1 %module
"Math::GSL::Complex"
3 #include
"gsl/gsl_complex.h"
4 #include
"gsl/gsl_complex_math.h"
7 %include
"gsl/gsl_complex.h"
8 %include
"gsl/gsl_complex_math.h"
12 %array_functions
(double
, doubleArray
);
17 gsl_complex_arg gsl_complex_abs gsl_complex_rect gsl_complex_polar doubleArray_getitem
18 gsl_complex_rect gsl_complex_polar gsl_complex_arg gsl_complex_abs gsl_complex_abs2
19 gsl_complex_logabs gsl_complex_add gsl_complex_sub gsl_complex_mul gsl_complex_div
20 gsl_complex_add_real gsl_complex_sub_real gsl_complex_mul_real gsl_complex_div_real
21 gsl_complex_add_imag gsl_complex_sub_imag gsl_complex_mul_imag gsl_complex_div_imag
22 gsl_complex_conjugate gsl_complex_inverse gsl_complex_negative gsl_complex_sqrt
23 gsl_complex_sqrt_real gsl_complex_pow gsl_complex_pow_real gsl_complex_exp
24 gsl_complex_log gsl_complex_log10 gsl_complex_log_b gsl_complex_sin
25 gsl_complex_cos gsl_complex_sec gsl_complex_csc gsl_complex_tan
26 gsl_complex_cot gsl_complex_arcsin gsl_complex_arcsin_real gsl_complex_arccos
27 gsl_complex_arccos_real gsl_complex_arcsec gsl_complex_arcsec_real gsl_complex_arccsc
28 gsl_complex_arccsc_real gsl_complex_arctan gsl_complex_arccot gsl_complex_sinh
29 gsl_complex_cosh gsl_complex_sech gsl_complex_csch gsl_complex_tanh
30 gsl_complex_coth gsl_complex_arcsinh gsl_complex_arccosh gsl_complex_arccosh_real
31 gsl_complex_arcsech gsl_complex_arccsch gsl_complex_arctanh gsl_complex_arctanh_real
32 gsl_complex_arccoth new_doubleArray delete_doubleArray doubleArray_setitem
33 gsl_real gsl_imag gsl_parts
34 gsl_complex_eq gsl_set_real gsl_set_imag gsl_set_complex
35 $GSL_COMPLEX_ONE $GSL_COMPLEX_ZERO $GSL_COMPLEX_NEGONE
38 # gsl_set_complex gsl_set_complex_packed
39 our
($GSL_COMPLEX_ONE
, $GSL_COMPLEX_ZERO
, $GSL_COMPLEX_NEGONE
) = map
{ gsl_complex_rect
($_
, 0) } qw
(1 0 -1);
42 %EXPORT_TAGS
= ( all
=> [ @EXPORT_OK
] );
44 ### wrapper interface ###
46 my
($class
, @values
) = @_
;
48 $this-
>{_complex
} = gsl_complex_rect
($values
[0], $values
[1]);
53 gsl_real
($self-
>{_complex
}->{dat
});
58 gsl_imag
($self-
>{_complex
}->{dat
});
63 gsl_parts
($self-
>{_complex
}->{dat
});
66 sub raw
{ (shift
)->{_complex
} }
68 ### end wrapper interface ###
70 ### some important macros that are in gsl_complex.h
73 gsl_real
($z
) == gsl_real
($w
) && gsl_imag($z) == gsl_imag($w) ? 1 : 0;
78 doubleArray_setitem
($z-
>{dat
}, 0, $r
);
83 doubleArray_setitem
($z-
>{dat
}, 1, $i
);
88 return doubleArray_getitem
($z-
>{dat
}, 0 );
93 return doubleArray_getitem
($z-
>{dat
}, 1 );
98 return
(gsl_real
($z
), gsl_imag
($z
));
101 sub gsl_set_complex
{
102 my
($z
, $r
, $i
) = @_
;
103 gsl_set_real
($z
, $r
);
104 gsl_set_imag
($z
, $i
);
112 Functions concerning complex numbers.
116 use Math
::GSL
::Complex qw
/:all
/;
117 my $complex
= Math
::GSL
::Complex-
>new
([3,2]); # creates a complex number
3+2*i
118 my $real
= $complex-
>real
; # returns the real value of the complex number
119 my $imag
= $complex-
>imag
; # returns the imaginary value of the complex number
120 $complex-
>gsl_set_real
(5); # changes the real value of the complex number to
5
121 $complex-
>gsl_set_imag
(4); # changes the imaginary value of the complex number to
4
122 $complex-
>gsl_set_complex
(7,6); # changes the real value of the complex number to
7 and the imaginary value to
6
123 ($real
, $imag
) = $complex-
>parts
; # returns the real and imaginary values of the complex number
124 my $abs
= gsl_complex_abs2
($complex-
>raw
); # the raw method gives access to the underlying gsl_complex structure
, it is needed for the functions below.
