1 %module
"Math::GSL::SF"
4 #include
"gsl/gsl_mode.h"
5 #include
"gsl/gsl_sf.h"
6 #include
"gsl/gsl_sf_airy.h"
7 #include
"gsl/gsl_sf_bessel.h"
8 #include
"gsl/gsl_sf_clausen.h"
9 #include
"gsl/gsl_sf_coulomb.h"
10 #include
"gsl/gsl_sf_coupling.h"
11 #include
"gsl/gsl_sf_dawson.h"
12 #include
"gsl/gsl_sf_debye.h"
13 #include
"gsl/gsl_sf_dilog.h"
14 #include
"gsl/gsl_sf_elementary.h"
15 #include
"gsl/gsl_sf_ellint.h"
16 #include
"gsl/gsl_sf_elljac.h"
17 #include
"gsl/gsl_sf_erf.h"
18 #include
"gsl/gsl_sf_exp.h"
19 #include
"gsl/gsl_sf_expint.h"
20 #include
"gsl/gsl_sf_fermi_dirac.h"
21 #include
"gsl/gsl_sf_gamma.h"
22 #include
"gsl/gsl_sf_gegenbauer.h"
23 #include
"gsl/gsl_sf_hyperg.h"
24 #include
"gsl/gsl_sf_laguerre.h"
25 #include
"gsl/gsl_sf_lambert.h"
26 #include
"gsl/gsl_sf_legendre.h"
27 #include
"gsl/gsl_sf_log.h"
28 #include
"gsl/gsl_sf_mathieu.h"
29 #include
"gsl/gsl_sf_pow_int.h"
30 #include
"gsl/gsl_sf_psi.h"
31 #include
"gsl/gsl_sf_result.h"
32 #include
"gsl/gsl_sf_synchrotron.h"
33 #include
"gsl/gsl_sf_transport.h"
34 #include
"gsl/gsl_sf_trig.h"
35 #include
"gsl/gsl_sf_zeta.h"
38 %include
"gsl/gsl_mode.h"
39 %include
"gsl/gsl_sf.h"
40 %include
"gsl/gsl_sf_airy.h"
41 %include
"gsl/gsl_sf_bessel.h"
42 %include
"gsl/gsl_sf_clausen.h"
43 %include
"gsl/gsl_sf_coulomb.h"
44 %include
"gsl/gsl_sf_coupling.h"
45 %include
"gsl/gsl_sf_dawson.h"
46 %include
"gsl/gsl_sf_debye.h"
47 %include
"gsl/gsl_sf_dilog.h"
48 %include
"gsl/gsl_sf_elementary.h"
49 %include
"gsl/gsl_sf_ellint.h"
50 %include
"gsl/gsl_sf_elljac.h"
51 %include
"gsl/gsl_sf_erf.h"
52 %include
"gsl/gsl_sf_exp.h"
53 %include
"gsl/gsl_sf_expint.h"
54 %include
"gsl/gsl_sf_fermi_dirac.h"
55 %include
"gsl/gsl_sf_gamma.h"
56 %include
"gsl/gsl_sf_gegenbauer.h"
57 %include
"gsl/gsl_sf_hyperg.h"
58 %include
"gsl/gsl_sf_laguerre.h"
59 %include
"gsl/gsl_sf_lambert.h"
60 %include
"gsl/gsl_sf_legendre.h"
61 %include
"gsl/gsl_sf_log.h"
62 %include
"gsl/gsl_sf_mathieu.h"
63 %include
"gsl/gsl_sf_pow_int.h"
64 %include
"gsl/gsl_sf_psi.h"
65 %include
"gsl/gsl_sf_result.h"
66 %include
"gsl/gsl_sf_synchrotron.h"
67 %include
"gsl/gsl_sf_transport.h"
68 %include
"gsl/gsl_sf_trig.h"
69 %include
"gsl/gsl_sf_zeta.h"
79 gsl_sf_airy_Ai_scaled_e
81 gsl_sf_airy_Bi_scaled_e
83 gsl_sf_airy_Ai_deriv_e
85 gsl_sf_airy_Bi_deriv_e
87 gsl_sf_airy_Ai_deriv_scaled_e
88 gsl_sf_airy_Ai_deriv_scaled
89 gsl_sf_airy_Bi_deriv_scaled_e
90 gsl_sf_airy_Bi_deriv_scaled
95 gsl_sf_airy_zero_Ai_deriv_e
96 gsl_sf_airy_zero_Ai_deriv
97 gsl_sf_airy_zero_Bi_deriv_e
98 gsl_sf_airy_zero_Bi_deriv
107 gsl_sf_bessel_Jn_array
114 gsl_sf_bessel_Yn_array
121 gsl_sf_bessel_In_array
122 gsl_sf_bessel_I0_scaled_e
123 gsl_sf_bessel_I0_scaled
124 gsl_sf_bessel_I1_scaled_e
125 gsl_sf_bessel_I1_scaled
126 gsl_sf_bessel_In_scaled_e
127 gsl_sf_bessel_In_scaled
128 gsl_sf_bessel_In_scaled_array
135 gsl_sf_bessel_Kn_array
136 gsl_sf_bessel_K0_scaled_e
137 gsl_sf_bessel_K0_scaled
138 gsl_sf_bessel_K1_scaled_e
139 gsl_sf_bessel_K1_scaled
140 gsl_sf_bessel_Kn_scaled_e
141 gsl_sf_bessel_Kn_scaled
142 gsl_sf_bessel_Kn_scaled_array
151 gsl_sf_bessel_jl_array
152 gsl_sf_bessel_jl_steed_array
161 gsl_sf_bessel_yl_array
162 gsl_sf_bessel_i0_scaled_e
163 gsl_sf_bessel_i0_scaled
164 gsl_sf_bessel_i1_scaled_e
165 gsl_sf_bessel_i1_scaled
166 gsl_sf_bessel_i2_scaled_e
167 gsl_sf_bessel_i2_scaled
168 gsl_sf_bessel_il_scaled_e
