Merge remote-tracking branch 'libav/master'
[FFMpeg-mirror/mplayer-patches.git] / libswscale / utils.c
blob6bbdb64f8d0a577100155870aeb3b43575e597c9
1 /*
2 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
4 * This file is part of Libav.
6 * Libav is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * Libav is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with Libav; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "config.h"
23 #define _SVID_SOURCE // needed for MAP_ANONYMOUS
24 #include <assert.h>
25 #include <inttypes.h>
26 #include <math.h>
27 #include <stdio.h>
28 #include <string.h>
29 #if HAVE_SYS_MMAN_H
30 #include <sys/mman.h>
31 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
32 #define MAP_ANONYMOUS MAP_ANON
33 #endif
34 #endif
35 #if HAVE_VIRTUALALLOC
36 #define WIN32_LEAN_AND_MEAN
37 #include <windows.h>
38 #endif
40 #include "libavutil/attributes.h"
41 #include "libavutil/avutil.h"
42 #include "libavutil/bswap.h"
43 #include "libavutil/cpu.h"
44 #include "libavutil/intreadwrite.h"
45 #include "libavutil/mathematics.h"
46 #include "libavutil/opt.h"
47 #include "libavutil/pixdesc.h"
48 #include "libavutil/x86/asm.h"
49 #include "libavutil/x86/cpu.h"
50 #include "rgb2rgb.h"
51 #include "swscale.h"
52 #include "swscale_internal.h"
54 unsigned swscale_version(void)
56 return LIBSWSCALE_VERSION_INT;
59 const char *swscale_configuration(void)
61 return LIBAV_CONFIGURATION;
64 const char *swscale_license(void)
66 #define LICENSE_PREFIX "libswscale license: "
67 return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
70 #define RET 0xC3 // near return opcode for x86
72 typedef struct FormatEntry {
73 int is_supported_in, is_supported_out;
74 } FormatEntry;
76 static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
77 [AV_PIX_FMT_YUV420P] = { 1, 1 },
78 [AV_PIX_FMT_YUYV422] = { 1, 1 },
79 [AV_PIX_FMT_RGB24] = { 1, 1 },
80 [AV_PIX_FMT_BGR24] = { 1, 1 },
81 [AV_PIX_FMT_YUV422P] = { 1, 1 },
82 [AV_PIX_FMT_YUV444P] = { 1, 1 },
83 [AV_PIX_FMT_YUV410P] = { 1, 1 },
84 [AV_PIX_FMT_YUV411P] = { 1, 1 },
85 [AV_PIX_FMT_GRAY8] = { 1, 1 },
86 [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
87 [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
88 [AV_PIX_FMT_PAL8] = { 1, 0 },
89 [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
90 [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
91 [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
92 [AV_PIX_FMT_UYVY422] = { 1, 1 },
93 [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
94 [AV_PIX_FMT_BGR8] = { 1, 1 },
95 [AV_PIX_FMT_BGR4] = { 0, 1 },
96 [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
97 [AV_PIX_FMT_RGB8] = { 1, 1 },
98 [AV_PIX_FMT_RGB4] = { 0, 1 },
99 [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
100 [AV_PIX_FMT_NV12] = { 1, 1 },
101 [AV_PIX_FMT_NV21] = { 1, 1 },
102 [AV_PIX_FMT_ARGB] = { 1, 1 },
103 [AV_PIX_FMT_RGBA] = { 1, 1 },
104 [AV_PIX_FMT_ABGR] = { 1, 1 },
105 [AV_PIX_FMT_BGRA] = { 1, 1 },
106 [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
107 [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
108 [AV_PIX_FMT_YUV440P] = { 1, 1 },
109 [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
110 [AV_PIX_FMT_YUVA420P] = { 1, 1 },
111 [AV_PIX_FMT_YUVA422P] = { 1, 1 },
112 [AV_PIX_FMT_YUVA444P] = { 1, 1 },
113 [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
114 [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
115 [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
116 [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
117 [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
118 [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
119 [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
120 [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
121 [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
122 [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
123 [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
124 [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
125 [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
126 [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
127 [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
128 [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
129 [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
130 [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
131 [AV_PIX_FMT_RGB48BE] = { 1, 1 },
132 [AV_PIX_FMT_RGB48LE] = { 1, 1 },
133 [AV_PIX_FMT_RGB565BE] = { 1, 1 },
134 [AV_PIX_FMT_RGB565LE] = { 1, 1 },
135 [AV_PIX_FMT_RGB555BE] = { 1, 1 },
136 [AV_PIX_FMT_RGB555LE] = { 1, 1 },
137 [AV_PIX_FMT_BGR565BE] = { 1, 1 },
138 [AV_PIX_FMT_BGR565LE] = { 1, 1 },
139 [AV_PIX_FMT_BGR555BE] = { 1, 1 },
140 [AV_PIX_FMT_BGR555LE] = { 1, 1 },
141 [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
142 [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
143 [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
144 [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
145 [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
146 [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
147 [AV_PIX_FMT_RGB444LE] = { 1, 1 },
148 [AV_PIX_FMT_RGB444BE] = { 1, 1 },
149 [AV_PIX_FMT_BGR444LE] = { 1, 1 },
150 [AV_PIX_FMT_BGR444BE] = { 1, 1 },
151 [AV_PIX_FMT_Y400A] = { 1, 0 },
152 [AV_PIX_FMT_BGR48BE] = { 1, 1 },
153 [AV_PIX_FMT_BGR48LE] = { 1, 1 },
154 [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
155 [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
156 [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
157 [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
158 [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
159 [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
160 [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
161 [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
162 [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
163 [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
164 [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
165 [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
166 [AV_PIX_FMT_GBRP] = { 1, 1 },
167 [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
168 [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
169 [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
170 [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
171 [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
