asfdec: also read Metadata Library Object
[FFMpeg-mirror/mplayer-patches.git] / libavcodec / h264_mvpred.h
blob5244c290f2acf76ea7b8a50ad32e0fe12aac86c8
1 /*
2 * H.26L/H.264/AVC/JVT/14496-10/... motion vector predicion
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of Libav.
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file
24 * H.264 / AVC / MPEG4 part10 motion vector predicion.
25 * @author Michael Niedermayer <michaelni@gmx.at>
28 #ifndef AVCODEC_H264_MVPRED_H
29 #define AVCODEC_H264_MVPRED_H
31 #include "internal.h"
32 #include "avcodec.h"
33 #include "h264.h"
35 //#undef NDEBUG
36 #include <assert.h>
38 static av_always_inline int fetch_diagonal_mv(H264Context *h, const int16_t **C,
39 int i, int list, int part_width)
41 const int topright_ref = h->ref_cache[list][i - 8 + part_width];
42 MpegEncContext *s = &h->s;
44 /* there is no consistent mapping of mvs to neighboring locations that will
45 * make mbaff happy, so we can't move all this logic to fill_caches */
46 if (FRAME_MBAFF) {
47 #define SET_DIAG_MV(MV_OP, REF_OP, XY, Y4) \
48 const int xy = XY, y4 = Y4; \
49 const int mb_type = mb_types[xy + (y4 >> 2) * s->mb_stride]; \
50 if (!USES_LIST(mb_type, list)) \
51 return LIST_NOT_USED; \
52 mv = s->current_picture_ptr->f.motion_val[list][h->mb2b_xy[xy] + 3 + y4 * h->b_stride]; \
53 h->mv_cache[list][scan8[0] - 2][0] = mv[0]; \
54 h->mv_cache[list][scan8[0] - 2][1] = mv[1] MV_OP; \
55 return s->current_picture_ptr->f.ref_index[list][4 * xy + 1 + (y4 & ~1)] REF_OP;
57 if (topright_ref == PART_NOT_AVAILABLE
58 && i >= scan8[0] + 8 && (i & 7) == 4
59 && h->ref_cache[list][scan8[0] - 1] != PART_NOT_AVAILABLE) {
60 const uint32_t *mb_types = s->current_picture_ptr->f.mb_type;
61 const int16_t *mv;
62 AV_ZERO32(h->mv_cache[list][scan8[0] - 2]);
63 *C = h->mv_cache[list][scan8[0] - 2];
65 if (!MB_FIELD && IS_INTERLACED(h->left_type[0])) {
66 SET_DIAG_MV(* 2, >> 1, h->left_mb_xy[0] + s->mb_stride,
67 (s->mb_y & 1) * 2 + (i >> 5));
69 if (MB_FIELD && !IS_INTERLACED(h->left_type[0])) {
70 // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
71 SET_DIAG_MV(/ 2, << 1, h->left_mb_xy[i >= 36], ((i >> 2)) & 3);
74 #undef SET_DIAG_MV
77 if (topright_ref != PART_NOT_AVAILABLE) {
78 *C = h->mv_cache[list][i - 8 + part_width];
79 return topright_ref;
80 } else {
81 tprintf(s->avctx, "topright MV not available\n");
83 *C = h->mv_cache[list][i - 8 - 1];
84 return h->ref_cache[list][i - 8 - 1];
88 /**
89 * Get the predicted MV.
90 * @param n the block index
91 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
92 * @param mx the x component of the predicted motion vector
93 * @param my the y component of the predicted motion vector
95 static av_always_inline void pred_motion(H264Context *const h, int n,
96 int part_width, int list, int ref,
97 int *const mx, int *const my)
99 const int index8 = scan8[n];
100 const int top_ref = h->ref_cache[list][index8 - 8];
101 const int left_ref = h->ref_cache[list][index8 - 1];
102 const int16_t *const A = h->mv_cache[list][index8 - 1];
103 const int16_t *const B = h->mv_cache[list][index8 - 8];
104 const int16_t *C;
105 int diagonal_ref, match_count;
107 assert(part_width == 1 || part_width == 2 || part_width == 4);
109 /* mv_cache
110 * B . . A T T T T
111 * U . . L . . , .