128 Here is a list of all the functions included in this module
:
132 =item C
<gsl_complex_arg
($z
)> - return the argument of the complex number $z
134 =item C
<gsl_complex_abs
($z
)> - return |$z|
, the magnitude of the complex number $z
136 =item C
<gsl_complex_rect
($x
,$y
)> - create a complex number in cartesian form $x
+ $y
*I
138 =item C
<gsl_complex_polar
($r
,$theta
)> - create a complex number in polar form $r
*exp
(I
*$theta
)
140 =item C
<gsl_complex_abs2
($z
)> - return |$z|^
2, the squared magnitude of the complex number $z
142 =item C
<gsl_complex_logabs
($z
)> - return log
(|$z|
), the natural logarithm of the magnitude of the complex number $z
144 =item C
<gsl_complex_add
($c1
, $c2
)> - return a complex number which is the sum of the complex numbers $c1 and $c2
146 =item C
<gsl_complex_sub
($c1
, $c2
)> - return a complex number which is the difference between $c1 and $c2
($c1
- $c2
)
148 =item C
<gsl_complex_mul
($c1
, $c2
)> - return a complex number which is the product of the complex numbers $c1 and $c2
150 =item C
<gsl_complex_div
($c1
, $c2
)> - return a complex number which is the quotient of the complex numbers $c1 and $c2
($c1
/ $c2
)
152 =item C
<gsl_complex_add_real
($c
, $x
)> - return the sum of the complex number $c and the real number $x
154 =item C
<gsl_complex_sub_real
($c
, $x
)> - return the difference of the complex number $c and the real number $x
156 =item C
<gsl_complex_mul_real
($c
, $x
)> - return the product of the complex number $c and the real number $x
158 =item C
<gsl_complex_div_real
($c
, $x
)> - return the quotient of the complex number $c and the real number $x
160 =item C
<gsl_complex_add_imag
($c
, $y
)> - return sum of the complex number $c and the imaginary number i
*$x
162 =item C
<gsl_complex_sub_imag
($c
, $y
)> - return the diffrence of the complex number $c and the imaginary number i
*$x
164 =item C
<gsl_complex_mul_imag
($c
, $y
)> - return the product of the complex number $c and the imaginary number i
*$x
166 =item C
<gsl_complex_div_imag
($c
, $y
)> - return the quotient of the complex number $c and the imaginary number i
*$x
168 =item C
<gsl_complex_conjugate
($c
)> - return the conjugate of the of the complex number $c
(x
- i
*y
)
170 =item C
<gsl_complex_inverse
($c
)> - return the inverse
, or reciprocal of the complex number $c
(1/$c
)
172 =item C
<gsl_complex_negative
($c
)> - return the negative of the complex number $c
(-x
-i
*y
)
174 =item C
<gsl_complex_sqrt
($c
)> - return the square root of the complex number $c
176 =item C
<gsl_complex_sqrt_real
($x
)> - return the complex square root of the real number $x
, where $x may be negative
178 =item C
<gsl_complex_pow
($c1
, $c2
)> - return the complex number $c1 raised to the complex power $c2
180 =item C
<gsl_complex_pow_real
($c
, $x
)> - return the complex number raised to the real power $x
182 =item C
<gsl_complex_exp
($c
)> - return the complex exponential of the complex number $c
184 =item C
<gsl_complex_log
($c
)> - return the complex natural logarithm
(base e
) of the complex number $c
186 =item C
<gsl_complex_log10
($c
)> - return the complex base-10 logarithm of the complex number $c
188 =item C
<gsl_complex_log_b
($c
, $b
)> - return the complex base-$b of the complex number $c
190 =item C
<gsl_complex_sin
($c
)> - return the complex sine of the complex number $c
192 =item C
<gsl_complex_cos
($c
)> - return the complex cosine of the complex number $c
194 =item C
<gsl_complex_sec
($c
)> - return the complex secant of the complex number $c
196 =item C
<gsl_complex_csc
($c
)> - return the complex cosecant of the complex number $c
198 =item C
<gsl_complex_tan
($c
)> - return the complex tangent of the complex number $c
200 =item C
<gsl_complex_cot
($c
)> - return the complex cotangent of the complex number $c
202 =item C
<gsl_complex_arcsin
($c
)> - return the complex arcsine of the complex number $c
204 =item C
<gsl_complex_arcsin_real
($x
)> - return the complex arcsine of the real number $x
206 =item C
<gsl_complex_arccos
($c