172 [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
175 int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
177 return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
178 format_entries[pix_fmt].is_supported_in : 0;
181 int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
183 return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
184 format_entries[pix_fmt].is_supported_out : 0;
187 extern const int32_t ff_yuv2rgb_coeffs[8][4];
189 const char *sws_format_name(enum AVPixelFormat format)
191 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
192 if (desc)
193 return desc->name;
194 else
195 return "Unknown format";
198 static double getSplineCoeff(double a, double b, double c, double d,
199 double dist)
201 if (dist <= 1.0)
202 return ((d * dist + c) * dist + b) * dist + a;
203 else
204 return getSplineCoeff(0.0,
205 b + 2.0 * c + 3.0 * d,
206 c + 3.0 * d,
207 -b - 3.0 * c - 6.0 * d,
208 dist - 1.0);
211 static int initFilter(int16_t **outFilter, int32_t **filterPos,
212 int *outFilterSize, int xInc, int srcW, int dstW,
213 int filterAlign, int one, int flags, int cpu_flags,
214 SwsVector *srcFilter, SwsVector *dstFilter,
215 double param[2], int is_horizontal)
217 int i;
218 int filterSize;
219 int filter2Size;
220 int minFilterSize;
221 int64_t *filter = NULL;
222 int64_t *filter2 = NULL;
223 const int64_t fone = 1LL << 54;
224 int ret = -1;
226 emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
228 // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
229 FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
231 if (FFABS(xInc - 0x10000) < 10) { // unscaled
232 int i;
233 filterSize = 1;
234 FF_ALLOCZ_OR_GOTO(NULL, filter,
235 dstW * sizeof(*filter) * filterSize, fail);
237 for (i = 0; i < dstW; i++) {
238 filter[i * filterSize] = fone;
239 (*filterPos)[i] = i;
241 } else if (flags & SWS_POINT) { // lame looking point sampling mode
242 int i;
243 int xDstInSrc;
244 filterSize = 1;
245 FF_ALLOC_OR_GOTO(NULL, filter,
246 dstW * sizeof(*filter) * filterSize, fail);
248 xDstInSrc = xInc / 2 - 0x8000;
249 for (i = 0; i < dstW; i++) {
250 int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
252 (*filterPos)[i] = xx;
253 filter[i] = fone;
254 xDstInSrc += xInc;
256 } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
257 (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
258 int i;
259 int xDstInSrc;
260 filterSize = 2;
261 FF_ALLOC_OR_GOTO(NULL, filter,
262 dstW * sizeof(*filter) * filterSize, fail);
264 xDstInSrc = xInc / 2 - 0x8000;
265 for (i = 0; i < dstW; i++) {
266 int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
267 int j;
269 (*filterPos)[i] = xx;
270 // bilinear upscale / linear interpolate / area averaging
271 for (j = 0; j < filterSize; j++) {
272 int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
273 (fone >> 16);
274 if (coeff < 0)
275 coeff = 0;
276 filter[i * filterSize + j] = coeff;
277 xx++;
279 xDstInSrc += xInc;
281 } else {
282 int64_t xDstInSrc;
283 int sizeFactor;
285 if (flags & SWS_BICUBIC)
286 sizeFactor = 4;
287 else if (flags & SWS_X)
288 sizeFactor = 8;
289 else if (flags & SWS_AREA)
290 sizeFactor = 1; // downscale only, for upscale it is bilinear
291 else if (flags & SWS_GAUSS)
292 sizeFactor = 8; // infinite ;)
293 else if (flags & SWS_LANCZOS)
294 sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
295 else if (flags & SWS_SINC)
296 sizeFactor = 20; // infinite ;)
297 else if (flags & SWS_SPLINE)
298 sizeFactor = 20; // infinite ;)
299 else if (flags & SWS_BILINEAR)
300 sizeFactor = 2;
301 else {
302 sizeFactor = 0; // GCC warning killer
303 assert(0);
306 if (xInc <= 1 << 16)
307 filterSize = 1 + sizeFactor; // upscale
308 else
309 filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
311 filterSize = FFMIN(filterSize, srcW - 2);
312 filterSize = FFMAX(filterSize, 1);
314 FF_ALLOC_OR_GOTO(NULL, filter,
315 dstW * sizeof(*filter) * filterSize, fail);
317 xDstInSrc = xInc - 0x10000;
318 for (i = 0; i < dstW; i++) {
319 int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
320 int j;
321 (*filterPos)[i] = xx;
322 for (j = 0; j < filterSize; j++) {
323 int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
324 double floatd;
325 int64_t coeff;
327 if (xInc > 1 << 16)
328 d = d * dstW / srcW;
329 floatd = d * (1.0 / (1 << 30));
331 if (flags & SWS_BICUBIC) {
332 int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
333 int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
335 if (d >= 1LL << 31) {
336 coeff = 0.0;
337 } else {
338 int64_t dd = (d * d) >> 30;
339 int64_t ddd = (dd * d) >> 30;
341 if (d < 1LL << 30)
342 coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
343 (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
344 (6 * (1 << 24) - 2 * B) * (1 << 30);
345 else
346 coeff = (-B - 6 * C) * ddd +
347 (6 * B + 30 * C) * dd +
348 (-12 * B - 48 * C) * d +
349 (8 * B + 24 * C) * (1 << 30);
351 coeff *= fone >> (30 + 24);
353 #if 0
354 else if (flags & SWS_X) {
355 double p = param ? param * 0.01 : 0.3;
356 coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
357 coeff *= pow(2.0, -p * d * d);
359 #endif
360 else if (flags & SWS_X) {
361 double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
362 double c;
364 if (floatd < 1.0)
365 c = cos(floatd * M_PI);
366 else
367 c = -1.0;
368 if (c < 0.0)
369 c = -pow(-c, A);
370 else
371 c = pow(c, A);
372 coeff = (c * 0.5 + 0.5) * fone;
373 } else if (flags & SWS_AREA) {
374 int64_t d2 = d - (1 << 29);
375 if (d2 * xInc < -(1LL << (29 + 16)))
376 coeff = 1.0 * (1LL << (30 + 16));
377 else if (d2 * xInc < (1LL << (29 + 16)))
378 coeff = -d2 * xInc + (1LL << (29 + 16));
379 else
380 coeff = 0.0;
381 coeff *= fone >> (30 + 16);
382 } else if (flags & SWS_GAUSS) {
383 double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
384 coeff = (pow(2.0, -p * floatd * floatd)) * fone;
385 } else if (flags & SWS_SINC) {
386 coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
387 } else if (flags & SWS_LANCZOS) {
388 double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
389 coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
390 (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
391 if (floatd > p)
392 coeff = 0;
393 } else if (flags & SWS_BILINEAR) {
394 coeff = (1 << 30) - d;
395 if (coeff < 0)
396 coeff = 0;
397 coeff *= fone >> 30;
398 } else if (flags & SWS_SPLINE) {
399 double p = -2.196152422706632;