112 * U . . L . . . .
113 * U . . L . . , .
114 * . . . L . . . .
117 diagonal_ref = fetch_diagonal_mv(h, &C, index8, list, part_width);
118 match_count = (diagonal_ref == ref) + (top_ref == ref) + (left_ref == ref);
119 tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
120 if (match_count > 1) { //most common
121 *mx = mid_pred(A[0], B[0], C[0]);
122 *my = mid_pred(A[1], B[1], C[1]);
123 } else if (match_count == 1) {
124 if (left_ref == ref) {
125 *mx = A[0];
126 *my = A[1];
127 } else if (top_ref == ref) {
128 *mx = B[0];
129 *my = B[1];
130 } else {
131 *mx = C[0];
132 *my = C[1];
134 } else {
135 if (top_ref == PART_NOT_AVAILABLE &&
136 diagonal_ref == PART_NOT_AVAILABLE &&
137 left_ref != PART_NOT_AVAILABLE) {
138 *mx = A[0];
139 *my = A[1];
140 } else {
141 *mx = mid_pred(A[0], B[0], C[0]);
142 *my = mid_pred(A[1], B[1], C[1]);
146 tprintf(h->s.avctx,
147 "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n",
148 top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref,
149 A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
153 * Get the directionally predicted 16x8 MV.
154 * @param n the block index
155 * @param mx the x component of the predicted motion vector
156 * @param my the y component of the predicted motion vector
158 static av_always_inline void pred_16x8_motion(H264Context *const h,
159 int n, int list, int ref,
160 int *const mx, int *const my)
162 if (n == 0) {
163 const int top_ref = h->ref_cache[list][scan8[0] - 8];
164 const int16_t *const B = h->mv_cache[list][scan8[0] - 8];
166 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n",
167 top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
169 if (top_ref == ref) {
170 *mx = B[0];
171 *my = B[1];
172 return;
174 } else {
175 const int left_ref = h->ref_cache[list][scan8[8] - 1];
176 const int16_t *const A = h->mv_cache[list][scan8[8] - 1];
178 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n",
179 left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
181 if (left_ref == ref) {
182 *mx = A[0];
183 *my = A[1];
184 return;
188 //RARE
189 pred_motion(h, n, 4, list, ref, mx, my);
193 * Get the directionally predicted 8x16 MV.
194 * @param n the block index
195 * @param mx the x component of the predicted motion vector
196 * @param my the y component of the predicted motion vector
198 static av_always_inline void pred_8x16_motion(H264Context *const h,
199 int n, int list, int ref,
200 int *const mx, int *const my)
202 if (n == 0) {
203 const int left_ref = h->ref_cache[list][scan8[0] - 1];
204 const int16_t *const A = h->mv_cache[list][scan8[0] - 1];
206 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n",
207 left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
209 if (left_ref == ref) {
210 *mx = A[0];
211 *my = A[1];
212 return;
214 } else {
215 const int16_t *C;
216 int diagonal_ref;
218 diagonal_ref = fetch_diagonal_mv(h, &C, scan8[4], list, 2);
220 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n",
221 diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
223 if (diagonal_ref == ref) {
224 *mx = C[0];
225 *my = C[1];
226 return;
230 //RARE
231 pred_motion(h, n, 2, list, ref, mx, my);
234 #define FIX_MV_MBAFF(type, refn, mvn, idx) \
235 if (FRAME_MBAFF) { \
236 if (MB_FIELD) { \
237 if (!IS_INTERLACED(type)) { \
238 refn <<= 1; \
239 AV_COPY32(mvbuf[idx], mvn); \
240 mvbuf[idx][1] /= 2; \
241 mvn = mvbuf[idx]; \
243 } else { \
244 if (IS_INTERLACED(type)) { \
245 refn >>= 1; \
246 AV_COPY32(mvbuf[idx], mvn); \
247 mvbuf[idx][1] <<= 1; \
248 mvn = mvbuf[idx]; \
253 static av_always_inline void pred_pskip_motion(H264Context *const h)
255 DECLARE_ALIGNED(4, static const int16_t, zeromv)[2] = { 0 };
256 DECLARE_ALIGNED(4, int16_t, mvbuf)[3][2];
257 MpegEncContext *const s = &h->s;
258 int8_t *ref = s->current_picture.f.ref_index[0];
259 int16_t(*mv)[2] = s->current_picture.f.motion_val[0];
260 int top_ref, left_ref, diagonal_ref, match_count, mx, my;
261 const int16_t *A, *B, *C;
262 int b_stride = h->b_stride;
264 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
266 /* To avoid doing an entire fill_decode_caches, we inline the relevant
267 * parts here.