)> - return the complex arccosine of the complex number $c
208 =item C
<gsl_complex_arccos_real
($x
)> - return the complex arccosine of the real number $x
210 =item C
<gsl_complex_arcsec
($c
)> - return the complex arcsecant of the complex number $c
212 =item C
<gsl_complex_arcsec_real
($x
)> - return the complex arcsecant of the real number $x
214 =item C
<gsl_complex_arccsc
($c
)> - return the complex arccosecant of the complex number $c
216 =item C
<gsl_complex_arccsc_real
($x
)> - return the complex arccosecant of the real number $x
218 =item C
<gsl_complex_arctan
($c
)> - return the complex arctangent of the complex number $c
220 =item C
<gsl_complex_arccot
($c
)> - return the complex arccotangent of the complex number $c
222 =item C
<gsl_complex_sinh
($c
)> - return the complex hyperbolic sine of the complex number $c
224 =item C
<gsl_complex_cosh
($c
)> - return the complex hyperbolic cosine of the complex number $cy
226 =item C
<gsl_complex_sech
($c
)> - return the complex hyperbolic secant of the complex number $c
228 =item C
<gsl_complex_csch
($c
)> - return the complex hyperbolic cosecant of the complex number $c
230 =item C
<gsl_complex_tanh
($c
)> - return the complex hyperbolic tangent of the complex number $c
232 =item C
<gsl_complex_coth
($c
)> - return the complex hyperbolic cotangent of the complex number $c
234 =item C
<gsl_complex_arcsinh
($c
)> - return the complex hyperbolic arcsine of the complex number $c
236 =item C
<gsl_complex_arccosh
($c
)> - return the complex hyperbolic arccosine of the complex number $c
238 =item C
<gsl_complex_arccosh_real
($x
)> - return the complex hyperbolic arccosine of the real number $x
240 =item C
<gsl_complex_arcsech
($c
)> - return the complex hyperbolic arcsecant of the complex number $c
242 =item C
<gsl_complex_arccsch
($c
)> - return the complex hyperbolic arccosecant of the complex number $c
244 =item C
<gsl_complex_arctanh
($c
)> - return the complex hyperbolic arctangent of the complex number $c
246 =item C
<gsl_complex_arctanh_real
($x
)> - return the complex hyperbolic arctangent of the real number $x
248 =item C
<gsl_complex_arccoth
($c
)> - return the complex hyperbolic arccotangent of the complex number $c
250 =item C
<gsl_real
($z
)> - return the real part of $z
252 =item C
<gsl_imag
($z
)> - return the imaginary part of $z
254 =item C
<gsl_parts
($z
)> - return a list of the real and imaginary parts of $z
256 =item C
<gsl_set_real
($z
, $x
)> - sets the real part of $z to $x
258 =item C
<gsl_set_imag
($z
, $y
)> - sets the imaginary part of $z to $y
260 =item C
<gsl_set_complex
($z
, $x
, $h
)> - sets the real part of $z to $x and the imaginary part to $y
264 You have to add the functions you want to use inside the qw
/put_funtion_here
/ with spaces between each function.
265 You can also write use Math
::GSL
::Complex qw
/:all
/ to use all avaible functions of the module.
267 For more informations on the functions
, we refer you to the GSL offcial documentation
: L
<http
://www.gnu.org
/software
/gsl
/manual
/html_node
/>
268 Tip
: search on google
: site
:http
://www.gnu.org
/software
/gsl
/manual
/html_node
/ name_of_the_function_you_want
272 This code defines $z as
6 + 4*I
, takes the complex conjugate of that number
, then prints it out.
276 =item C
<my $z
= gsl_complex_rect
(6,4);>
278 =item C
<my $y
= gsl_complex_conjugate
($z
);>
280 =item C
<my
($real
, $imag
) = gsl_parts
($y
);>
282 =item C
<print
"z = $real + $imag*I\n";>
286 This code defines $z as
5 + 3*I
, multiplies it by
2 and then prints it out.
290 =item C
<my $x
= gsl_complex_rect
(5,3);>
292 =item C
<my $z
= gsl_complex_mul_real
($x
, 2);>
294 =item C
<my $real
= gsl_real
($z
);>
296 =item C
<my $imag
= gsl_imag
($z
);>
298 =item C
<print
"Re(\$z) = $real\n";>
304 Jonathan Leto
<jonathan@leto.net
> and Thierry Moisan
<thierry.moisan@gmail.com
>
306 =head1 COPYRIGHT
AND LICENSE
308 Copyright
(C
) 2008 Jonathan Leto and Thierry Moisan
310 This program is free software
; you can redistribute it and
/or modify it
311 under the same terms as Perl itself.