400 coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
401 } else {
402 coeff = 0.0; // GCC warning killer
403 assert(0);
406 filter[i * filterSize + j] = coeff;
407 xx++;
409 xDstInSrc += 2 * xInc;
413 /* apply src & dst Filter to filter -> filter2
414 * av_free(filter);
416 assert(filterSize > 0);
417 filter2Size = filterSize;
418 if (srcFilter)
419 filter2Size += srcFilter->length - 1;
420 if (dstFilter)
421 filter2Size += dstFilter->length - 1;
422 assert(filter2Size > 0);
423 FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
425 for (i = 0; i < dstW; i++) {
426 int j, k;
428 if (srcFilter) {
429 for (k = 0; k < srcFilter->length; k++) {
430 for (j = 0; j < filterSize; j++)
431 filter2[i * filter2Size + k + j] +=
432 srcFilter->coeff[k] * filter[i * filterSize + j];
434 } else {
435 for (j = 0; j < filterSize; j++)
436 filter2[i * filter2Size + j] = filter[i * filterSize + j];
438 // FIXME dstFilter
440 (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
442 av_freep(&filter);
444 /* try to reduce the filter-size (step1 find size and shift left) */
445 // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
446 minFilterSize = 0;
447 for (i = dstW - 1; i >= 0; i--) {
448 int min = filter2Size;
449 int j;
450 int64_t cutOff = 0.0;
452 /* get rid of near zero elements on the left by shifting left */
453 for (j = 0; j < filter2Size; j++) {
454 int k;
455 cutOff += FFABS(filter2[i * filter2Size]);
457 if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
458 break;
460 /* preserve monotonicity because the core can't handle the
461 * filter otherwise */
462 if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
463 break;
465 // move filter coefficients left
466 for (k = 1; k < filter2Size; k++)
467 filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
468 filter2[i * filter2Size + k - 1] = 0;
469 (*filterPos)[i]++;
472 cutOff = 0;
473 /* count near zeros on the right */
474 for (j = filter2Size - 1; j > 0; j--) {
475 cutOff += FFABS(filter2[i * filter2Size + j]);
477 if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
478 break;
479 min--;
482 if (min > minFilterSize)
483 minFilterSize = min;
486 if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
487 // we can handle the special case 4, so we don't want to go the full 8
488 if (minFilterSize < 5)
489 filterAlign = 4;
491 /* We really don't want to waste our time doing useless computation, so
492 * fall back on the scalar C code for very small filters.
493 * Vectorizing is worth it only if you have a decent-sized vector. */
494 if (minFilterSize < 3)
495 filterAlign = 1;
498 if (INLINE_MMX(cpu_flags)) {
499 // special case for unscaled vertical filtering
500 if (minFilterSize == 1 && filterAlign == 2)
501 filterAlign = 1;
504 assert(minFilterSize > 0);
505 filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
506 assert(filterSize > 0);
507 filter = av_malloc(filterSize * dstW * sizeof(*filter));
508 if (filterSize >= MAX_FILTER_SIZE * 16 /
509 ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
510 goto fail;
511 *outFilterSize = filterSize;
513 if (flags & SWS_PRINT_INFO)
514 av_log(NULL, AV_LOG_VERBOSE,
515 "SwScaler: reducing / aligning filtersize %d -> %d\n",
516 filter2Size, filterSize);
517 /* try to reduce the filter-size (step2 reduce it) */
518 for (i = 0; i < dstW; i++) {
519 int j;
521 for (j = 0; j < filterSize; j++) {
522 if (j >= filter2Size)
523 filter[i * filterSize + j] = 0;
524 else
525 filter[i * filterSize + j] = filter2[i * filter2Size + j];
526 if ((flags & SWS_BITEXACT) && j >= minFilterSize)
527 filter[i * filterSize + j] = 0;
531 // FIXME try to align filterPos if possible
533 // fix borders
534 if (is_horizontal) {
535 for (i = 0; i < dstW; i++) {
536 int j;
537 if ((*filterPos)[i] < 0) {
538 // move filter coefficients left to compensate for filterPos
539 for (j = 1; j < filterSize; j++) {
540 int left = FFMAX(j + (*filterPos)[i], 0);
541 filter[i * filterSize + left] += filter[i * filterSize + j];
542 filter[i * filterSize + j] = 0;
544 (*filterPos)[i] = 0;
547 if ((*filterPos)[i] + filterSize > srcW) {
548 int shift = (*filterPos)[i] + filterSize - srcW;
549 // move filter coefficients right to compensate for filterPos
550 for (j = filterSize - 2; j >= 0; j--) {
551 int right = FFMIN(j + shift, filterSize - 1);
552 filter[i * filterSize + right] += filter[i * filterSize + j];
553 filter[i * filterSize + j] = 0;
555 (*filterPos)[i] = srcW - filterSize;
560 // Note the +1 is for the MMX scaler which reads over the end
561 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
562 FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
563 *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
565 /* normalize & store in outFilter */
566 for (i = 0; i < dstW; i++) {
567 int j;
568 int64_t error = 0;
569 int64_t sum = 0;
571 for (j = 0; j < filterSize; j++) {
572 sum += filter[i * filterSize + j];
574 sum = (sum + one / 2) / one;
575 for (j = 0; j < *outFilterSize; j++) {
576 int64_t v = filter[i * filterSize + j] + error;
577 int intV = ROUNDED_DIV(v, sum);
578 (*outFilter)[i * (*outFilterSize) + j] = intV;
579 error = v - intV * sum;
583 (*filterPos)[dstW + 0] =
584 (*filterPos)[dstW + 1] =
585 (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
586 * read over the end */
587 for (i = 0; i < *outFilterSize; i++) {
588 int k = (dstW - 1) * (*outFilterSize) + i;
589 (*outFilter)[k + 1 * (*outFilterSize)] =
590 (*outFilter)[k + 2 * (*outFilterSize)] =
591 (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
594 ret = 0;
596 fail:
597 av_free(filter);
598 av_free(filter2);
599 return ret;
602 #if HAVE_MMXEXT_INLINE
603 static int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
604 int16_t *filter, int32_t *filterPos,
605 int numSplits)
607 uint8_t *fragmentA;
608 x86_reg imm8OfPShufW1A;
609 x86_reg imm8OfPShufW2A;
610 x86_reg fragmentLengthA;
611 uint8_t *fragmentB;
612 x86_reg imm8OfPShufW1B;
613 x86_reg imm8OfPShufW2B;
614 x86_reg fragmentLengthB;
615 int fragmentPos;
617 int xpos, i;
619 // create an optimized horizontal scaling routine
620 /* This scaler is made of runtime-generated MMXEXT code using specially tuned
621 * pshufw instructions. For every four output pixels, if four input pixels
622 * are enough for the fast bilinear scaling, then a chunk of fragmentB is
623 * used. If five input pixels are needed, then a chunk of fragmentA is used.