268 * FIXME: this is a partial duplicate of the logic in fill_decode_caches,
269 * but it's faster this way. Is there a way to avoid this duplication?
271 if (USES_LIST(h->left_type[LTOP], 0)) {
272 left_ref = ref[4 * h->left_mb_xy[LTOP] + 1 + (h->left_block[0] & ~1)];
273 A = mv[h->mb2b_xy[h->left_mb_xy[LTOP]] + 3 + b_stride * h->left_block[0]];
274 FIX_MV_MBAFF(h->left_type[LTOP], left_ref, A, 0);
275 if (!(left_ref | AV_RN32A(A)))
276 goto zeromv;
277 } else if (h->left_type[LTOP]) {
278 left_ref = LIST_NOT_USED;
279 A = zeromv;
280 } else {
281 goto zeromv;
284 if (USES_LIST(h->top_type, 0)) {
285 top_ref = ref[4 * h->top_mb_xy + 2];
286 B = mv[h->mb2b_xy[h->top_mb_xy] + 3 * b_stride];
287 FIX_MV_MBAFF(h->top_type, top_ref, B, 1);
288 if (!(top_ref | AV_RN32A(B)))
289 goto zeromv;
290 } else if (h->top_type) {
291 top_ref = LIST_NOT_USED;
292 B = zeromv;
293 } else {
294 goto zeromv;
297 tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n",
298 top_ref, left_ref, h->s.mb_x, h->s.mb_y);
300 if (USES_LIST(h->topright_type, 0)) {
301 diagonal_ref = ref[4 * h->topright_mb_xy + 2];
302 C = mv[h->mb2b_xy[h->topright_mb_xy] + 3 * b_stride];
303 FIX_MV_MBAFF(h->topright_type, diagonal_ref, C, 2);
304 } else if (h->topright_type) {
305 diagonal_ref = LIST_NOT_USED;
306 C = zeromv;
307 } else {
308 if (USES_LIST(h->topleft_type, 0)) {
309 diagonal_ref = ref[4 * h->topleft_mb_xy + 1 +
310 (h->topleft_partition & 2)];
311 C = mv[h->mb2b_xy[h->topleft_mb_xy] + 3 + b_stride +
312 (h->topleft_partition & 2 * b_stride)];
313 FIX_MV_MBAFF(h->topleft_type, diagonal_ref, C, 2);
314 } else if (h->topleft_type) {
315 diagonal_ref = LIST_NOT_USED;
316 C = zeromv;
317 } else {
318 diagonal_ref = PART_NOT_AVAILABLE;
319 C = zeromv;
323 match_count = !diagonal_ref + !top_ref + !left_ref;
324 tprintf(h->s.avctx, "pred_pskip_motion match_count=%d\n", match_count);
325 if (match_count > 1) {
326 mx = mid_pred(A[0], B[0], C[0]);
327 my = mid_pred(A[1], B[1], C[1]);
328 } else if (match_count == 1) {
329 if (!left_ref) {
330 mx = A[0];
331 my = A[1];
332 } else if (!top_ref) {
333 mx = B[0];
334 my = B[1];
335 } else {
336 mx = C[0];
337 my = C[1];
339 } else {
340 mx = mid_pred(A[0], B[0], C[0]);
341 my = mid_pred(A[1], B[1], C[1]);
344 fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx, my), 4);
345 return;
347 zeromv:
348 fill_rectangle(h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
349 return;
352 static void fill_decode_neighbors(H264Context *h, int mb_type)