169 gsl_sf_bessel_il_scaled
170 gsl_sf_bessel_il_scaled_array
171 gsl_sf_bessel_k0_scaled_e
172 gsl_sf_bessel_k0_scaled
173 gsl_sf_bessel_k1_scaled_e
174 gsl_sf_bessel_k1_scaled
175 gsl_sf_bessel_k2_scaled_e
176 gsl_sf_bessel_k2_scaled
177 gsl_sf_bessel_kl_scaled_e
178 gsl_sf_bessel_kl_scaled
179 gsl_sf_bessel_kl_scaled_array
184 gsl_sf_bessel_sequence_Jnu_e
185 gsl_sf_bessel_Inu_scaled_e
186 gsl_sf_bessel_Inu_scaled
189 gsl_sf_bessel_Knu_scaled_e
190 gsl_sf_bessel_Knu_scaled
193 gsl_sf_bessel_lnKnu_e
195 gsl_sf_bessel_zero_J0_e
196 gsl_sf_bessel_zero_J0
197 gsl_sf_bessel_zero_J1_e
198 gsl_sf_bessel_zero_J1
199 gsl_sf_bessel_zero_Jnu_e
200 gsl_sf_bessel_zero_Jnu
202 @EXPORT_clausen
= qw
/
206 @EXPORT_hydrogenic
= qw
/
207 gsl_sf_hydrogenicR_1_e
212 @EXPORT_coulumb
= qw
/
213 gsl_sf_coulomb_wave_FG_e
214 gsl_sf_coulomb_wave_F_array
215 gsl_sf_coulomb_wave_FG_array
216 gsl_sf_coulomb_wave_FGp_array
217 gsl_sf_coulomb_wave_sphF_array
219 gsl_sf_coulomb_CL_array
221 @EXPORT_coupling
= qw
/
226 gsl_sf_coupling_RacahW_e
227 gsl_sf_coupling_RacahW
230 gsl_sf_coupling_6j_INCORRECT_e
231 gsl_sf_coupling_6j_INCORRECT
254 gsl_sf_complex_dilog_xy_e
255 gsl_sf_complex_dilog_e
259 gsl_sf_complex_spence_xy_e
262 gsl_sf_multiply_err_e
264 @EXPORT_elliptic
= qw
/
265 gsl_sf_ellint_Kcomp_e
267 gsl_sf_ellint_Ecomp_e
269 gsl_sf_ellint_Pcomp_e
271 gsl_sf_ellint_Dcomp_e
305 push @EXPORT_misc
, qw
/
311 gsl_sf_exp_mult_e10_e
322 gsl_sf_exp_mult_err_e
323 gsl_sf_exp_mult_err_e10_e
330 gsl_sf_expint_E1_scaled_e
331 gsl_sf_expint_E1_scaled
332 gsl_sf_expint_E2_scaled_e
333 gsl_sf_expint_E2_scaled
334 gsl_sf_expint_En_scaled_e
335 gsl_sf_expint_En_scaled
338 gsl_sf_expint_Ei_scaled_e
339 gsl_sf_expint_Ei_scaled
351 @EXPORT_fermi_dirac
= qw
/
352 gsl_sf_fermi_dirac_m1_e
353 gsl_sf_fermi_dirac_m1
354 gsl_sf_fermi_dirac_0_e
356 gsl_sf_fermi_dirac_1_e
358 gsl_sf_fermi_dirac_2_e
360 gsl_sf_fermi_dirac_int_e
361 gsl_sf_fermi_dirac_int
362 gsl_sf_fermi_dirac_mhalf_e
363 gsl_sf_fermi_dirac_mhalf
364 gsl_sf_fermi_dirac_half_e
365 gsl_sf_fermi_dirac_half
366 gsl_sf_fermi_dirac_3half_e
367 gsl_sf_fermi_dirac_3half
368 gsl_sf_fermi_dirac_inc_0_e
369 gsl_sf_fermi_dirac_inc_0
371 @EXPORT_legendre
= qw
/
374 gsl_sf_legendre_Pl_array
375 gsl_sf_legendre_Pl_deriv_array
388 gsl_sf_legendre_Plm_e
390 gsl_sf_legendre_Plm_array
391 gsl_sf_legendre_Plm_deriv_array
392 gsl_sf_legendre_sphPlm_e
393 gsl_sf_legendre_sphPlm
394 gsl_sf_legendre_sphPlm_array
395 gsl_sf_legendre_sphPlm_deriv_array
396 gsl_sf_legendre_array_size
397 gsl_sf_legendre_H3d_0_e
398 gsl_sf_legendre_H3d_0
399 gsl_sf_legendre_H3d_1_e
400 gsl_sf_legendre_H3d_1
401 gsl_sf_legendre_H3d_e
403 gsl_sf_legendre_H3d_array
415 gsl_sf_lngamma_complex_e
423 @EXPORT_factorial
= qw
/
430 gsl_sf_lndoublefact_e
433 @EXPORT_hypergeometric
= qw
/
436 gsl_sf_hyperg_1F1_int_e
437 gsl_sf_hyperg_1F1_int
440 gsl_sf_hyperg_U_int_e
442 gsl_sf_hyperg_U_int_e10_e
445 gsl_sf_hyperg_U_e10_e
448 gsl_sf_hyperg_2F1_conj_e
449 gsl_sf_hyperg_2F1_conj
450 gsl_sf_hyperg_2F1_renorm_e
451 gsl_sf_hyperg_2F1_renorm
452 gsl_sf_hyperg_2F1_conj_renorm_e
453 gsl_sf_hyperg_2F1_conj_renorm
457 @EXPORT_laguerre
= qw
/
467 push @EXPORT_misc
, qw
/
496 gsl_sf_gegenpoly_array
501 gsl_sf_conicalP_half_e
503 gsl_sf_conicalP_mhalf_e
504 gsl_sf_conicalP_mhalf
509 gsl_sf_conicalP_sph_reg_e
510 gsl_sf_conicalP_sph_reg