626 // code fragment
628 __asm__ volatile (
629 "jmp 9f \n\t"
630 // Begin
631 "0: \n\t"
632 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
633 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
634 "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
635 "punpcklbw %%mm7, %%mm1 \n\t"
636 "punpcklbw %%mm7, %%mm0 \n\t"
637 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
638 "1: \n\t"
639 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
640 "2: \n\t"
641 "psubw %%mm1, %%mm0 \n\t"
642 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
643 "pmullw %%mm3, %%mm0 \n\t"
644 "psllw $7, %%mm1 \n\t"
645 "paddw %%mm1, %%mm0 \n\t"
647 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
649 "add $8, %%"REG_a" \n\t"
650 // End
651 "9: \n\t"
652 // "int $3 \n\t"
653 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
654 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
655 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
656 "dec %1 \n\t"
657 "dec %2 \n\t"
658 "sub %0, %1 \n\t"
659 "sub %0, %2 \n\t"
660 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
661 "sub %0, %3 \n\t"
664 : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
665 "=r" (fragmentLengthA)
668 __asm__ volatile (
669 "jmp 9f \n\t"
670 // Begin
671 "0: \n\t"
672 "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
673 "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
674 "punpcklbw %%mm7, %%mm0 \n\t"
675 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
676 "1: \n\t"
677 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
678 "2: \n\t"
679 "psubw %%mm1, %%mm0 \n\t"
680 "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
681 "pmullw %%mm3, %%mm0 \n\t"
682 "psllw $7, %%mm1 \n\t"
683 "paddw %%mm1, %%mm0 \n\t"
685 "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
687 "add $8, %%"REG_a" \n\t"
688 // End
689 "9: \n\t"
690 // "int $3 \n\t"
691 "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
692 "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
693 "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
694 "dec %1 \n\t"
695 "dec %2 \n\t"
696 "sub %0, %1 \n\t"
697 "sub %0, %2 \n\t"
698 "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
699 "sub %0, %3 \n\t"
702 : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
703 "=r" (fragmentLengthB)
706 xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
707 fragmentPos = 0;
709 for (i = 0; i < dstW / numSplits; i++) {
710 int xx = xpos >> 16;
712 if ((i & 3) == 0) {
713 int a = 0;
714 int b = ((xpos + xInc) >> 16) - xx;
715 int c = ((xpos + xInc * 2) >> 16) - xx;
716 int d = ((xpos + xInc * 3) >> 16) - xx;
717 int inc = (d + 1 < 4);
718 uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
719 x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
720 x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
721 x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
722 int maxShift = 3 - (d + inc);
723 int shift = 0;
725 if (filterCode) {
726 filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
727 filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
728 filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
729 filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
730 filterPos[i / 2] = xx;
732 memcpy(filterCode + fragmentPos, fragment, fragmentLength);
734 filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
735 ((b + inc) << 2) |
736 ((c + inc) << 4) |
737 ((d + inc) << 6);
738 filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
739 (c << 4) |
740 (d << 6);
742 if (i + 4 - inc >= dstW)
743 shift = maxShift; // avoid overread
744 else if ((filterPos[i / 2] & 3) <= maxShift)
745 shift = filterPos[i / 2] & 3; // align
747 if (shift && i >= shift) {
748 filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
749 filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
750 filterPos[i / 2] -= shift;
754 fragmentPos += fragmentLength;
756 if (filterCode)
757 filterCode[fragmentPos] = RET;
759 xpos += xInc;
761 if (filterCode)
762 filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
764 return fragmentPos + 1;
766 #endif /* HAVE_MMXEXT_INLINE */
768 static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
770 const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
771 *h = desc->log2_chroma_w;
772 *v = desc->log2_chroma_h;
775 int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
776 int srcRange, const int table[4], int dstRange,
777 int brightness, int contrast, int saturation)
779 const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
780 const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
781 memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
782 memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
784 c->brightness = brightness;
785 c->contrast = contrast;
786 c->saturation = saturation;
787 c->srcRange = srcRange;
788 c->dstRange = dstRange;
789 if (isYUV(c->dstFormat) || isGray(c->dstFormat))
790 return -1;
792 c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
793 c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
795 ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
796 contrast, saturation);
797 // FIXME factorize
799 if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
800 ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
801 contrast, saturation);
802 return 0;
805 int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
806 int *srcRange, int **table, int *dstRange,
807 int *brightness, int *contrast, int *saturation)
809 if (isYUV(c->dstFormat) || isGray(c->dstFormat))
810 return -1;
812 *inv_table = c->srcColorspaceTable;
813 *table = c->dstColorspaceTable;
814 *srcRange = c->srcRange;
815 *dstRange = c->dstRange;
816 *brightness = c->brightness;
817 *contrast = c->contrast;
818 *saturation = c->saturation;
820 return 0;
823 static int handle_jpeg(enum AVPixelFormat *format)
825 switch (*format) {
826 case AV_PIX_FMT_YUVJ420P:
827 *format = AV_PIX_FMT_YUV420P;
828 return 1;
829 case AV_PIX_FMT_YUVJ422P:
830 *format = AV_PIX_FMT_YUV422P;
831 return 1;
832 case AV_PIX_FMT_YUVJ444P:
833 *format = AV_PIX_FMT_YUV444P;
834 return 1;
835 case AV_PIX_FMT_YUVJ440P:
836 *format = AV_PIX_FMT_YUV440P;
837 return 1;
838 default:
839 return 0;
843 SwsContext *sws_alloc_context(void)
845 SwsContext *c = av_mallocz(sizeof(SwsContext));
847 if (c) {
848 c->av_class = &sws_context_class;
849 av_opt_set_defaults(c);
852 return c;
855 av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
856 SwsFilter *dstFilter)
858 int i;
859 int usesVFilter, usesHFilter;
860 int unscaled;
861 SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
862 int srcW = c->srcW;
863 int srcH = c->srcH;
864 int dstW = c->dstW;
865 int dstH = c->dstH;
866 int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
