Finishing function documentation for the Permutation subsystem
[Math-GSL.git] / Linalg.i
blob2991ab7d08afd278838bb672e785cbbcdc73755b
1 %module Linalg
2 %apply int *OUTPUT { int *signum };
4 %{
5 #include "/usr/local/include/gsl/gsl_linalg.h"
6 #include "/usr/local/include/gsl/gsl_permutation.h"
7 %}
9 %include "/usr/local/include/gsl/gsl_linalg.h"
10 %include "/usr/local/include/gsl/gsl_permutation.h"
12 %perlcode %{
13 @EXPORT_OK = qw/$GSL_LINALG_MOD_NONE $GSL_LINALG_MOD_TRANSPOSE $GSL_LINALG_MOD_CONJUGATE
14 gsl_linalg_matmult gsl_linalg_matmult_mod
15 gsl_linalg_exponential_ss
16 gsl_linalg_householder_transform
17 gsl_linalg_complex_householder_transform
18 gsl_linalg_householder_hm
19 gsl_linalg_householder_mh
20 gsl_linalg_householder_hv
21 gsl_linalg_householder_hm1
22 gsl_linalg_complex_householder_hm
23 gsl_linalg_complex_householder_mh
24 gsl_linalg_complex_householder_hv
25 gsl_linalg_hessenberg_decomp
26 gsl_linalg_hessenberg_unpack
27 gsl_linalg_hessenberg_unpack_accum
28 gsl_linalg_hessenberg_set_zero
29 gsl_linalg_hessenberg_submatrix
30 gsl_linalg_hessenberg
31 gsl_linalg_hesstri_decomp
32 gsl_linalg_SV_decomp
33 gsl_linalg_SV_decomp_mod
34 gsl_linalg_SV_decomp_jacobi
35 gsl_linalg_SV_solve
36 gsl_linalg_LU_decomp
37 gsl_linalg_LU_solve
38 gsl_linalg_LU_svx
39 gsl_linalg_LU_refine
40 gsl_linalg_LU_invert
41 gsl_linalg_LU_det
42 gsl_linalg_LU_lndet
43 gsl_linalg_LU_sgndet
44 gsl_linalg_complex_LU_decomp
45 gsl_linalg_complex_LU_solve
46 gsl_linalg_complex_LU_svx
47 gsl_linalg_complex_LU_refine
48 gsl_linalg_complex_LU_invert
49 gsl_linalg_complex_LU_det
50 gsl_linalg_complex_LU_lndet
51 gsl_linalg_complex_LU_sgndet
52 gsl_linalg_QR_decomp
53 gsl_linalg_QR_solve
54 gsl_linalg_QR_svx
55 gsl_linalg_QR_lssolve
56 gsl_linalg_QR_QRsolve
57 gsl_linalg_QR_Rsolve
58 gsl_linalg_QR_Rsvx
59 gsl_linalg_QR_update
60 gsl_linalg_QR_QTvec
61 gsl_linalg_QR_Qvec
62 gsl_linalg_QR_QTmat
63 gsl_linalg_QR_unpack
64 gsl_linalg_R_solve
65 gsl_linalg_R_svx
66 gsl_linalg_QRPT_decomp
67 gsl_linalg_QRPT_decomp2
68 gsl_linalg_QRPT_solve
69 gsl_linalg_QRPT_svx
70 gsl_linalg_QRPT_QRsolve
71 gsl_linalg_QRPT_Rsolve
72 gsl_linalg_QRPT_Rsvx
73 gsl_linalg_QRPT_update
74 gsl_linalg_LQ_decomp
75 gsl_linalg_LQ_solve_T
76 gsl_linalg_LQ_svx_T
77 gsl_linalg_LQ_lssolve_T
78 gsl_linalg_LQ_Lsolve_T
79 gsl_linalg_LQ_Lsvx_T
80 gsl_linalg_L_solve_T
81 gsl_linalg_LQ_vecQ
82 gsl_linalg_LQ_vecQT
83 gsl_linalg_LQ_unpack
84 gsl_linalg_LQ_update
85 gsl_linalg_LQ_LQsolve
86 gsl_linalg_PTLQ_decomp
87 gsl_linalg_PTLQ_decomp2
88 gsl_linalg_PTLQ_solve_T
89 gsl_linalg_PTLQ_svx_T
90 gsl_linalg_PTLQ_LQsolve_T
91 gsl_linalg_PTLQ_Lsolve_T