511 gsl_sf_conicalP_cyl_reg_e
512 gsl_sf_conicalP_cyl_reg
520 gsl_sf_log_1plusx_mx_e
537 gsl_sf_result_smash_e
538 gsl_sf_synchrotron_1_e
540 gsl_sf_synchrotron_2_e
543 @EXPORT_mathieu
= qw
/
544 gsl_sf_mathieu_a_array
545 gsl_sf_mathieu_b_array
548 gsl_sf_mathieu_a_coeff
549 gsl_sf_mathieu_b_coeff
554 gsl_sf_mathieu_ce_array
555 gsl_sf_mathieu_se_array
558 gsl_sf_mathieu_Mc_array
559 gsl_sf_mathieu_Ms_array
561 @EXPORT_transport
= qw
/
582 gsl_sf_complex_logsin_e
593 gsl_sf_angle_restrict_symm_e
594 gsl_sf_angle_restrict_symm
595 gsl_sf_angle_restrict_pos_e
596 gsl_sf_angle_restrict_pos
597 gsl_sf_angle_restrict_symm_err_e
598 gsl_sf_angle_restrict_pos_err_e
623 GSL_SF_DOUBLEFACT_NMAX
628 @EXPORT_airy
, @EXPORT_bessel
, @EXPORT_clausen
, @EXPORT_hydrogenic
,
629 @EXPORT_coulumb
, @EXPORT_coupling
, @EXPORT_dawson
, @EXPORT_debye
,
630 @EXPORT_dilog
, @EXPORT_misc
, @EXPORT_elliptic
, @EXPORT_error
, @EXPORT_legendre
,
631 @EXPORT_gamma
, @EXPORT_transport
, @EXPORT_trig
, @EXPORT_zeta
, @EXPORT_eta
,
636 all
=> [ @EXPORT_OK
],
637 airy
=> [ @EXPORT_airy
],
638 bessel
=> [ @EXPORT_bessel
],
639 clausen
=> [ @EXPORT_clausen
],
640 coulumb
=> [ @EXPORT_coulumb
],
641 coupling
=> [ @EXPORT_coupling
],
642 dawson
=> [ @EXPORT_dawson
],
643 debye
=> [ @EXPORT_debye
],
644 dilog
=> [ @EXPORT_dilog
],
645 eta
=> [ @EXPORT_eta
],
646 elliptic
=> [ @EXPORT_elliptic
],
647 error
=> [ @EXPORT_error
],
648 factorial
=> [ @EXPORT_factorial
],
649 gamma
=> [ @EXPORT_gamma
],
650 hydrogenic
=> [ @EXPORT_hydrogenic
],
651 hypergeometric
=> [ @EXPORT_hypergeometric
],
652 laguerre
=> [ @EXPORT_laguerre
],
653 legendre
=> [ @EXPORT_legendre
],
654 mathieu
=> [ @EXPORT_mathieu
],
655 misc
=> [ @EXPORT_misc
],
656 transport
=> [ @EXPORT_transport
],
657 trig
=> [ @EXPORT_trig
],
658 vars
=> [ @EXPORT_vars
],
659 zeta
=> [ @EXPORT_zeta
],
666 Math
::GSL
::SF
- Special Functions
670 use Math
::GSL
::SF qw
/:all
/;
674 This module contains a data structure named gsl_sf_result. To create a new one use
675 $r
= Math
::GSL
::SF
::gsl_sf_result_struct-
>new
;
676 You can then access the elements of the structure in this way
:
681 Here is a list of all included functions
:
685 =item C
<gsl_sf_airy_Ai_e
($x
, $mode
)>
687 =item C
<gsl_sf_airy_Ai
($x
, $mode
, $result
)>
689 - These routines compute the Airy function Ai
($x
) with an accuracy specified by $mode. $mode should be $GSL_PREC_DOUBLE
, $GSL_PREC_SINGLE or $GSL_PREC_APPROX. $result is a gsl_sf_result structure.
695 =item C
<gsl_sf_airy_Bi_e
($x
, $mode
, $result
)>
697 =item C
<gsl_sf_airy_Bi
($x
, $mode
)>
699 - These routines compute the Airy function Bi
($x
) with an accuracy specified by $mode. $mode should be $GSL_PREC_DOUBLE
, $GSL_PREC_SINGLE or $GSL_PREC_APPROX. $result is a gsl_sf_result structure.
705 =item C
<gsl_sf_airy_Ai_scaled_e
($x
, $mode
, $result
)>
707 =item C
<gsl_sf_airy_Ai_scaled
($x
, $mode
)>
709 - These routines compute a scaled version of the Airy function S_A
($x
) Ai
($x
). For $x
>0 the scaling factor S_A
($x
) is \exp
(+(2/3) $x
**(3/2)), and is
1 for $x
<0.
715 =item C
<gsl_sf_airy_Bi_scaled_e
($x
, $mode
, $result
)>
717 =item C
<gsl_sf_airy_Bi_scaled
($x
, $mode
)>
719 - These routines compute a scaled version of the Airy function S_B
($x
) Bi
($x
). For $x
>0 the scaling factor S_B
($x
) is exp
(-(2/3) $x
**(3/2)), and is
1 for $x
<0.