867 int dst_stride_px = dst_stride >> 1;
868 int flags, cpu_flags;
869 enum AVPixelFormat srcFormat = c->srcFormat;
870 enum AVPixelFormat dstFormat = c->dstFormat;
871 const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
872 const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
874 cpu_flags = av_get_cpu_flags();
875 flags = c->flags;
876 emms_c();
877 if (!rgb15to16)
878 sws_rgb2rgb_init();
880 unscaled = (srcW == dstW && srcH == dstH);
882 if (!sws_isSupportedInput(srcFormat)) {
883 av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
884 sws_format_name(srcFormat));
885 return AVERROR(EINVAL);
887 if (!sws_isSupportedOutput(dstFormat)) {
888 av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
889 sws_format_name(dstFormat));
890 return AVERROR(EINVAL);
893 i = flags & (SWS_POINT |
894 SWS_AREA |
895 SWS_BILINEAR |
896 SWS_FAST_BILINEAR |
897 SWS_BICUBIC |
898 SWS_X |
899 SWS_GAUSS |
900 SWS_LANCZOS |
901 SWS_SINC |
902 SWS_SPLINE |
903 SWS_BICUBLIN);
904 if (!i || (i & (i - 1))) {
905 av_log(c, AV_LOG_ERROR,
906 "Exactly one scaler algorithm must be chosen\n");
907 return AVERROR(EINVAL);
909 /* sanity check */
910 if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
911 /* FIXME check if these are enough and try to lower them after
912 * fixing the relevant parts of the code */
913 av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
914 srcW, srcH, dstW, dstH);
915 return AVERROR(EINVAL);
918 if (!dstFilter)
919 dstFilter = &dummyFilter;
920 if (!srcFilter)
921 srcFilter = &dummyFilter;
923 c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
924 c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
925 c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
926 c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
927 c->vRounder = 4 * 0x0001000100010001ULL;
929 usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
930 (srcFilter->chrV && srcFilter->chrV->length > 1) ||
931 (dstFilter->lumV && dstFilter->lumV->length > 1) ||
932 (dstFilter->chrV && dstFilter->chrV->length > 1);
933 usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
934 (srcFilter->chrH && srcFilter->chrH->length > 1) ||
935 (dstFilter->lumH && dstFilter->lumH->length > 1) ||
936 (dstFilter->chrH && dstFilter->chrH->length > 1);
938 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
939 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
941 if (isPlanarRGB(dstFormat)) {
942 if (!(flags & SWS_FULL_CHR_H_INT)) {
943 av_log(c, AV_LOG_DEBUG,
944 "%s output is not supported with half chroma resolution, switching to full\n",
945 av_get_pix_fmt_name(dstFormat));
946 flags |= SWS_FULL_CHR_H_INT;
947 c->flags = flags;
951 /* reuse chroma for 2 pixels RGB/BGR unless user wants full
952 * chroma interpolation */
953 if (flags & SWS_FULL_CHR_H_INT &&
954 isAnyRGB(dstFormat) &&
955 !isPlanarRGB(dstFormat) &&
956 dstFormat != AV_PIX_FMT_RGBA &&
957 dstFormat != AV_PIX_FMT_ARGB &&
958 dstFormat != AV_PIX_FMT_BGRA &&
959 dstFormat != AV_PIX_FMT_ABGR &&
960 dstFormat != AV_PIX_FMT_RGB24 &&
961 dstFormat != AV_PIX_FMT_BGR24) {
962 av_log(c, AV_LOG_ERROR,
963 "full chroma interpolation for destination format '%s' not yet implemented\n",
964 sws_format_name(dstFormat));
965 flags &= ~SWS_FULL_CHR_H_INT;
966 c->flags = flags;
968 if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
969 c->chrDstHSubSample = 1;
971 // drop some chroma lines if the user wants it
972 c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
973 SWS_SRC_V_CHR_DROP_SHIFT;
974 c->chrSrcVSubSample += c->vChrDrop;
976 /* drop every other pixel for chroma calculation unless user
977 * wants full chroma */
978 if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
979 srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
980 srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
981 srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
982 srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
983 srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
984 srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
985 ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
986 (flags & SWS_FAST_BILINEAR)))
987 c->chrSrcHSubSample = 1;
989 // Note the -((-x)>>y) is so that we always round toward +inf.
990 c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
991 c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
992 c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
993 c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
995 /* unscaled special cases */
996 if (unscaled && !usesHFilter && !usesVFilter &&
997 (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
998 ff_get_unscaled_swscale(c);
1000 if (c->swScale) {
1001 if (flags & SWS_PRINT_INFO)
1002 av_log(c, AV_LOG_INFO,
1003 "using unscaled %s -> %s special converter\n",
1004 sws_format_name(srcFormat), sws_format_name(dstFormat));
1005 return 0;
1009 c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
1010 if (c->srcBpc < 8)
1011 c->srcBpc = 8;
1012 c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
1013 if (c->dstBpc < 8)
1014 c->dstBpc = 8;
1015 if (c->dstBpc == 16)
1016 dst_stride <<= 1;
1017 FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
1018 (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
1019 fail);
1020 if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
1021 c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
1022 (srcW & 15) == 0) ? 1 : 0;
1023 if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
1024 && (flags & SWS_FAST_BILINEAR)) {
1025 if (flags & SWS_PRINT_INFO)
1026 av_log(c, AV_LOG_INFO,
1027 "output width is not a multiple of 32 -> no MMXEXT scaler\n");
1029 if (usesHFilter)
1030 c->canMMXEXTBeUsed = 0;
1031 } else
1032 c->canMMXEXTBeUsed = 0;
1034 c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
1035 c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
1037 /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
1038 * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
1039 * correct scaling.
1040 * n-2 is the last chrominance sample available.
1041 * This is not perfect, but no one should notice the difference, the more
1042 * correct variant would be like the vertical one, but that would require
1043 * some special code for the first and last pixel */
1044 if (flags & SWS_FAST_BILINEAR) {
1045 if (c->canMMXEXTBeUsed) {
1046 c->lumXInc += 20;
1047 c->chrXInc += 20;
1049 // we don't use the x86 asm scaler if MMX is available
1050 else if (INLINE_MMX(cpu_flags)) {
1051 c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
1052 c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
1056 #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
1058 /* precalculate horizontal scaler filter coefficients */
1060 #if HAVE_MMXEXT_INLINE
1061 // can't downscale !!!