92 gsl_linalg_PTLQ_Lsvx_T
93 gsl_linalg_PTLQ_update
94 gsl_linalg_cholesky_decomp
95 gsl_linalg_cholesky_solve
96 gsl_linalg_cholesky_svx
97 gsl_linalg_cholesky_decomp_unit
98 gsl_linalg_complex_cholesky_decomp
99 gsl_linalg_complex_cholesky_solve
100 gsl_linalg_complex_cholesky_svx
101 gsl_linalg_symmtd_decomp
102 gsl_linalg_symmtd_unpack
103 gsl_linalg_symmtd_unpack_T
104 gsl_linalg_hermtd_decomp
105 gsl_linalg_hermtd_unpack
106 gsl_linalg_hermtd_unpack_T
107 gsl_linalg_HH_solve
108 gsl_linalg_HH_svx
109 gsl_linalg_solve_symm_tridiag
110 gsl_linalg_solve_tridiag
111 gsl_linalg_solve_symm_cyc_tridiag
112 gsl_linalg_solve_cyc_tridiag
113 gsl_linalg_bidiag_decomp
114 gsl_linalg_bidiag_unpack
115 gsl_linalg_bidiag_unpack2
116 gsl_linalg_bidiag_unpack_B
117 gsl_linalg_balance_matrix
118 gsl_linalg_balance_accum
119 gsl_linalg_balance_columns
121 %EXPORT_TAGS = ( all =>[ @EXPORT_OK ] );
123 __END__
125 =head1 NAME
127 Math::GSL::Linalg - Functions for solving linear systems
129 =head1 SYPNOPSIS
131 use Math::GSL::Linalg qw/:all/;
133 =head1 DESCRIPTION
136 Here is a list of all the functions included in this module :
137 gsl_linalg_matmult gsl_linalg_matmult_mod
138 gsl_linalg_exponential_ss
139 gsl_linalg_householder_transform
140 gsl_linalg_complex_householder_transform
141 gsl_linalg_householder_hm
142 gsl_linalg_householder_mh
143 gsl_linalg_householder_hv
144 gsl_linalg_householder_hm1
145 gsl_linalg_complex_householder_hm
146 gsl_linalg_complex_householder_mh
147 gsl_linalg_complex_householder_hv
148 gsl_linalg_hessenberg_decomp
149 gsl_linalg_hessenberg_unpack
150 gsl_linalg_hessenberg_unpack_accum
151 gsl_linalg_hessenberg_set_zero
152 gsl_linalg_hessenberg_submatrix
153 gsl_linalg_hessenberg
154 gsl_linalg_hesstri_decomp
155 gsl_linalg_SV_decomp
156 gsl_linalg_SV_decomp_mod
157 gsl_linalg_SV_decomp_jacobi
158 gsl_linalg_SV_solve
159 gsl_linalg_LU_decomp($a, $p) - factorize the matrix $a into the LU decomposition PA = LU. On output the diagonal and upper triangular part of the input matrix A contain the matrix U. The lower triangular part of the input matrix (excluding the diagonal) contains L. The diagonal elements of L are unity, and are not stored. The function returns two value, the first is 0 if the operation succeeded, 1 otherwise, and the second is the sign of the permutation.
160 gsl_linalg_LU_solve($LU, $p, $b, $x) - This function solves the square system A x = b using the LU decomposition of the matrix A into (LU, p) given by gsl_linalg_LU_decomp. $LU is a matrix, $p a permutation and $b and $x are vectors. The function returns 1 if the operation succeded, 0 otherwise.