725 =item C
<gsl_sf_airy_Ai_deriv_e
>
727 =item C
<gsl_sf_airy_Ai_deriv
>
729 =item C
<gsl_sf_airy_Bi_deriv_e
>
731 =item C
<gsl_sf_airy_Bi_deriv
>
733 =item C
<gsl_sf_airy_Ai_deriv_scaled_e
>
735 =item C
<gsl_sf_airy_Ai_deriv_scaled
>
737 =item C
<gsl_sf_airy_Bi_deriv_scaled_e
>
739 =item C
<gsl_sf_airy_Bi_deriv_scaled
>
741 =item C
<gsl_sf_airy_zero_Ai_e
>
743 =item C
<gsl_sf_airy_zero_Ai
>
745 =item C
<gsl_sf_airy_zero_Bi_e
>
747 =item C
<gsl_sf_airy_zero_Bi
>
749 =item C
<gsl_sf_airy_zero_Ai_deriv_e
>
751 =item C
<gsl_sf_airy_zero_Ai_deriv
>
753 =item C
<gsl_sf_airy_zero_Bi_deriv_e
>
755 =item C
<gsl_sf_airy_zero_Bi_deriv
>
757 =item C
<gsl_sf_bessel_J0_e
>
759 =item C
<gsl_sf_bessel_J0
>
761 =item C
<gsl_sf_bessel_J1_e
>
763 =item C
<gsl_sf_bessel_J1
>
765 =item C
<gsl_sf_bessel_Jn_e
>
767 =item C
<gsl_sf_bessel_Jn
>
769 =item C
<gsl_sf_bessel_Jn_array
>
771 =item C
<gsl_sf_bessel_Y0_e
>
773 =item C
<gsl_sf_bessel_Y0
>
775 =item C
<gsl_sf_bessel_Y1_e
>
777 =item C
<gsl_sf_bessel_Y1
>
779 =item C
<gsl_sf_bessel_Yn_e
>
781 =item C
<gsl_sf_bessel_Yn
>
783 =item C
<gsl_sf_bessel_Yn_array
>
785 =item C
<gsl_sf_bessel_I0_e
>
787 =item C
<gsl_sf_bessel_I0
>
789 =item C
<gsl_sf_bessel_I1_e
>
791 =item C
<gsl_sf_bessel_I1
>
793 =item C
<gsl_sf_bessel_In_e
>
795 =item C
<gsl_sf_bessel_In
>
797 =item C
<gsl_sf_bessel_In_array
>
799 =item C
<gsl_sf_bessel_I0_scaled_e
>
801 =item C
<gsl_sf_bessel_I0_scaled
>
803 =item C
<gsl_sf_bessel_I1_scaled_e
>
805 =item C
<gsl_sf_bessel_I1_scaled
>
807 =item C
<gsl_sf_bessel_In_scaled_e
>
809 =item C
<gsl_sf_bessel_In_scaled
>
811 =item C
<gsl_sf_bessel_In_scaled_array
>
813 =item C
<gsl_sf_bessel_K0_e
>
815 =item C
<gsl_sf_bessel_K0
>
817 =item C
<gsl_sf_bessel_K1_e
>
819 =item C
<gsl_sf_bessel_K1
>
821 =item C
<gsl_sf_bessel_Kn_e
>
823 =item C
<gsl_sf_bessel_Kn
>
825 =item C
<gsl_sf_bessel_Kn_array
>
827 =item C
<gsl_sf_bessel_K0_scaled_e
>
829 =item C
<gsl_sf_bessel_K0_scaled
>
831 =item C
<gsl_sf_bessel_K1_scaled_e
>
833 =item C
<gsl_sf_bessel_K1_scaled
>
835 =item C
<gsl_sf_bessel_Kn_scaled_e
>
837 =item C
<gsl_sf_bessel_Kn_scaled
>
839 =item C
<gsl_sf_bessel_Kn_scaled_array
>
841 =item C
<gsl_sf_bessel_j0_e
>
843 =item C
<gsl_sf_bessel_j0
>
845 =item C
<gsl_sf_bessel_j1_e
>
847 =item C
<gsl_sf_bessel_j1
>
849 =item C
<gsl_sf_bessel_j2_e
>
851 =item C
<gsl_sf_bessel_j2
>
853 =item C
<gsl_sf_bessel_jl_e
>
855 =item C
<gsl_sf_bessel_jl
>
857 =item C
<gsl_sf_bessel_jl_array
>
859 =item C
<gsl_sf_bessel_jl_steed_array
>
861 =item C
<gsl_sf_bessel_y0_e
>
863 =item C
<gsl_sf_bessel_y0
>
865 =item C
<gsl_sf_bessel_y1_e
>
867 =item C
<gsl_sf_bessel_y1
>
869 =item C
<gsl_sf_bessel_y2_e
>
871 =item C
<gsl_sf_bessel_y2
>
873 =item C
<gsl_sf_bessel_yl_e
>
875 =item C
<gsl_sf_bessel_yl
>
877 =item C
<gsl_sf_bessel_yl_array
>
879 =item C
<gsl_sf_bessel_i0_scaled_e
>
881 =item C
<gsl_sf_bessel_i0_scaled
>
883 =item C
<gsl_sf_bessel_i1_scaled_e
>
885 =item C
<gsl_sf_bessel_i1_scaled
>
887 =item C
<gsl_sf_bessel_i2_scaled_e
>
889 =item C
<gsl_sf_bessel_i2_scaled
>
891 =item C
<gsl_sf_bessel_il_scaled_e
>
893 =item C
<gsl_sf_bessel_il_scaled
>
895 =item C
<gsl_sf_bessel_il_scaled_array
>
897 =item C
<gsl_sf_bessel_k0_scaled_e
>
899 =item C
<gsl_sf_bessel_k0_scaled
>
901 =item C
<gsl_sf_bessel_k1_scaled_e
>
903 =item C
<gsl_sf_bessel_k1_scaled
>
905 =item C
<gsl_sf_bessel_k2_scaled_e
>
907 =item C
<gsl_sf_bessel_k2_scaled
>
909 =item C
<gsl_sf_bessel_kl_scaled_e
>
911 =item C
<gsl_sf_bessel_kl_scaled
>
913 =item C
<gsl_sf_bessel_kl_scaled_array
>
915 =item C
<gsl_sf_bessel_Jnu_e
>
917 =item C
<gsl_sf_bessel_Jnu
>
919 =item C
<gsl_sf_bessel_Ynu_e
>
921 =item C
