Applies an experimental patch to x264 allowing VBV contraints on ABR in 2-pass mode...
[HandBrake.git] / contrib / patch-x264-vbv-2pass.patch
blobba8ef5f9107413e4561351b6cc53b5b18f772555
1 Index: encoder/ratecontrol.c
2 ===================================================================
3 --- encoder/ratecontrol.c (revision 680)
4 +++ encoder/ratecontrol.c (working copy)
5 @@ -43,6 +43,7 @@
6 int p_tex_bits;
7 int misc_bits;
8 uint64_t expected_bits;
9 + double expected_vbv;
10 float new_qscale;
11 int new_qp;
12 int i_count;
13 @@ -1149,7 +1150,7 @@
14 return;
16 rct->buffer_fill_final += rct->buffer_rate - bits;
17 - if( rct->buffer_fill_final < 0 && !rct->b_2pass )
18 + if( rct->buffer_fill_final < 0 )
19 x264_log( h, X264_LOG_WARNING, "VBV underflow (%.0f bits)\n", rct->buffer_fill_final );
20 rct->buffer_fill_final = x264_clip3f( rct->buffer_fill_final, 0, rct->buffer_size );
22 @@ -1325,6 +1326,28 @@
23 double w = x264_clip3f( time*100, 0.0, 1.0 );
24 q *= pow( (double)total_bits / rcc->expected_bits_sum, w );
26 + if( rcc->b_vbv )
27 + {
28 + double expected_size = qscale2bits(&rce, q);
29 + double expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
30 + if( (expected_vbv < rcc->buffer_size*.4) && (expected_vbv < rce.expected_vbv) )
31 + {
32 + double qmax = (expected_vbv < rcc->buffer_size*.15) ? lmax : q*1.5;
33 + double size_constraint = 1 + rce.expected_vbv/rcc->buffer_size;
34 + while( (expected_vbv < rce.expected_vbv/size_constraint) && (q < qmax) )
35 + {
36 + q *= 1.05;
37 + expected_size = qscale2bits(&rce, q);
38 + expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size;
39 + }
40 +/* x264_log( h, X264_LOG_INFO,
41 + "frame %d rcc expected vbv = %d encoding expected vbv = %d\n",
42 + (int)(h->fenc->i_frame),
43 + (int)(rce.expected_vbv),
44 + (int)(expected_vbv));*/
46 + }
47 + }
48 q = x264_clip3f( q, lmin, lmax );
50 else /* 1pass ABR */
51 @@ -1455,6 +1478,137 @@
52 /* the rest of the variables are either constant or thread-local */
55 +FILE *fh_vbv;
57 +static int find_underflow( x264_t *h, double *fills, int *t0, int *t1, int over )
59 + /* find an interval ending on an overflow or underflow (depending on whether
60 + * we're adding or removing bits), and starting on the earliest frame that
61 + * can influence the buffer fill of that end frame. */
62 + x264_ratecontrol_t *rcc = h->rc;
63 + const double buffer_min = (over ? .1 : .1) * rcc->buffer_size;
64 + const double buffer_max = .9 * rcc->buffer_size;
65 + double fill = fills[*t0-1];
66 + double parity = over ? 1. : -1.;
67 + int i, start=-1, end=-1;
68 + for(i=*t0; i<rcc->num_entries; i++)
69 + {
70 + fill += (rcc->buffer_rate - qscale2bits(&rcc->entry[i], rcc->entry[i].new_qscale)) * parity;
71 + fill = x264_clip3f(fill, 0, rcc->buffer_size);
72 + fills[i] = fill;
73 + if(fill <= buffer_min || i == 0)
74 + {
75 + if(end >= 0)
76 + break;
77 + start = i;
78 + }
79 + else if(fill >= buffer_max && start >= 0)
80 + end = i;
81 + }
82 + *t0 = start;
83 + *t1 = end;
84 + return start>=0 && end>=0;
87 +static void fix_underflow( x264_t *h, int t0, int t1, double adjustment )
89 + x264_ratecontrol_t *rcc = h->rc;
90 + int i;
91 + if(t0 > 0)
92 + t0++;
93 +// printf("interval [%d,%d] %.4f\n", t0, t1, adjustment);
94 + for(i=t0; i<=t1; i++)
95 + rcc->entry[i].new_qscale *= adjustment;
98 +static double count_expected_bits( x264_t *h )
100 + x264_ratecontrol_t *rcc = h->rc;
101 + double expected_bits = 0;
102 + int i;
103 + for(i=0; i<rcc->num_entries; i++)
105 + ratecontrol_entry_t *rce = &rcc->entry[i];
106 + rce->expected_bits = expected_bits;
107 + expected_bits += qscale2bits(rce, rce->new_qscale);
109 + return expected_bits;
112 +static void debug_dump_vbv( x264_t *h )
114 + x264_ratecontrol_t *rcc = h->rc;
115 + double fill = rcc->buffer_size * h->param.rc.f_vbv_buffer_init;
116 + int i;
117 + for(i=0; i<rcc->num_entries; i++)
119 + fill += rcc->buffer_rate - qscale2bits(&rcc->entry[i], rcc->entry[i].new_qscale);
120 + fill = x264_clip3f(fill, rcc->buffer_size*-.5, rcc->buffer_size);
