232 =item gsl_ran_geometric_pdf
($k
, $p
) - This function computes the probability p
($k
) of obtaining $k from a geometric distribution with probability parameter p
, using the formula given above.
234 =item gsl_ran_hypergeometric
($r
, $n1
, $n2
, $t
) - This function returns a random integer from the hypergeometric distribution. The probability distribution for hypergeometric random variates is
, p
(k
) = C
(n_1
, k
) C
(n_2
, t
- k
) / C
(n_1
+ n_2
, t
) where C
(a
,b
) = a
!/(b
!(a-b
)!) and t
<= n_1
+ n_2. The domain of k is max
(0,t-n_2
), ...
, min
(t
,n_1
). If a population contains n_1 elements of “type
1” and n_2 elements of “type
2” then the hypergeometric distribution gives the probability of obtaining k elements of “type
1” in t samples from the population without replacement. $r is a gsl_rng structure.
236 =item gsl_ran_hypergeometric_pdf
($k
, $n1
, $n2
, $t
) - This function computes the probability p
(k
) of obtaining k from a hypergeometric distribution with parameters $n1
, $n2 $t
, using the formula given above.
238 =item gsl_ran_gumbel1
($r
, $a
, $b
) - This function returns a random variate from the Type-1 Gumbel distribution. The Type-1 Gumbel distribution function is
, p
(x
) dx
= a b \exp
(-(b \exp
(-ax
) + ax
)) dx for
-\infty
< x
< \infty. $r is a gsl_rng structure.
240 =item gsl_ran_gumbel1_pdf
($x
, $a
, $b
) - This function computes the probability density p
($x
) at $x for a Type-1 Gumbel distribution with parameters $a and $b
, using the formula given above.
242 =item gsl_ran_gumbel2
($r
, $a
, $b
) - This function returns a random variate from the Type-2 Gumbel distribution. The Type-2 Gumbel distribution function is
, p
(x
) dx
= a b x^
{-a-1
} \exp
(-b x^
{-a
}) dx for
0 < x
< \infty. $r is a gsl_rng structure.
244 =item gsl_ran_gumbel2_pdf
($x
, $a
, $b
) - This function computes the probability density p
($x
) at $x for a Type-2 Gumbel distribution with parameters $a and $b
, using the formula given above.
246 =item gsl_ran_logistic
($r
, $a
) - This function returns a random variate from the logistic distribution. The distribution function is
, p
(x
) dx
= { \exp
(-x
/a
) \over a
(1 + \exp
(-x
/a
))^
2 } dx for
-\infty
< x
< +\infty. $r is a gsl_rng structure.
248 =item gsl_ran_logistic_pdf
($x
, $a
) - This function computes the probability density p
($x
) at $x for a logistic distribution with scale parameter $a
, using the formula given above.
250 =item gsl_ran_lognormal
($r
, $zeta
, $sigma
) - This function returns a random variate from the lognormal distribution. The distribution function is
, p
(x
) dx
= {1 \over x \sqrt
{2 \pi \sigma^
2} } \exp
(-(\ln
(x
) - \zeta
)^
2/2 \sigma^
2) dx for x
> 0. $r is a gsl_rng structure.
252 =item gsl_ran_lognormal_pdf
($x
, $zeta
, $sigma
) - This function computes the probability density p
($x
) at $x for a lognormal distribution with parameters $zeta and $sigma
, using the formula given above.
254 =item gsl_ran_logarithmic
($r
, $p
) - This function returns a random integer from the logarithmic distribution. The probability distribution for logarithmic random variates is
, p
(k
) = {-1 \over \log
(1-p
)} {(p^k \over k
)} for k
>= 1. $r is a gsl_rng structure.
256 =item gsl_ran_logarithmic_pdf
($k
, $p
) - This function computes the probability p
($k
) of obtaining $k from a logarithmic distribution with probability parameter $p
, using the formula given above.
258 =item gsl_ran_multinomial
260 =item gsl_ran_multinomial_pdf
262 =item gsl_ran_multinomial_lnpdf
264 =item gsl_ran_negative_binomial
($r
, $p
, $n
) - This function returns a random integer from the negative binomial distribution
, the number of failures occurring before n successes in independent trials with probability p of success. The probability distribution for negative binomial variates is
, p
(k
) = {\Gamma
(n
+ k
) \over \Gamma
(k
+1) \Gamma
(n
) } p^n
(1-p
)^k Note that n is not required to be an integer.
266 =item gsl_ran_negative_binomial_pdf
($k
, $p
, $n
) - This function computes the probability p
($k
) of obtaining $k from a negative binomial distribution with parameters $p and $n
, using the formula given above.
268 =item gsl_ran_pascal
($r
, $p
, $n
) - This function returns a random integer from the Pascal distribution. The Pascal distribution is simply a negative binomial distribution with an integer value of $n. p
($k
) = {($n
+ $k
- 1)! \ $k
! ($n
- 1)! } $p
**$n
(1-$p
)**$k for $k
>= 0. $r is gsl_rng structure
270 =item gsl_ran_pascal_pdf
($k
, $p
, $n
) - This function computes the probability p
($k
) of obtaining $k from a Pascal distribution with parameters $p and $n
, using the formula given above.