354 MpegEncContext *const s = &h->s;
355 const int mb_xy = h->mb_xy;
356 int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS];
357 static const uint8_t left_block_options[4][32] = {
358 { 0, 1, 2, 3, 7, 10, 8, 11, 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 5 * 4, 1 + 9 * 4 },
359 { 2, 2, 3, 3, 8, 11, 8, 11, 3 + 2 * 4, 3 + 2 * 4, 3 + 3 * 4, 3 + 3 * 4, 1 + 5 * 4, 1 + 9 * 4, 1 + 5 * 4, 1 + 9 * 4 },
360 { 0, 0, 1, 1, 7, 10, 7, 10, 3 + 0 * 4, 3 + 0 * 4, 3 + 1 * 4, 3 + 1 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 4 * 4, 1 + 8 * 4 },
361 { 0, 2, 0, 2, 7, 10, 7, 10, 3 + 0 * 4, 3 + 2 * 4, 3 + 0 * 4, 3 + 2 * 4, 1 + 4 * 4, 1 + 8 * 4, 1 + 4 * 4, 1 + 8 * 4 }
364 h->topleft_partition = -1;
366 top_xy = mb_xy - (s->mb_stride << MB_FIELD);
368 /* Wow, what a mess, why didn't they simplify the interlacing & intra
369 * stuff, I can't imagine that these complex rules are worth it. */
371 topleft_xy = top_xy - 1;
372 topright_xy = top_xy + 1;
373 left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
374 h->left_block = left_block_options[0];
375 if (FRAME_MBAFF) {
376 const int left_mb_field_flag = IS_INTERLACED(s->current_picture.f.mb_type[mb_xy - 1]);
377 const int curr_mb_field_flag = IS_INTERLACED(mb_type);
378 if (s->mb_y & 1) {
379 if (left_mb_field_flag != curr_mb_field_flag) {
380 left_xy[LBOT] = left_xy[LTOP] = mb_xy - s->mb_stride - 1;
381 if (curr_mb_field_flag) {
382 left_xy[LBOT] += s->mb_stride;
383 h->left_block = left_block_options[3];
384 } else {
385 topleft_xy += s->mb_stride;
386 /* take top left mv from the middle of the mb, as opposed
387 * to all other modes which use the bottom right partition */
388 h->topleft_partition = 0;
389 h->left_block = left_block_options[1];
392 } else {
393 if (curr_mb_field_flag) {
394 topleft_xy += s->mb_stride & (((s->current_picture.f.mb_type[top_xy - 1] >> 7) & 1) - 1);
395 topright_xy += s->mb_stride & (((s->current_picture.f.mb_type[top_xy + 1] >> 7) & 1) - 1);
396 top_xy += s->mb_stride & (((s->current_picture.f.mb_type[top_xy] >> 7) & 1) - 1);
398 if (left_mb_field_flag != curr_mb_field_flag) {
399 if (curr_mb_field_flag) {
400 left_xy[LBOT] += s->mb_stride;
401 h->left_block = left_block_options[3];
402 } else {
403 h->left_block = left_block_options[2];
409 h->topleft_mb_xy = topleft_xy;
410 h->top_mb_xy = top_xy;
411 h->topright_mb_xy = topright_xy;
412 h->left_mb_xy[LTOP] = left_xy[LTOP];
413 h->left_mb_xy[LBOT] = left_xy[LBOT];
414 //FIXME do we need all in the context?