121 + fprintf(fh_vbv, "%d %.0f\n", i, fill);
125 +static void vbv_pass2( x264_t *h )
127 + /* foreach interval of buffer_full .. underflow
128 + * uniformly increase the qp of all frames in the interval until either
129 + * buffer is full at some intermediate frame
130 + * or the last frame in the interval no longer underflows
131 + * recompute intervals and repeat
132 + * then do the converse to put bits back into overflow areas until target size is met */
134 + x264_ratecontrol_t *rcc = h->rc;
135 + double *fills = x264_malloc((rcc->num_entries+1)*sizeof(double));
136 + double all_available_bits = h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps;
137 + double expected_bits, prev_bits, adjustment;
138 + int i, t0, t1, space;
140 + fills++;
141 +// fh_vbv = fopen("vbv.log", "w");
143 + //adjust overall stream size
144 + do {
145 + space = 0;
147 + fills[-1] = rcc->buffer_size * (1. - h->param.rc.f_vbv_buffer_init);
148 + t0 = 0;
149 + //fix underflows
150 + while(find_underflow(h, fills, &t0, &t1, 0))
152 + fix_underflow(h, t0, t1, 1.001);
153 + space = 1;
156 + prev_bits = expected_bits = count_expected_bits(h);
157 + adjustment = X264_MAX(expected_bits / all_available_bits, 0.999);
158 + fills[-1] = rcc->buffer_size * h->param.rc.f_vbv_buffer_init;
159 + t0 = 0;
160 + //fix overflows
161 + while(find_underflow(h, fills, &t0, &t1, 1))
163 + fix_underflow(h, t0, t1, adjustment);
164 + t0 = t1;
165 + space = 1;
167 + expected_bits = count_expected_bits(h);
168 + } while(space && expected_bits < .995*all_available_bits && expected_bits >= prev_bits+1);
170 + //better undersizing target than underflowing vbv
171 + fills[-1] = rcc->buffer_size * (1. - h->param.rc.f_vbv_buffer_init);
172 + t0 = 0;
173 + while(find_underflow(h, fills, &t0, &t1, 0))
174 + fix_underflow(h, t0, t1, 1.001);
176 +// debug_dump_vbv(h);
178 + //store expected vbv filling values for tracking when encoding
179 + for(i=0; i<rcc->num_entries; i++)
180 + rcc->entry[i].expected_vbv = rcc->buffer_size - fills[i];
182 +// fclose(fh_vbv);
183 + x264_free(fills-1);
186 static int init_pass2( x264_t *h )
188 x264_ratecontrol_t *rcc = h->rc;
189 @@ -1543,7 +1697,6 @@
190 rcc->last_non_b_pict_type = -1;
191 rcc->last_accum_p_norm = 1;
192 rcc->accum_p_norm = 0;
193 - rcc->buffer_fill = rcc->buffer_size * h->param.rc.f_vbv_buffer_init;
195 /* find qscale */
196 for(i=0; i<rcc->num_entries; i++){
197 @@ -1580,15 +1733,9 @@
198 /* find expected bits */
199 for(i=0; i<rcc->num_entries; i++){
200 ratecontrol_entry_t *rce = &rcc->entry[i];
201 - double bits;
202 rce->new_qscale = clip_qscale(h, rce->pict_type, blurred_qscale[i]);
203 assert(rce->new_qscale >= 0);
204 - bits = qscale2bits(rce, rce->new_qscale);
206 - rce->expected_bits = expected_bits;
207 - expected_bits += bits;
208 - update_vbv(h, bits);
209 - rcc->buffer_fill = rcc->buffer_fill_final;
210 + expected_bits += qscale2bits(rce, rce->new_qscale);
213 //printf("expected:%llu available:%llu factor:%lf avgQ:%lf\n", (uint64_t)expected_bits, all_available_bits, rate_factor);
214 @@ -1599,6 +1746,10 @@
215 if(filter_size > 1)
216 x264_free(blurred_qscale);
218 + if(rcc->b_vbv)
219 + vbv_pass2(h);
220 + expected_bits = count_expected_bits(h);
222 if(fabs(expected_bits/all_available_bits - 1.0) > 0.01)
224 double avgq = 0;
225 @@ -1606,7 +1757,8 @@
226 avgq += rcc->entry[i].new_qscale;
227 avgq = qscale2qp(avgq / rcc->num_entries);
229 - x264_log(h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n");
230 + if ((expected_bits > all_available_bits) || (!rcc->b_vbv))
231 + x264_log(h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n");
232 x264_log(h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n",
233 (float)h->param.rc.i_bitrate,
234 expected_bits * rcc->fps / (rcc->num_entries * 1000.),
235 @@ -1625,7 +1777,7 @@
236 else
237 x264_log(h, X264_LOG_WARNING, "try increasing target bitrate\n");
239 - else
240 + else if(!(rcc->b_2pass && rcc->b_vbv))
241 x264_log(h, X264_LOG_WARNING, "internal error\n");
244 @@ -1633,3 +1785,4 @@