272 =item gsl_ran_pareto
($r
, $a
, $b
) - This function returns a random variate from the Pareto distribution of order $a. The distribution function is p
($x
) dx
= ($a
/$b
) / ($x
/$b
)^
{$a
+1} dx for $x
>= $b. $r is a gsl_rng structure
274 =item gsl_ran_pareto_pdf
($x
, $a
, $b
) - This function computes the probability density p
(x
) at x for a Pareto distribution with exponent a and scale b
, using the formula given above.
276 =item gsl_ran_poisson
($r
, $mu
) -This function returns a random integer from the Poisson distribution with mean $mu. $r is a gsl_rng structure. The probability distribution for Poisson variates is
, p
(k
) = {$mu
**$k \ $k
!} exp
(-$mu
) for $k
>= 0. $r is a gsl_rng structure
278 =item gsl_ran_poisson_array
280 =item gsl_ran_poisson_pdf
($k
, $mu
) - This function computes the probability p
($k
) of obtaining $k from a Poisson distribution with mean $mu
, using the formula given above.
282 =item gsl_ran_rayleigh
($r
, $sigma
) - This function returns a random variate from the Rayleigh distribution with scale parameter sigma. The distribution is
, p
(x
) dx
= {x \over \sigma^
2} \exp
(- x^
2/(2 \sigma^
2)) dx for x
> 0. $r is a gsl_rng structure
284 =item gsl_ran_rayleigh_pdf
($x
, $sigma
) - This function computes the probability density p
($x
) at $x for a Rayleigh distribution with scale parameter sigma
, using the formula given above.
286 =item gsl_ran_rayleigh_tail
($r
, $a
, $sigma
) - This function returns a random variate from the tail of the Rayleigh distribution with scale parameter $sigma and a lower limit of $a. The distribution is
, p
(x
) dx
= {x \over \sigma^
2} \exp
((a^
2 - x^
2) /(2 \sigma^
2)) dx for x
> a. $r is a gsl_rng structure
288 =item gsl_ran_rayleigh_tail_pdf
($x
, $a
, $sigma
) - This function computes the probability density p
($x
) at $x for a Rayleigh tail distribution with scale parameter $sigma and lower limit $a
, using the formula given above.
290 =item gsl_ran_tdist
($r
, $nu
) - This function returns a random variate from the t-distribution. The distribution function is
, p
(x
) dx
= {\Gamma
((\nu
+ 1)/2) \over \sqrt
{\pi \nu
} \Gamma
(\nu
/2)} (1 + x^
2/\nu
)^
{-(\nu
+ 1)/2} dx for
-\infty
< x
< +\infty.
292 =item gsl_ran_tdist_pdf
($x
, $nu
) - This function computes the probability density p
($x
) at $x for a t-distribution with nu degrees of freedom
, using the formula given above.
294 =item gsl_ran_laplace
($r
, $a
) - This function returns a random variate from the Laplace distribution with width $a. The distribution is
, p
(x
) dx
= {1 \over
2 a
} \exp
(-|x
/a|
) dx for
-\infty
< x
< \infty.
296 =item gsl_ran_laplace_pdf
($x
, $a
) - This function computes the probability density p
($x
) at $x for a Laplace distribution with width $a
, using the formula given above.
298 =item gsl_ran_levy
($r
, $c
, $alpha
) - This function returns a random variate from the Levy symmetric stable distribution with scale $c and exponent $alpha. The symmetric stable probability distribution is defined by a fourier transform
, p
(x
) = {1 \over
2 \pi
} \int_
{-\infty
}^
{+\infty
} dt \exp
(-it x
- |c t|^alpha
) There is no explicit solution for the form of p
(x
) and the library does not define a corresponding pdf function. For \alpha
= 1 the distribution reduces to the Cauchy distribution. For \alpha
= 2 it is a Gaussian distribution with \sigma
= \sqrt
{2} c. For \alpha
< 1 the tails of the distribution become extremely wide. The algorithm only works for
0 < alpha
<= 2. $r is a gsl_rng structure
300 =item gsl_ran_levy_skew
($r
, $c
, $alpha
, $beta
) - This function returns a random variate from the Levy skew stable distribution with scale $c
, exponent $alpha and skewness parameter $beta. The skewness parameter must lie in the range
[-1,1]. The Levy skew stable probability distribution is defined by a fourier transform
, p
(x
) = {1 \over
2 \pi
} \int_
{-\infty
}^
{+\infty
} dt \exp
(-it x
- |c t|^alpha
(1-i beta sign
(t
) tan
(pi alpha
/2))) When \alpha
= 1 the term \tan
(\pi \alpha
/2) is replaced by
-(2/\pi
)\log|t|. There is no explicit solution for the form of p
(x
) and the library does not define a corresponding pdf function. For $alpha
= 2 the distribution reduces to a Gaussian distribution with $sigma
= sqrt
(2) $c and the skewness parameter has no effect. For $alpha
< 1 the tails of the distribution become extremely wide. The symmetric distribution corresponds to $beta
= 0. The algorithm only works for
0 < $alpha
<= 2. The Levy alpha-stable distributions have the property that if N alpha-stable variates are drawn from the distribution p
(c
, \alpha
, \beta
) then the sum
Y = X_1
+ X_2
+ \dots
+ X_N will also be distributed as an alpha-stable variate
, p
(N^
(1/\alpha
) c
, \alpha
, \beta
). $r is a gsl_rng structure
302 =item gsl_ran_weibull
($r
, $a
, $b
) - This function returns a random variate from the Weibull distribution. The distribution function is
, p
(x
) dx
= {b \over a^b
} x^
{b-1
} \exp
(-(x
/a
)^b
) dx for x
>= 0. $r is a gsl_rng structure
304 =item gsl_ran_weibull_pdf
($x
, $a
, $b
) - This function computes the probability density p
($x
) at $x for a Weibull distribution with scale $a and exponent $b
, using the formula given above.