1062 if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
1063 c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
1064 NULL, NULL, 8);
1065 c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
1066 NULL, NULL, NULL, 4);
1068 #if USE_MMAP
1069 c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
1070 PROT_READ | PROT_WRITE,
1071 MAP_PRIVATE | MAP_ANONYMOUS,
1072 -1, 0);
1073 c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
1074 PROT_READ | PROT_WRITE,
1075 MAP_PRIVATE | MAP_ANONYMOUS,
1076 -1, 0);
1077 #elif HAVE_VIRTUALALLOC
1078 c->lumMmxextFilterCode = VirtualAlloc(NULL,
1079 c->lumMmxextFilterCodeSize,
1080 MEM_COMMIT,
1081 PAGE_EXECUTE_READWRITE);
1082 c->chrMmxextFilterCode = VirtualAlloc(NULL,
1083 c->chrMmxextFilterCodeSize,
1084 MEM_COMMIT,
1085 PAGE_EXECUTE_READWRITE);
1086 #else
1087 c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
1088 c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
1089 #endif
1091 if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
1092 return AVERROR(ENOMEM);
1093 FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
1094 FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
1095 FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
1096 FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
1098 init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
1099 c->hLumFilter, c->hLumFilterPos, 8);
1100 init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
1101 c->hChrFilter, c->hChrFilterPos, 4);
1103 #if USE_MMAP
1104 mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
1105 mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
1106 #endif
1107 } else
1108 #endif /* HAVE_MMXEXT_INLINE */
1110 const int filterAlign =
1111 (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
1112 (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
1115 if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
1116 &c->hLumFilterSize, c->lumXInc,
1117 srcW, dstW, filterAlign, 1 << 14,
1118 (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1119 cpu_flags, srcFilter->lumH, dstFilter->lumH,
1120 c->param, 1) < 0)
1121 goto fail;
1122 if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
1123 &c->hChrFilterSize, c->chrXInc,
1124 c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
1125 (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1126 cpu_flags, srcFilter->chrH, dstFilter->chrH,
1127 c->param, 1) < 0)
1128 goto fail;
1130 } // initialize horizontal stuff
1132 /* precalculate vertical scaler filter coefficients */
1134 const int filterAlign =
1135 (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
1136 (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
1139 if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
1140 c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
1141 (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
1142 cpu_flags, srcFilter->lumV, dstFilter->lumV,
1143 c->param, 0) < 0)
1144 goto fail;
1145 if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
1146 c->chrYInc, c->chrSrcH, c->chrDstH,
1147 filterAlign, (1 << 12),
1148 (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
1149 cpu_flags, srcFilter->chrV, dstFilter->chrV,
1150 c->param, 0) < 0)
1151 goto fail;
1153 #if HAVE_ALTIVEC
1154 FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
1155 FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
1157 for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
1158 int j;
1159 short *p = (short *)&c->vYCoeffsBank[i];
1160 for (j = 0; j < 8; j++)
1161 p[j] = c->vLumFilter[i];
1164 for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
1165 int j;
1166 short *p = (short *)&c->vCCoeffsBank[i];
1167 for (j = 0; j < 8; j++)
1168 p[j] = c->vChrFilter[i];
1170 #endif
1173 // calculate buffer sizes so that they won't run out while handling these damn slices
1174 c->vLumBufSize = c->vLumFilterSize;
1175 c->vChrBufSize = c->vChrFilterSize;
1176 for (i = 0; i < dstH; i++) {
1177 int chrI = (int64_t)i * c->chrDstH / dstH;
1178 int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
1179 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
1180 << c->chrSrcVSubSample));
1182 nextSlice >>= c->chrSrcVSubSample;
1183 nextSlice <<= c->chrSrcVSubSample;
1184 if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
1185 c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
1186 if (c->vChrFilterPos[chrI] + c->vChrBufSize <
1187 (nextSlice >> c->chrSrcVSubSample))
1188 c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
1189 c->vChrFilterPos[chrI];
1192 /* Allocate pixbufs (we use dynamic allocation because otherwise we would
1193 * need to allocate several megabytes to handle all possible cases) */
1194 FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
1195 FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
1196 FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
1197 if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
1198 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
1199 /* Note we need at least one pixel more at the end because of the MMX code
1200 * (just in case someone wants to replace the 4000/8000). */
1201 /* align at 16 bytes for AltiVec */
1202 for (i = 0; i < c->vLumBufSize; i++) {
1203 FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
1204 dst_stride + 16, fail);
1205 c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
1207 // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
1208 c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
1209 c->uv_off_byte = dst_stride + 16;
1210 for (i = 0; i < c->vChrBufSize; i++) {
1211 FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
1212 dst_stride * 2 + 32, fail);
1213 c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
1214 c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
1215 = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
1217 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
1218 for (i = 0; i < c->vLumBufSize; i++) {
1219 FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
1220 dst_stride + 16, fail);
1221 c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
1224 // try to avoid drawing green stuff between the right end and the stride end
1225 for (i = 0; i < c->vChrBufSize; i++)
1226 memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
1228 assert(c->chrDstH <= dstH);
1230 if (flags & SWS_PRINT_INFO) {
1231 if (flags & SWS_FAST_BILINEAR)
1232 av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
1233 else if (flags & SWS_BILINEAR)
1234 av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
1235 else if (flags & SWS_BICUBIC)