<gsl_sf_bessel_Ynu
>
923 =item C
<gsl_sf_bessel_sequence_Jnu_e
>
925 =item C
<gsl_sf_bessel_Inu_scaled_e
>
927 =item C
<gsl_sf_bessel_Inu_scaled
>
929 =item C
<gsl_sf_bessel_Inu_e
>
931 =item C
<gsl_sf_bessel_Inu
>
933 =item C
<gsl_sf_bessel_Knu_scaled_e
>
935 =item C
<gsl_sf_bessel_Knu_scaled
>
937 =item C
<gsl_sf_bessel_Knu_e
>
939 =item C
<gsl_sf_bessel_Knu
>
941 =item C
<gsl_sf_bessel_lnKnu_e
>
943 =item C
<gsl_sf_bessel_lnKnu
>
945 =item C
<gsl_sf_bessel_zero_J0_e
>
947 =item C
<gsl_sf_bessel_zero_J0
>
949 =item C
<gsl_sf_bessel_zero_J1_e
>
951 =item C
<gsl_sf_bessel_zero_J1
>
953 =item C
<gsl_sf_bessel_zero_Jnu_e
>
955 =item C
<gsl_sf_bessel_zero_Jnu
>
957 =item C
<gsl_sf_clausen_e
>
959 =item C
<gsl_sf_clausen
>
961 =item C
<gsl_sf_hydrogenicR_1_e
>
963 =item C
<gsl_sf_hydrogenicR_1
>
965 =item C
<gsl_sf_hydrogenicR_e
>
967 =item C
<gsl_sf_hydrogenicR
>
969 =item C
<gsl_sf_coulomb_wave_FG_e
>
971 =item C
<gsl_sf_coulomb_wave_F_array
>
973 =item C
<gsl_sf_coulomb_wave_FG_array
>
975 =item C
<gsl_sf_coulomb_wave_FGp_array
>
977 =item C
<gsl_sf_coulomb_wave_sphF_array
>
979 =item C
<gsl_sf_coulomb_CL_e
>
981 =item C
<gsl_sf_coulomb_CL_array
>
983 =item C
<gsl_sf_coupling_3j_e
>
985 =item C
<gsl_sf_coupling_3j
>
987 =item C
<gsl_sf_coupling_6j_e
>
989 =item C
<gsl_sf_coupling_6j
>
991 =item C
<gsl_sf_coupling_RacahW_e
>
993 =item C
<gsl_sf_coupling_RacahW
>
995 =item C
<gsl_sf_coupling_9j_e
>
997 =item C
<gsl_sf_coupling_9j
>
999 =item C
<gsl_sf_coupling_6j_INCORRECT_e
>
1001 =item C
<gsl_sf_coupling_6j_INCORRECT
>
1003 =item C
<gsl_sf_dawson_e
, gsl_sf_dawson
>
1005 =item C
<gsl_sf_debye_1_e
>
1007 =item C
<gsl_sf_debye_1
>
1009 =item C
<gsl_sf_debye_2_e
>
1011 =item C
<gsl_sf_debye_2
>
1013 =item C
<gsl_sf_debye_3_e
>
1015 =item C
<gsl_sf_debye_3
>
1017 =item C
<gsl_sf_debye_4_e
>
1019 =item C
<gsl_sf_debye_4
>
1021 =item C
<gsl_sf_debye_5_e
>
1023 =item C
<gsl_sf_debye_5
>
1025 =item C
<gsl_sf_debye_6_e
>
1027 =item C
<gsl_sf_debye_6
>
1029 =item C
<gsl_sf_dilog_e
>
1031 =item C
<gsl_sf_dilog
>
1033 =item C
<gsl_sf_complex_dilog_xy_e
>
1035 =item C
<gsl_sf_complex_dilog_e
>
1037 =item C
<gsl_sf_complex_spence_xy_e
>
1039 =item C
<gsl_sf_multiply_e
>
1041 =item C
<gsl_sf_multiply
>
1043 =item C
<gsl_sf_multiply_err_e
>
1045 =item C
<gsl_sf_ellint_Kcomp_e gsl_sf_ellint_Kcomp
>
1047 =item C
<gsl_sf_ellint_Ecomp_e
>
1049 =item C
<gsl_sf_ellint_Ecomp
>
1051 =item C
<gsl_sf_ellint_Pcomp_e
>
1053 =item C
<gsl_sf_ellint_Pcomp
>
1055 =item C
<gsl_sf_ellint_Dcomp_e
>
1057 =item C
<gsl_sf_ellint_Dcomp
>
1059 =item C
<gsl_sf_ellint_F_e
>
1061 =item C
<gsl_sf_ellint_F
>
1063 =item C
<gsl_sf_ellint_E_e
>
1065 =item C
<gsl_sf_ellint_E
>
1067 =item C
<gsl_sf_ellint_P_e
>
1069 =item C
<gsl_sf_ellint_P
>
1071 =item C
<gsl_sf_ellint_D_e
>
1073 =item C
<gsl_sf_ellint_D
>
1075 =item C
<gsl_sf_ellint_RC_e
>
1077 =item C
<gsl_sf_ellint_RC
>
1079 =item C
<gsl_sf_ellint_RD_e
>
1081 =item C
<gsl_sf_ellint_RD
>
1083 =item C
<gsl_sf_ellint_RF_e
>
1085 =item C
<gsl_sf_ellint_RF
>
1087 =item C
<gsl_sf_ellint_RJ_e
>
1089 =item C
<gsl_sf_ellint_RJ
>
1091 =item C
<gsl_sf_elljac_e
>
1093 =item C
<gsl_sf_erfc_e
>
1095 =item C
<gsl_sf_erfc
>
1097 =item C
<gsl_sf_log_erfc_e
>
1099 =item C
<gsl_sf_log_erfc
>
1101 =item C
<gsl_sf_erf_e
>
1105 =item C
<gsl_sf_erf_Z_e
>
1107 =item C
<gsl_sf_erf_Q_e
>
1109 =item C
<gsl_sf_erf_Z
>
1111 =item C
<gsl_sf_erf_Q
>
1113 =item C
<gsl_sf_hazard_e
>
1115 =item C
<gsl_sf_hazard
>
1117 =item C
<gsl_sf_exp_e
>
1121 =item C
<gsl_sf_exp_e10_e
>
1123 =item C
<gsl_sf_exp_mult_e
>
1125 =item C
<gsl_sf_exp_mult
>
1127 =item C
<gsl_sf_exp_mult_e10_e
>
1129 =item C
<gsl_sf_expm1_e
>
1131 =item C