161 gsl_linalg_LU_svx($LU, $p, $x) - This function solves the square system A x = b in-place using the LU decomposition of A into (LU,p). On input $x should contain the right-hand side b, which is replaced by the solution on output. $LU is a matrix, $p a permutation and $x is a vector. The function returns 1 if the operation succeded, 0 otherwise.
162 gsl_linalg_LU_refine
163 gsl_linalg_LU_invert($LU, $p, $inverse) - This function computes the inverse of a matrix A from its LU decomposition stored in the matrix $LU and the permutation $p, storing the result in the matrix $inverse.
164 gsl_linalg_LU_det($LU, $signum) - This function returns the determinant of a matrix A from its LU decomposition stored in the $LU matrix. It needs the integer $signum which is the sign of the permutation returned by gsl_linalg_LU_decomp.
165 gsl_linalg_LU_lndet($LU) - This function returns the logarithm of the absolute value of the determinant of a matrix A, from its LU decomposition stored in the $LU matrix.
166 gsl_linalg_LU_sgndet
167 gsl_linalg_complex_LU_decomp
168 gsl_linalg_complex_LU_solve
169 gsl_linalg_complex_LU_svx
170 gsl_linalg_complex_LU_refine
171 gsl_linalg_complex_LU_invert
172 gsl_linalg_complex_LU_det
173 gsl_linalg_complex_LU_lndet
174 gsl_linalg_complex_LU_sgndet
175 gsl_linalg_QR_decomp($a, $tau) - factorize the M-by-N matrix A into the QR decomposition A = Q R. On output the diagonal and upper triangular part of the input matrix $a contain the matrix R. The vector $tau and the columns of the lower triangular part of the matrix $a contain the Householder coefficients and Householder vectors which encode the orthogonal matrix Q. The vector tau must be of length k= min(M,N).
176 gsl_linalg_QR_solve($QR, $tau, $b, $x) - This function solves the square system A x = b using the QR decomposition of A into (QR, tau) given by gsl_linalg_QR_decomp. $QR is matrix, and $tau, $b and $x are vectors.
177 gsl_linalg_QR_svx($QR, $tau, $x) - This function solves the square system A x = b in-place using the QR decomposition of A into the matrix $QR and the vector $tau given by gsl_linalg_QR_decomp. On input, the vector $x should contain the right-hand side b, which is replaced by the solution on output.
178 gsl_linalg_QR_lssolve
179 gsl_linalg_QR_QRsolve
180 gsl_linalg_QR_Rsolve
181 gsl_linalg_QR_Rsvx
182 gsl_linalg_QR_update
183 gsl_linalg_QR_QTvec
184 gsl_linalg_QR_Qvec
185 gsl_linalg_QR_QTmat
186 gsl_linalg_QR_unpack
187 gsl_linalg_R_solve
188 gsl_linalg_R_svx
189 gsl_linalg_QRPT_decomp
190 gsl_linalg_QRPT_decomp2
191 gsl_linalg_QRPT_solve
192 gsl_linalg_QRPT_svx
193 gsl_linalg_QRPT_QRsolve
194 gsl_linalg_QRPT_Rsolve
195 gsl_linalg_QRPT_Rsvx
196 gsl_linalg_QRPT_update
197 gsl_linalg_LQ_decomp
198 gsl_linalg_LQ_solve_T
199 gsl_linalg_LQ_svx_T
200 gsl_linalg_LQ_lssolve_T
201 gsl_linalg_LQ_Lsolve_T
202 gsl_linalg_LQ_Lsvx_T
203 gsl_linalg_L_solve_T
204 gsl_linalg_LQ_vecQ
205 gsl_linalg_LQ_vecQT
206 gsl_linalg_LQ_unpack
207 gsl_linalg_LQ_update
208 gsl_linalg_LQ_LQsolve
209 gsl_linalg_PTLQ_decomp
210 gsl_linalg_PTLQ_decomp2
211 gsl_linalg_PTLQ_solve_T
212 gsl_linalg_PTLQ_svx_T
213 gsl_linalg_PTLQ_LQsolve_T
214 gsl_linalg_PTLQ_Lsolve_T
215 gsl_linalg_PTLQ_Lsvx_T
216 gsl_linalg_PTLQ_update
217 gsl_linalg_cholesky_decomp($A) - Factorize the symmetric, positive-definite square matrix $A into the Cholesky decomposition A = L L^T and stores it into the matrix $A. The funtcion returns 0 if the operation succeeded, 0 otherwise.