1236 av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
1237 else if (flags & SWS_X)
1238 av_log(c, AV_LOG_INFO, "Experimental scaler, ");
1239 else if (flags & SWS_POINT)
1240 av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
1241 else if (flags & SWS_AREA)
1242 av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
1243 else if (flags & SWS_BICUBLIN)
1244 av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
1245 else if (flags & SWS_GAUSS)
1246 av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
1247 else if (flags & SWS_SINC)
1248 av_log(c, AV_LOG_INFO, "Sinc scaler, ");
1249 else if (flags & SWS_LANCZOS)
1250 av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
1251 else if (flags & SWS_SPLINE)
1252 av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
1253 else
1254 av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
1256 av_log(c, AV_LOG_INFO, "from %s to %s%s ",
1257 sws_format_name(srcFormat),
1258 #ifdef DITHER1XBPP
1259 dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
1260 dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
1261 dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
1262 "dithered " : "",
1263 #else
1265 #endif
1266 sws_format_name(dstFormat));
1268 if (INLINE_MMXEXT(cpu_flags))
1269 av_log(c, AV_LOG_INFO, "using MMXEXT\n");
1270 else if (INLINE_AMD3DNOW(cpu_flags))
1271 av_log(c, AV_LOG_INFO, "using 3DNOW\n");
1272 else if (INLINE_MMX(cpu_flags))
1273 av_log(c, AV_LOG_INFO, "using MMX\n");
1274 else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
1275 av_log(c, AV_LOG_INFO, "using AltiVec\n");
1276 else
1277 av_log(c, AV_LOG_INFO, "using C\n");
1279 av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
1280 av_log(c, AV_LOG_DEBUG,
1281 "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1282 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
1283 av_log(c, AV_LOG_DEBUG,
1284 "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
1285 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
1286 c->chrXInc, c->chrYInc);
1289 c->swScale = ff_getSwsFunc(c);
1290 return 0;
1291 fail: // FIXME replace things by appropriate error codes
1292 return -1;
1295 #if FF_API_SWS_GETCONTEXT
1296 SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
1297 int dstW, int dstH, enum AVPixelFormat dstFormat,
1298 int flags, SwsFilter *srcFilter,
1299 SwsFilter *dstFilter, const double *param)
1301 SwsContext *c;
1303 if (!(c = sws_alloc_context()))
1304 return NULL;
1306 c->flags = flags;
1307 c->srcW = srcW;
1308 c->srcH = srcH;
1309 c->dstW = dstW;
1310 c->dstH = dstH;
1311 c->srcRange = handle_jpeg(&srcFormat);
1312 c->dstRange = handle_jpeg(&dstFormat);
1313 c->srcFormat = srcFormat;
1314 c->dstFormat = dstFormat;
1316 if (param) {
1317 c->param[0] = param[0];
1318 c->param[1] = param[1];
1320 sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
1321 ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
1322 c->dstRange, 0, 1 << 16, 1 << 16);
1324 if (sws_init_context(c, srcFilter, dstFilter) < 0) {
1325 sws_freeContext(c);
1326 return NULL;
1329 return c;
1331 #endif
1333 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
1334 float lumaSharpen, float chromaSharpen,
1335 float chromaHShift, float chromaVShift,
1336 int verbose)
1338 SwsFilter *filter = av_malloc(sizeof(SwsFilter));
1339 if (!filter)
1340 return NULL;
1342 if (lumaGBlur != 0.0) {
1343 filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
1344 filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
1345 } else {
1346 filter->lumH = sws_getIdentityVec();
1347 filter->lumV = sws_getIdentityVec();
1350 if (chromaGBlur != 0.0) {
1351 filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
1352 filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
1353 } else {
1354 filter->chrH = sws_getIdentityVec();
1355 filter->chrV = sws_getIdentityVec();
1358 if (chromaSharpen != 0.0) {
1359 SwsVector *id = sws_getIdentityVec();
1360 sws_scaleVec(filter->chrH, -chromaSharpen);
1361 sws_scaleVec(filter->chrV, -chromaSharpen);
1362 sws_addVec(filter->chrH, id);
1363 sws_addVec(filter->chrV, id);
1364 sws_freeVec(id);
1367 if (lumaSharpen != 0.0) {
1368 SwsVector *id = sws_getIdentityVec();
1369 sws_scaleVec(filter->lumH, -lumaSharpen);
1370 sws_scaleVec(filter->lumV, -lumaSharpen);
1371 sws_addVec(filter->lumH, id);
1372 sws_addVec(filter->lumV, id);
1373 sws_freeVec(id);
1376 if (chromaHShift != 0.0)
1377 sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
1379 if (chromaVShift != 0.0)
1380 sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
1382 sws_normalizeVec(filter->chrH, 1.0);
1383 sws_normalizeVec(filter->chrV, 1.0);
1384 sws_normalizeVec(filter->lumH, 1.0);
1385 sws_normalizeVec(filter->lumV, 1.0);
1387 if (verbose)
1388 sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
1389 if (verbose)
1390 sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
1392 return filter;
1395 SwsVector *sws_allocVec(int length)
1397 SwsVector *vec = av_malloc(sizeof(SwsVector));
1398 if (!vec)
1399 return NULL;
1400 vec->length = length;
1401 vec->coeff = av_malloc(sizeof(double) * length);
1402 if (!vec->coeff)
1403 av_freep(&vec);
1404 return vec;
1407 SwsVector *sws_getGaussianVec(double variance, double quality)
1409 const int length = (int)(variance * quality + 0.5) | 1;
1410 int i;
1411 double middle = (length - 1) * 0.5;
1412 SwsVector *vec = sws_allocVec(length);
1414 if (!vec)
1415 return NULL;
1417 for (i = 0; i < length; i++) {
1418 double dist = i - middle;
1419 vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
1420 sqrt(2 * variance * M_PI);
1423 sws_normalizeVec(vec, 1.0);
1425 return vec;
1428 SwsVector *sws_getConstVec(double c, int length)
1430 int i;
1431 SwsVector *vec = sws_allocVec(length);
1433 if (!vec)
1434 return NULL;
1436 for (i = 0; i < length; i++)
1437 vec->coeff[i] = c;
1439 return vec;
1442 SwsVector *sws_getIdentityVec(void)
1444 return sws_getConstVec(1.0, 1);
1447 static double sws_dcVec(SwsVector *a)
1449 int i;
1450 double sum = 0;
1452 for (i = 0; i < a->length; i++)
1453 sum += a->coeff[i];
1455 return sum;
1458 void sws_scaleVec(SwsVector *a, double scalar)
1460 int i;
1462 for (i = 0; i < a->length; i++)
1463 a->coeff[i] *= scalar;
1466 void sws_normalizeVec(SwsVector *a, double height)
1468 sws_scaleVec(a, height / sws_dcVec(a));
1471 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
1473 int length = a->length + b->length - 1;
1474 int i, j;
1475 SwsVector *vec = sws_getConstVec(0.0, length);
1477 if (!vec)
1478 return NULL;
1480 for (i = 0; i < a->length; i++) {
1481 for (j = 0; j < b->length; j++) {