<gsl_sf_expm1
>
1133 =item C
<gsl_sf_exprel_e
>
1135 =item C
<gsl_sf_exprel
>
1137 =item C
<gsl_sf_exprel_2_e
>
1139 =item C
<gsl_sf_exprel_2
>
1141 =item C
<gsl_sf_exprel_n_e
>
1143 =item C
<gsl_sf_exprel_n
>
1145 =item C
<gsl_sf_exp_err_e
>
1147 =item C
<gsl_sf_exp_err_e10_e
>
1149 =item C
<gsl_sf_exp_mult_err_e
>
1151 =item C
<gsl_sf_exp_mult_err_e10_e
>
1153 =item C
<gsl_sf_expint_E1_e
>
1155 =item C
<gsl_sf_expint_E1
>
1157 =item C
<gsl_sf_expint_E2_e
>
1159 =item C
<gsl_sf_expint_E2
>
1161 =item C
<gsl_sf_expint_En_e
>
1163 =item C
<gsl_sf_expint_En
>
1165 =item C
<gsl_sf_expint_E1_scaled_e
>
1167 =item C
<gsl_sf_expint_E1_scaled
>
1169 =item C
<gsl_sf_expint_E2_scaled_e
>
1171 =item C
<gsl_sf_expint_E2_scaled
>
1173 =item C
<gsl_sf_expint_En_scaled_e
>
1175 =item C
<gsl_sf_expint_En_scaled
>
1177 =item C
<gsl_sf_expint_Ei_e
>
1179 =item C
<gsl_sf_expint_Ei
>
1181 =item C
<gsl_sf_expint_Ei_scaled_e
>
1183 =item C
<gsl_sf_expint_Ei_scaled
>
1185 =item C
<gsl_sf_Shi_e
>
1189 =item C
<gsl_sf_Chi_e
>
1193 =item C
<gsl_sf_expint_3_e
>
1195 =item C
<gsl_sf_expint_3
>
1197 =item C
<gsl_sf_Si_e
>
1201 =item C
<gsl_sf_Ci_e
>
1205 =item C
<gsl_sf_fermi_dirac_m1_e
>
1207 =item C
<gsl_sf_fermi_dirac_m1
>
1209 =item C
<gsl_sf_fermi_dirac_0_e
>
1211 =item C
<gsl_sf_fermi_dirac_0
>
1213 =item C
<gsl_sf_fermi_dirac_1_e
>
1215 =item C
<gsl_sf_fermi_dirac_1
>
1217 =item C
<gsl_sf_fermi_dirac_2_e
>
1219 =item C
<gsl_sf_fermi_dirac_2
>
1221 =item C
<gsl_sf_fermi_dirac_int_e
>
1223 =item C
<gsl_sf_fermi_dirac_int
>
1225 =item C
<gsl_sf_fermi_dirac_mhalf_e
>
1227 =item C
<gsl_sf_fermi_dirac_mhalf
>
1229 =item C
<gsl_sf_fermi_dirac_half_e
>
1231 =item C
<gsl_sf_fermi_dirac_half
>
1233 =item C
<gsl_sf_fermi_dirac_3half_e
>
1235 =item C
<gsl_sf_fermi_dirac_3half
>
1237 =item C
<gsl_sf_fermi_dirac_inc_0_e
>
1239 =item C
<gsl_sf_fermi_dirac_inc_0
>
1241 =item C
<gsl_sf_legendre_Pl_e
>
1243 =item C
<gsl_sf_legendre_Pl
>
1245 =item C
<gsl_sf_legendre_Pl_array
>
1247 =item C
<gsl_sf_legendre_Pl_deriv_array
>
1249 =item C
<gsl_sf_legendre_P1_e
>
1251 =item C
<gsl_sf_legendre_P2_e
>
1253 =item C
<gsl_sf_legendre_P3_e
>
1255 =item C
<gsl_sf_legendre_P1
>
1257 =item C
<gsl_sf_legendre_P2
>
1259 =item C
<gsl_sf_legendre_P3
>
1261 =item C
<gsl_sf_legendre_Q0_e
>
1263 =item C
<gsl_sf_legendre_Q0
>
1265 =item C
<gsl_sf_legendre_Q1_e
>
1267 =item C
<gsl_sf_legendre_Q1
>
1269 =item C
<gsl_sf_legendre_Ql_e
>
1271 =item C
<gsl_sf_legendre_Ql
>
1273 =item C
<gsl_sf_legendre_Plm_e
>
1275 =item C
<gsl_sf_legendre_Plm
>
1277 =item C
<gsl_sf_legendre_Plm_array
>
1279 =item C
<gsl_sf_legendre_Plm_deriv_array
>
1281 =item C
<gsl_sf_legendre_sphPlm_e
>
1283 =item C
<gsl_sf_legendre_sphPlm
>
1285 =item C
<gsl_sf_legendre_sphPlm_array
>
1287 =item C
<gsl_sf_legendre_sphPlm_deriv_array
>
1289 =item C
<gsl_sf_legendre_array_size
>
1291 =item C
<gsl_sf_lngamma_e
>
1293 =item C
<gsl_sf_lngamma
>
1295 =item C
<gsl_sf_lngamma_sgn_e
>
1297 =item C
<gsl_sf_gamma_e
>
1299 =item C
<gsl_sf_gamma
>
1301 =item C
<gsl_sf_gammastar_e
>
1303 =item C
<gsl_sf_gammastar
>
1305 =item C
<gsl_sf_gammainv_e
>
1307 =item C
<gsl_sf_gammainv
>
1309 =item C
<gsl_sf_lngamma_complex_e
>
1311 =item C
<gsl_sf_gamma_inc_Q_e
>
1313 =item C
<gsl_sf_gamma_inc_Q
>
1315 =item C
<gsl_sf_gamma_inc_P_e
>
1317 =item C
<gsl_sf_gamma_inc_P
>
1319 =item C
<gsl_sf_gamma_inc_e
>
1321 =item C
<gsl_sf_gamma_inc
>
1323 =item C
<gsl_sf_taylorcoeff_e
>
1325 =item C
<gsl_sf_taylorcoeff
>
1327 =item C
<gsl_sf_fact_e
>
1329 =item C
<gsl_sf_fact
>
1331 =item C
<gsl_sf_doublefact_e
>
1333 =item C
<gsl_sf_doublefact
>
1335 =item C
<gsl_sf_lnfact_e
>
1337 =item C
<gsl_sf_lnfact
>
1339 =item C