218 gsl_linalg_cholesky_solve($cholesky, $b, $x) - This function solves the system A x = b using the Cholesky decomposition of A into the matrix $cholesky given by gsl_linalg_cholesky_decomp. $b and $x are vectors. The funtcion returns 0 if the operation succeeded, 0 otherwise.
219 gsl_linalg_cholesky_svx($cholesky, $x) - This function solves the system A x = b in-place using the Cholesky decomposition of A into the matrix $cholesky given by gsl_linalg_cholesky_decomp. On input the vector $x should contain the right-hand side b, which is replaced by the solution on output. The funtcion returns 0 if the operation succeeded, 0 otherwise.
220 gsl_linalg_cholesky_decomp_unit
221 gsl_linalg_complex_cholesky_decomp($A) - Factorize the symmetric, positive-definite square matrix $A which contains complex numbers into the Cholesky decomposition A = L L^T and stores it into the matrix $A. The funtcion returns 0 if the operation succeeded, 0 otherwise.
222 gsl_linalg_complex_cholesky_solve($cholesky, $b, $x) - This function solves the system A x = b using the Cholesky decomposition of A into the matrix $cholesky given by gsl_linalg_complex_cholesky_decomp. $b and $x are vectors. The funtcion returns 0 if the operation succeeded, 0 otherwise.
223 gsl_linalg_complex_cholesky_svx($cholesky, $x) - This function solves the system A x = b in-place using the Cholesky decomposition of A into the matrix $cholesky given by gsl_linalg_complex_cholesky_decomp. On input the vector $x should contain the right-hand side b, which is replaced by the solution on output. The funtcion returns 0 if the operation succeeded, 0 otherwise.
224 gsl_linalg_symmtd_decomp
225 gsl_linalg_symmtd_unpack
226 gsl_linalg_symmtd_unpack_T
227 gsl_linalg_hermtd_decomp
228 gsl_linalg_hermtd_unpack
229 gsl_linalg_hermtd_unpack_T
230 gsl_linalg_HH_solve
231 gsl_linalg_HH_svx
232 gsl_linalg_solve_symm_tridiag
233 gsl_linalg_solve_tridiag
234 gsl_linalg_solve_symm_cyc_tridiag
235 gsl_linalg_solve_cyc_tridiag
236 gsl_linalg_bidiag_decomp
237 gsl_linalg_bidiag_unpack
238 gsl_linalg_bidiag_unpack2
239 gsl_linalg_bidiag_unpack_B
240 gsl_linalg_balance_matrix
241 gsl_linalg_balance_accum
242 gsl_linalg_balance_columns
244 You have to add the functions you want to use inside the qw /put_funtion_here / with spaces between each function. You can also write use Math::GSL::Complex qw/:all/ to use all avaible functions of the module.
246 For more informations on the functions, we refer you to the GSL offcial documentation: L<http://www.gnu.org/software/gsl/manual/html_node/>
247 Tip : search on google: site:http://www.gnu.org/software/gsl/manual/html_node/ name_of_the_function_you_want
249 =head1 EXAMPLES
252 =head1 AUTHOR
254 Jonathan Leto <jonathan@leto.net> and Thierry Moisan <thierry.moisan@gmail.com>
256 =head1 COPYRIGHT AND LICENSE
258 Copyright (C) 2008 Jonathan Leto and Thierry Moisan
260 This program is free software; you can redistribute it and/or modify it
261 under the same terms as Perl itself.
263 =cut