416 h->topleft_type = s->current_picture.f.mb_type[topleft_xy];
417 h->top_type = s->current_picture.f.mb_type[top_xy];
418 h->topright_type = s->current_picture.f.mb_type[topright_xy];
419 h->left_type[LTOP] = s->current_picture.f.mb_type[left_xy[LTOP]];
420 h->left_type[LBOT] = s->current_picture.f.mb_type[left_xy[LBOT]];
422 if (FMO) {
423 if (h->slice_table[topleft_xy] != h->slice_num)
424 h->topleft_type = 0;
425 if (h->slice_table[top_xy] != h->slice_num)
426 h->top_type = 0;
427 if (h->slice_table[left_xy[LTOP]] != h->slice_num)
428 h->left_type[LTOP] = h->left_type[LBOT] = 0;
429 } else {
430 if (h->slice_table[topleft_xy] != h->slice_num) {
431 h->topleft_type = 0;
432 if (h->slice_table[top_xy] != h->slice_num)
433 h->top_type = 0;
434 if (h->slice_table[left_xy[LTOP]] != h->slice_num)
435 h->left_type[LTOP] = h->left_type[LBOT] = 0;
438 if (h->slice_table[topright_xy] != h->slice_num)
439 h->topright_type = 0;
442 static void fill_decode_caches(H264Context *h, int mb_type)
444 MpegEncContext *const s = &h->s;
445 int topleft_xy, top_xy, topright_xy, left_xy[LEFT_MBS];
446 int topleft_type, top_type, topright_type, left_type[LEFT_MBS];
447 const uint8_t *left_block = h->left_block;
448 int i;
449 uint8_t *nnz;
450 uint8_t *nnz_cache;
452 topleft_xy = h->topleft_mb_xy;
453 top_xy = h->top_mb_xy;
454 topright_xy = h->topright_mb_xy;
455 left_xy[LTOP] = h->left_mb_xy[LTOP];
456 left_xy[LBOT] = h->left_mb_xy[LBOT];
457 topleft_type = h->topleft_type;
458 top_type = h->top_type;
459 topright_type = h->topright_type;
460 left_type[LTOP] = h->left_type[LTOP];
461 left_type[LBOT] = h->left_type[LBOT];
463 if (!IS_SKIP(mb_type)) {
464 if (IS_INTRA(mb_type)) {
465 int type_mask = h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
466 h->topleft_samples_available =
467 h->top_samples_available =
468 h->left_samples_available = 0xFFFF;
469 h->topright_samples_available = 0xEEEA;
471 if (!(top_type & type_mask)) {
472 h->topleft_samples_available = 0xB3FF;
473 h->top_samples_available = 0x33FF;
474 h->topright_samples_available = 0x26EA;
476 if (IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[LTOP])) {
477 if (IS_INTERLACED(mb_type)) {
478 if (!(left_type[LTOP] & type_mask)) {
479 h->topleft_samples_available &= 0xDFFF;
480 h->left_samples_available &= 0x5FFF;
482 if (!(left_type[LBOT] & type_mask)) {
483 h->topleft_samples_available &= 0xFF5F;
484 h->left_samples_available &= 0xFF5F;
486 } else {
487 int left_typei = s->current_picture.f.mb_type[left_xy[LTOP] + s->mb_stride];
489 assert(left_xy[LTOP] == left_xy[LBOT]);
490 if (!((left_typei & type_mask) && (left_type[LTOP] & type_mask))) {
491 h->topleft_samples_available &= 0xDF5F;
492 h->left_samples_available &= 0x5F5F;
495 } else {
496 if (!(left_type[LTOP] & type_mask)) {
497 h->topleft_samples_available &= 0xDF5F;
498 h->left_samples_available &= 0x5F5F;
502 if (!(topleft_type & type_mask))
503 h->topleft_samples_available &= 0x7FFF;
505 if (!(topright_type & type_mask))
506 h->topright_samples_available &= 0xFBFF;
508 if (IS_INTRA4x4(mb_type)) {
509 if (IS_INTRA4x4(top_type)) {
510 AV_COPY32(h->intra4x4_pred_mode_cache + 4 + 8 * 0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
511 } else {
512 h->intra4x4_pred_mode_cache[4 + 8 * 0] =
513 h->intra4x4_pred_mode_cache[5 + 8 * 0] =
514 h->intra4x4_pred_mode_cache[6 + 8 * 0] =
515 h->intra4x4_pred_mode_cache[7 + 8 * 0] = 2 - 3 * !(top_type & type_mask);
517 for (i = 0; i < 2; i++) {
518 if (IS_INTRA4x4(left_type[LEFT(i)])) {
519 int8_t *mode = h->intra4x4_pred_mode + h->mb2br_xy[left_xy[LEFT(i)]];
520 h->intra4x4_pred_mode_cache[3 + 8 * 1 + 2 * 8 * i] = mode[6 - left_block[0 + 2 * i]];
521 h->intra4x4_pred_mode_cache[3 + 8 * 2 + 2 * 8 * i] = mode[6 - left_block[1 + 2 * i]];
522 } else {
523 h->intra4x4_pred_mode_cache[3 + 8 * 1 + 2 * 8 * i] =
524 h->intra4x4_pred_mode_cache[3 + 8 * 2 + 2 * 8 * i] = 2 - 3 * !(left_type[LEFT(i)] & type_mask);
531 * 0 . T T. T T T T
532 * 1 L . .L . . . .