<gsl_sf_lndoublefact_e
>
1341 =item C
<gsl_sf_lndoublefact
>
1343 =item C
<gsl_sf_lnchoose_e
>
1345 =item C
<gsl_sf_lnchoose
>
1347 =item C
<gsl_sf_choose_e
>
1349 =item C
<gsl_sf_choose
>
1351 =item C
<gsl_sf_lnpoch_e
>
1353 =item C
<gsl_sf_lnpoch
>
1355 =item C
<gsl_sf_lnpoch_sgn_e
>
1357 =item C
<gsl_sf_poch_e
>
1359 =item C
<gsl_sf_poch
>
1361 =item C
<gsl_sf_pochrel_e
>
1363 =item C
<gsl_sf_pochrel
>
1365 =item C
<gsl_sf_lnbeta_e
>
1367 =item C
<gsl_sf_lnbeta
>
1369 =item C
<gsl_sf_lnbeta_sgn_e
>
1371 =item C
<gsl_sf_beta_e
>
1373 =item C
<gsl_sf_beta
>
1375 =item C
<gsl_sf_beta_inc_e
>
1377 =item C
<gsl_sf_beta_inc
>
1379 =item C
<gsl_sf_gegenpoly_1_e
>
1381 =item C
<gsl_sf_gegenpoly_2_e
>
1383 =item C
<gsl_sf_gegenpoly_3_e
>
1385 =item C
<gsl_sf_gegenpoly_1
>
1387 =item C
<gsl_sf_gegenpoly_2
>
1389 =item C
<gsl_sf_gegenpoly_3
>
1391 =item C
<gsl_sf_gegenpoly_n_e
>
1393 =item C
<gsl_sf_gegenpoly_n
>
1395 =item C
<gsl_sf_gegenpoly_array
>
1397 =item C
<gsl_sf_hyperg_0F1_e
>
1399 =item C
<gsl_sf_hyperg_0F1
>
1401 =item C
<gsl_sf_hyperg_1F1_int_e
>
1403 =item C
<gsl_sf_hyperg_1F1_int
>
1405 =item C
<gsl_sf_hyperg_1F1_e
>
1407 =item C
<gsl_sf_hyperg_1F1
>
1409 =item C
<gsl_sf_hyperg_U_int_e
>
1411 =item C
<gsl_sf_hyperg_U_int
>
1413 =item C
<gsl_sf_hyperg_U_int_e10_e
>
1415 =item C
<gsl_sf_hyperg_U_e
>
1417 =item C
<gsl_sf_hyperg_U
>
1419 =item C
<gsl_sf_hyperg_U_e10_e
>
1421 =item C
<gsl_sf_hyperg_2F1_e
>
1423 =item C
<gsl_sf_hyperg_2F1
>
1425 =item C
<gsl_sf_hyperg_2F1_conj_e
>
1427 =item C
<gsl_sf_hyperg_2F1_conj
>
1429 =item C
<gsl_sf_hyperg_2F1_renorm_e
>
1431 =item C
<gsl_sf_hyperg_2F1_renorm
>
1433 =item C
<gsl_sf_hyperg_2F1_conj_renorm_e
>
1435 =item C
<gsl_sf_hyperg_2F1_conj_renorm
>
1437 =item C
<gsl_sf_hyperg_2F0_e
>
1439 =item C
<gsl_sf_hyperg_2F0
>
1441 =item C
<gsl_sf_laguerre_1_e
>
1443 =item C
<gsl_sf_laguerre_2_e
>
1445 =item C
<gsl_sf_laguerre_3_e
>
1447 =item C
<gsl_sf_laguerre_1
>
1449 =item C
<gsl_sf_laguerre_2
>
1451 =item C
<gsl_sf_laguerre_3
>
1453 =item C
<gsl_sf_laguerre_n_e
>
1455 =item C
<gsl_sf_laguerre_n
>
1457 =item C
<gsl_sf_lambert_W0_e
>
1459 =item C
<gsl_sf_lambert_W0
>
1461 =item C
<gsl_sf_lambert_Wm1_e
>
1463 =item C
<gsl_sf_lambert_Wm1
>
1465 =item C
<gsl_sf_conicalP_half_e
>
1467 =item C
<gsl_sf_conicalP_half
>
1469 =item C
<gsl_sf_conicalP_mhalf_e
>
1471 =item C
<gsl_sf_conicalP_mhalf
>
1473 =item C
<gsl_sf_conicalP_0_e
>
1475 =item C
<gsl_sf_conicalP_0
>
1477 =item C
<gsl_sf_conicalP_1_e
>
1479 =item C
<gsl_sf_conicalP_1
>
1481 =item C
<gsl_sf_conicalP_sph_reg_e
>
1483 =item C
<gsl_sf_conicalP_sph_reg
>
1485 =item C
<gsl_sf_conicalP_cyl_reg_e
>
1487 =item C
<gsl_sf_conicalP_cyl_reg
>
1489 =item C
<gsl_sf_legendre_H3d_0_e
>
1491 =item C
<gsl_sf_legendre_H3d_0
>
1493 =item C
<gsl_sf_legendre_H3d_1_e
>
1495 =item C
<gsl_sf_legendre_H3d_1
>
1497 =item C
<gsl_sf_legendre_H3d_e
>
1499 =item C
<gsl_sf_legendre_H3d
>
1501 =item C
<gsl_sf_legendre_H3d_array
>
1503 =item C
<gsl_sf_log_e
>
1507 =item C
<gsl_sf_log_abs_e
>
1509 =item C
<gsl_sf_log_abs
>
1511 =item C
<gsl_sf_complex_log_e
>
1513 =item C
<gsl_sf_log_1plusx_e
>
1515 =item C
<gsl_sf_log_1plusx
>
1517 =item C
<gsl_sf_log_1plusx_mx_e
>
1519 =item C
<gsl_sf_log_1plusx_mx
>
1521 =item C
<gsl_sf_mathieu_a_array
>
1523 =item C
<gsl_sf_mathieu_b_array
>
1525 =item C
<gsl_sf_mathieu_a
>
1527 =item C
<gsl_sf_mathieu_b
>
1529 =item C
<gsl_sf_mathieu_a_coeff
>
1531 =item C
<gsl_sf_mathieu_b_coeff
>
1533 =item C
<gsl_sf_mathieu_alloc
>
1535 =item C
<gsl_sf_mathieu_free
>
1537 =item C
<gsl_sf_mathieu_ce
>
1539 =item C
<gsl_sf_mathieu_se
>
1541 =item C
<gsl_sf_mathieu_ce_array
>
1543 =item C