1482 vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
1486 return vec;
1489 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
1491 int length = FFMAX(a->length, b->length);
1492 int i;
1493 SwsVector *vec = sws_getConstVec(0.0, length);
1495 if (!vec)
1496 return NULL;
1498 for (i = 0; i < a->length; i++)
1499 vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
1500 for (i = 0; i < b->length; i++)
1501 vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
1503 return vec;
1506 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
1508 int length = FFMAX(a->length, b->length);
1509 int i;
1510 SwsVector *vec = sws_getConstVec(0.0, length);
1512 if (!vec)
1513 return NULL;
1515 for (i = 0; i < a->length; i++)
1516 vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
1517 for (i = 0; i < b->length; i++)
1518 vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
1520 return vec;
1523 /* shift left / or right if "shift" is negative */
1524 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
1526 int length = a->length + FFABS(shift) * 2;
1527 int i;
1528 SwsVector *vec = sws_getConstVec(0.0, length);
1530 if (!vec)
1531 return NULL;
1533 for (i = 0; i < a->length; i++) {
1534 vec->coeff[i + (length - 1) / 2 -
1535 (a->length - 1) / 2 - shift] = a->coeff[i];
1538 return vec;
1541 void sws_shiftVec(SwsVector *a, int shift)
1543 SwsVector *shifted = sws_getShiftedVec(a, shift);
1544 av_free(a->coeff);
1545 a->coeff = shifted->coeff;
1546 a->length = shifted->length;
1547 av_free(shifted);
1550 void sws_addVec(SwsVector *a, SwsVector *b)
1552 SwsVector *sum = sws_sumVec(a, b);
1553 av_free(a->coeff);
1554 a->coeff = sum->coeff;
1555 a->length = sum->length;
1556 av_free(sum);
1559 void sws_subVec(SwsVector *a, SwsVector *b)
1561 SwsVector *diff = sws_diffVec(a, b);
1562 av_free(a->coeff);
1563 a->coeff = diff->coeff;
1564 a->length = diff->length;
1565 av_free(diff);
1568 void sws_convVec(SwsVector *a, SwsVector *b)
1570 SwsVector *conv = sws_getConvVec(a, b);
1571 av_free(a->coeff);
1572 a->coeff = conv->coeff;
1573 a->length = conv->length;
1574 av_free(conv);
1577 SwsVector *sws_cloneVec(SwsVector *a)
1579 int i;
1580 SwsVector *vec = sws_allocVec(a->length);
1582 if (!vec)
1583 return NULL;
1585 for (i = 0; i < a->length; i++)
1586 vec->coeff[i] = a->coeff[i];
1588 return vec;
1591 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
1593 int i;
1594 double max = 0;
1595 double min = 0;
1596 double range;
1598 for (i = 0; i < a->length; i++)
1599 if (a->coeff[i] > max)
1600 max = a->coeff[i];
1602 for (i = 0; i < a->length; i++)
1603 if (a->coeff[i] < min)
1604 min = a->coeff[i];
1606 range = max - min;
1608 for (i = 0; i < a->length; i++) {
1609 int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
1610 av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
1611 for (; x > 0; x--)
1612 av_log(log_ctx, log_level, " ");
1613 av_log(log_ctx, log_level, "|\n");
1617 void sws_freeVec(SwsVector *a)
1619 if (!a)
1620 return;
1621 av_freep(&a->coeff);
1622 a->length = 0;
1623 av_free(a);
1626 void sws_freeFilter(SwsFilter *filter)
1628 if (!filter)
1629 return;
1631 if (filter->lumH)
1632 sws_freeVec(filter->lumH);
1633 if (filter->lumV)
1634 sws_freeVec(filter->lumV);
1635 if (filter->chrH)
1636 sws_freeVec(filter->chrH);
1637 if (filter->chrV)
1638 sws_freeVec(filter->chrV);
1639 av_free(filter);
1642 void sws_freeContext(SwsContext *c)
1644 int i;
1645 if (!c)
1646 return;
1648 if (c->lumPixBuf) {
1649 for (i = 0; i < c->vLumBufSize; i++)
1650 av_freep(&c->lumPixBuf[i]);
1651 av_freep(&c->lumPixBuf);
1654 if (c->chrUPixBuf) {
1655 for (i = 0; i < c->vChrBufSize; i++)
1656 av_freep(&c->chrUPixBuf[i]);
1657 av_freep(&c->chrUPixBuf);
1658 av_freep(&c->chrVPixBuf);
1661 if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
1662 for (i = 0; i < c->vLumBufSize; i++)
1663 av_freep(&c->alpPixBuf[i]);
1664 av_freep(&c->alpPixBuf);
1667 av_freep(&c->vLumFilter);
1668 av_freep(&c->vChrFilter);
1669 av_freep(&c->hLumFilter);
1670 av_freep(&c->hChrFilter);
1671 #if HAVE_ALTIVEC
1672 av_freep(&c->vYCoeffsBank);
1673 av_freep(&c->vCCoeffsBank);
1674 #endif
1676 av_freep(&c->vLumFilterPos);
1677 av_freep(&c->vChrFilterPos);
1678 av_freep(&c->hLumFilterPos);
1679 av_freep(&c->hChrFilterPos);
1681 #if HAVE_MMX_INLINE
1682 #if USE_MMAP
1683 if (c->lumMmxextFilterCode)
1684 munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
1685 if (c->chrMmxextFilterCode)
1686 munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
1687 #elif HAVE_VIRTUALALLOC
1688 if (c->lumMmxextFilterCode)
1689 VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
1690 if (c->chrMmxextFilterCode)
1691 VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
1692 #else
1693 av_free(c->lumMmxextFilterCode);
1694 av_free(c->chrMmxextFilterCode);
1695 #endif
1696 c->lumMmxextFilterCode = NULL;
1697 c->chrMmxextFilterCode = NULL;
1698 #endif /* HAVE_MMX_INLINE */
1700 av_freep(&c->yuvTable);
1701 av_free(c->formatConvBuffer);
1703 av_free(c);
1706 struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
1707 int srcH, enum AVPixelFormat srcFormat,
1708 int dstW, int dstH,
1709 enum AVPixelFormat dstFormat, int flags,
1710 SwsFilter *srcFilter,
1711 SwsFilter *dstFilter,
1712 const double *param)
1714 static const double default_param[2] = { SWS_PARAM_DEFAULT,
1715 SWS_PARAM_DEFAULT };
1717 if (!param)
1718 param = default_param;
1720 if (context &&
1721 (context->srcW != srcW ||
1722 context->srcH != srcH ||
1723 context->srcFormat != srcFormat ||
1724 context->dstW != dstW ||
1725 context->dstH != dstH ||
1726 context->dstFormat != dstFormat ||
1727 context->flags != flags ||
1728 context->param[0] != param[0] ||
1729 context->param[1] != param[1])) {
1730 sws_freeContext(context);
1731 context = NULL;
1734 if (!context) {
1735 if (!(context = sws_alloc_context()))
1736 return NULL;
1737 context->srcW = srcW;
1738 context->srcH = srcH;
1739 context->srcRange = handle_jpeg(&srcFormat);
1740 context->srcFormat = srcFormat;
1741 context->dstW = dstW;
1742 context->dstH = dstH;
1743 context->dstRange = handle_jpeg(&dstFormat);
1744 context->dstFormat = dstFormat;
1745 context->flags = flags;
1746 context->param[0] = param[0];
1747 context->param[1] = param[1];
1748 sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
1749 context->srcRange,
1750 ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
1751 context->dstRange, 0, 1 << 16, 1 << 16);
1752 if (sws_init_context(context, srcFilter, dstFilter) < 0) {
1753 sws_freeContext(context);
1754 return NULL;
1757 return context;