533 * 2 L . .L . . . .
534 * 3 . T TL . . . .
535 * 4 L . .L . . . .
536 * 5 L . .. . . . .
538 /* FIXME: constraint_intra_pred & partitioning & nnz
539 * (let us hope this is just a typo in the spec) */
540 nnz_cache = h->non_zero_count_cache;
541 if (top_type) {
542 nnz = h->non_zero_count[top_xy];
543 AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[4 * 3]);
544 if (!s->chroma_y_shift) {
545 AV_COPY32(&nnz_cache[4 + 8 * 5], &nnz[4 * 7]);
546 AV_COPY32(&nnz_cache[4 + 8 * 10], &nnz[4 * 11]);
547 } else {
548 AV_COPY32(&nnz_cache[4 + 8 * 5], &nnz[4 * 5]);
549 AV_COPY32(&nnz_cache[4 + 8 * 10], &nnz[4 * 9]);
551 } else {
552 uint32_t top_empty = CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
553 AV_WN32A(&nnz_cache[4 + 8 * 0], top_empty);
554 AV_WN32A(&nnz_cache[4 + 8 * 5], top_empty);
555 AV_WN32A(&nnz_cache[4 + 8 * 10], top_empty);
558 for (i = 0; i < 2; i++) {
559 if (left_type[LEFT(i)]) {
560 nnz = h->non_zero_count[left_xy[LEFT(i)]];
561 nnz_cache[3 + 8 * 1 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i]];
562 nnz_cache[3 + 8 * 2 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i]];
563 if (CHROMA444) {
564 nnz_cache[3 + 8 * 6 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] + 4 * 4];
565 nnz_cache[3 + 8 * 7 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] + 4 * 4];
566 nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] + 8 * 4];
567 nnz_cache[3 + 8 * 12 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] + 8 * 4];
568 } else if (CHROMA422) {
569 nnz_cache[3 + 8 * 6 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] - 2 + 4 * 4];
570 nnz_cache[3 + 8 * 7 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] - 2 + 4 * 4];
571 nnz_cache[3 + 8 * 11 + 2 * 8 * i] = nnz[left_block[8 + 0 + 2 * i] - 2 + 8 * 4];
572 nnz_cache[3 + 8 * 12 + 2 * 8 * i] = nnz[left_block[8 + 1 + 2 * i] - 2 + 8 * 4];
573 } else {
574 nnz_cache[3 + 8 * 6 + 8 * i] = nnz[left_block[8 + 4 + 2 * i]];
575 nnz_cache[3 + 8 * 11 + 8 * i] = nnz[left_block[8 + 5 + 2 * i]];
577 } else {
578 nnz_cache[3 + 8 * 1 + 2 * 8 * i] =
579 nnz_cache[3 + 8 * 2 + 2 * 8 * i] =
580 nnz_cache[3 + 8 * 6 + 2 * 8 * i] =
581 nnz_cache[3 + 8 * 7 + 2 * 8 * i] =
582 nnz_cache[3 + 8 * 11 + 2 * 8 * i] =
583 nnz_cache[3 + 8 * 12 + 2 * 8 * i] = CABAC && !IS_INTRA(mb_type) ? 0 : 64;
587 if (CABAC) {
588 // top_cbp
589 if (top_type)
590 h->top_cbp = h->cbp_table[top_xy];
591 else
592 h->top_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
593 // left_cbp
594 if (left_type[LTOP]) {