<gsl_sf_mathieu_se_array
>
1545 =item C
<gsl_sf_mathieu_Mc
>
1547 =item C
<gsl_sf_mathieu_Ms
>
1549 =item C
<gsl_sf_mathieu_Mc_array
>
1551 =item C
<gsl_sf_mathieu_Ms_array
>
1553 =item C
<gsl_sf_pow_int_e
>
1555 =item C
<gsl_sf_pow_int
>
1557 =item C
<gsl_sf_psi_int_e
>
1559 =item C
<gsl_sf_psi_int
>
1561 =item C
<gsl_sf_psi_e
>
1565 =item C
<gsl_sf_psi_1piy_e
>
1567 =item C
<gsl_sf_psi_1piy
>
1569 =item C
<gsl_sf_complex_psi_e gsl_sf_psi_1_int_e
>
1571 =item C
<gsl_sf_psi_1_int
>
1573 =item C
<gsl_sf_psi_1_e
>
1575 =item C
<gsl_sf_psi_1
>
1577 =item C
<gsl_sf_psi_n_e
>
1579 =item C
<gsl_sf_psi_n
>
1581 =item C
<gsl_sf_result_smash_e
>
1583 =item C
<gsl_sf_synchrotron_1_e
>
1585 =item C
<gsl_sf_synchrotron_1
>
1587 =item C
<gsl_sf_synchrotron_2_e
>
1589 =item C
<gsl_sf_synchrotron_2
>
1591 =item C
<gsl_sf_transport_2_e
>
1593 =item C
<gsl_sf_transport_2
>
1595 =item C
<gsl_sf_transport_3_e
>
1597 =item C
<gsl_sf_transport_3
>
1599 =item C
<gsl_sf_transport_4_e
>
1601 =item C
<gsl_sf_transport_4
>
1603 =item C
<gsl_sf_transport_5_e
>
1605 =item C
<gsl_sf_transport_5
>
1607 =item C
<gsl_sf_sin_e
>
1611 =item C
<gsl_sf_cos_e
>
1613 =item C
<gsl_sf_cos
>
1615 =item C
<gsl_sf_hypot_e
>
1617 =item C
<gsl_sf_hypot
>
1619 =item C
<gsl_sf_complex_sin_e
>
1621 =item C
<gsl_sf_complex_cos_e
>
1623 =item C
<gsl_sf_complex_logsin_e
>
1625 =item C
<gsl_sf_sinc_e
>
1627 =item C
<gsl_sf_sinc
>
1629 =item C
<gsl_sf_lnsinh_e
>
1631 =item C
<gsl_sf_lnsinh
>
1633 =item C
<gsl_sf_lncosh_e
>
1635 =item C
<gsl_sf_lncosh
>
1637 =item C
<gsl_sf_polar_to_rect
>
1639 =item C
<gsl_sf_rect_to_polar
>
1641 =item C
<gsl_sf_sin_err_e
>
1643 =item C
<gsl_sf_cos_err_e
>
1645 =item C
<gsl_sf_angle_restrict_symm_e
>
1647 =item C
<gsl_sf_angle_restrict_symm
>
1649 =item C
<gsl_sf_angle_restrict_pos_e
>
1651 =item C
<gsl_sf_angle_restrict_pos
>
1653 =item C
<gsl_sf_angle_restrict_symm_err_e
>
1655 =item C
<gsl_sf_angle_restrict_pos_err_e
>
1657 =item C
<gsl_sf_atanint_e
>
1659 =item C
<gsl_sf_atanint
>
1661 =item C
<gsl_sf_zeta_int_e
>
1663 =item C
<gsl_sf_zeta_int
>
1665 =item C
<gsl_sf_zeta_e gsl_sf_zeta
>
1667 =item C
<gsl_sf_zetam1_e
>
1669 =item C
<gsl_sf_zetam1
>
1671 =item C
<gsl_sf_zetam1_int_e
>
1673 =item C
<gsl_sf_zetam1_int
>
1675 =item C
<gsl_sf_hzeta_e
>
1677 =item C
<gsl_sf_hzeta
>
1679 =item C
<gsl_sf_eta_int_e
>
1681 =item C
<gsl_sf_eta_int
>
1683 =item C
<gsl_sf_eta_e
>
1685 =item C
<gsl_sf_eta
>
1689 You can import the functions that you want to use by giving a space separated list to Math
::GSL
::SF when you use the package.
1690 You can also write use Math
::GSL
::SF qw
/:all
/ to use all avaible functions of the module. Note that the tag names begin with a colon.
1691 Other tags are also available
, here is a complete list of all tags for this module
:
1721 =item C
<hypergeometric
>
1741 For more informations on the functions
, we refer you to the GSL offcial
1742 documentation
: http
://www.gnu.org
/software
/gsl
/manual
/html_node
/
1744 Tip
: search on google
: site
:http
://www.gnu.org
/software
/gsl
/manual
/html_node
/name_of_the_function_you_want
1748 This example computes the dilogarithm of
1/10 :
1750 use Math
::GSL
::SF qw
/dilog
/;
1751 my $x
= gsl_sf_dilog
(0.1);
1752 print
"gsl_sf_dilog(0.1) = $x\n";
1754 An example using Math
::GSL
::SF and gnuplot is in the B
<examples
/sf
> folder of the source code.
1758 Jonathan Leto
<jonathan@leto.net
> and Thierry Moisan
<thierry.moisan@gmail.com
>
1760 =head1 COPYRIGHT
AND LICENSE
1762 Copyright
(C
) 2008 Jonathan Leto and Thierry Moisan
1764 This program is free software
; you can redistribute it and
/or modify it
1765 under the same terms as Perl itself.