306 =item gsl_ran_dir_2d
($r
) - This function returns two values. The first is $x and the second is $y of a random direction vector v
= ($x
,$y
) in two dimensions. The vector is normalized such that |v|^
2 = $x^
2 + $y^
2 = 1. $r is a gsl_rng structure
308 =item gsl_ran_dir_2d_trig_method
($r
) - This function returns two values. The first is $x and the second is $y of a random direction vector v
= ($x
,$y
) in two dimensions. The vector is normalized such that |v|^
2 = $x^
2 + $y^
2 = 1. $r is a gsl_rng structure
310 =item gsl_ran_dir_3d
($r
) - This function returns three values. The first is $x
, the second $y and the third $z of a random direction vector v
= ($x
,$y
,$z
) in three dimensions. The vector is normalized such that |v|^
2 = x^
2 + y^
2 + z^
2 = 1. The method employed is due to Robert E. Knop
(CACM
13, 326 (1970)), and explained in Knuth
, v2
, 3rd ed
, p136. It uses the surprising fact that the distribution projected along any axis is actually uniform
(this is only true for
3 dimensions
).
314 =item gsl_ran_shuffle
320 =item gsl_ran_discrete_preproc
322 =item gsl_ran_discrete
($r
, $g
) - After gsl_ran_discrete_preproc has been called
, you use this function to get the discrete random numbers. $r is a gsl_rng structure and $g is a gsl_ran_discrete structure
323 =item gsl_ran_discrete_pdf
($k
, $g
) - Returns the probability P
[$k
] of observing the variable $k. Since P
[$k
] is not stored as part of the lookup table
, it must be recomputed
; this computation takes O
(K
), so if K is large and you care about the original array P
[$k
] used to create the lookup table
, then you should just keep this original array P
[$k
] around. $r is a gsl_rng structure and $g is a gsl_ran_discrete structure
325 =item gsl_ran_discrete_free
($g
) - De-allocates the gsl_ran_discrete pointed to by g.
329 You have to add the functions you want to use inside the qw
/put_funtion_here
/.
330 You can also write use Math
::GSL
::Randist qw
/:all
/; to use all avaible functions of the module.
331 Other tags are also avaible
, here is a complete list of all tags for this module
:
413 For example the beta tag contains theses functions
: gsl_ran_beta
, gsl_ran_beta_pdf.
415 For more informations on the functions
, we refer you to the GSL offcial documentation
:
416 L
<http
://www.gnu.org
/software
/gsl
/manual
/html_node
/>
417 Tip
: search on google
: site
:http
://www.gnu.org
/software
/gsl
/manual
/html_node
/ name_of_the_function_you_want
419 You might also want to write
420 use Math
::GSL
::RNG qw
/:all
/;
421 since a lot of the functions of Math
::GSL
::Randist take as argument a structure that is created by Math
::GSL
::RNG.
422 Refer to Math
::GSL
::RNG documentation to see how to create such a structure.
424 Math
::GSL
::CDF also contains a structure named gsl_ran_discrete_t. An example is given in the EXAMPLES part on how to use the function related to this structure.
429 use Math
::GSL
::Randist qw
/:all
/;
430 print gsl_ran_exponential_pdf
(5,2) .
"\n";
432 use Math
::GSL
::Randist qw
/:all
/;
433 $x
= Math
::GSL
::gsl_ran_discrete_t
::new
;
438 Jonathan Leto
<jonathan@leto.net
> and Thierry Moisan
<thierry.moisan@gmail.com
>
440 =head1 COPYRIGHT
AND LICENSE
442 Copyright
(C
) 2008 Jonathan Leto and Thierry Moisan
444 This program is free software
; you can redistribute it and
/or modify it
445 under the same terms as Perl itself.