595 h->left_cbp = (h->cbp_table[left_xy[LTOP]] & 0x7F0) |
596 ((h->cbp_table[left_xy[LTOP]] >> (left_block[0] & (~1))) & 2) |
597 (((h->cbp_table[left_xy[LBOT]] >> (left_block[2] & (~1))) & 2) << 2);
598 } else {
599 h->left_cbp = IS_INTRA(mb_type) ? 0x7CF : 0x00F;
604 if (IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)) {
605 int list;
606 int b_stride = h->b_stride;
607 for (list = 0; list < h->list_count; list++) {
608 int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
609 int8_t *ref = s->current_picture.f.ref_index[list];
610 int16_t(*mv_cache)[2] = &h->mv_cache[list][scan8[0]];
611 int16_t(*mv)[2] = s->current_picture.f.motion_val[list];
612 if (!USES_LIST(mb_type, list))
613 continue;
614 assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
616 if (USES_LIST(top_type, list)) {
617 const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
618 AV_COPY128(mv_cache[0 - 1 * 8], mv[b_xy + 0]);
619 ref_cache[0 - 1 * 8] =
620 ref_cache[1 - 1 * 8] = ref[4 * top_xy + 2];
621 ref_cache[2 - 1 * 8] =
622 ref_cache[3 - 1 * 8] = ref[4 * top_xy + 3];
623 } else {
624 AV_ZERO128(mv_cache[0 - 1 * 8]);
625 AV_WN32A(&ref_cache[0 - 1 * 8],
626 ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE) & 0xFF) * 0x01010101u);
629 if (mb_type & (MB_TYPE_16x8 | MB_TYPE_8x8)) {
630 for (i = 0; i < 2; i++) {
631 int cache_idx = -1 + i * 2 * 8;
632 if (USES_LIST(left_type[LEFT(i)], list)) {
633 const int b_xy = h->mb2b_xy[left_xy[LEFT(i)]] + 3;
634 const int b8_xy = 4 * left_xy[LEFT(i)] + 1;
635 AV_COPY32(mv_cache[cache_idx],
636 mv[b_xy + b_stride * left_block[0 + i * 2]]);
637 AV_COPY32(mv_cache[cache_idx + 8],
638 mv[b_xy + b_stride * left_block[1 + i * 2]]);
639 ref_cache[cache_idx] = ref[b8_xy + (left_block[0 + i * 2] & ~1)];
640 ref_cache[cache_idx + 8] = ref[b8_xy + (left_block[1 + i * 2] & ~1)];
641 } else {
642 AV_ZERO32(mv_cache[cache_idx]);
643 AV_ZERO32(mv_cache[cache_idx + 8]);
644 ref_cache[cache_idx] =
645 ref_cache[cache_idx + 8] = (left_type[LEFT(i)]) ? LIST_NOT_USED
646 : PART_NOT_AVAILABLE;
649 } else {
650 if (USES_LIST(left_type[LTOP], list)) {
651 const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
652 const int b8_xy = 4 * left_xy[LTOP] + 1;
653 AV_COPY32(mv_cache[-1], mv[b_xy + b_stride * left_block[0]]);
654 ref_cache[-1] = ref[b8_xy + (left_block[0] & ~1)];
655 } else {
656 AV_ZERO32(mv_cache[-1]);
657 ref_cache[-1] = left_type[LTOP] ? LIST_NOT_USED
658 : PART_NOT_AVAILABLE;
662 if (USES_LIST(topright_type, list)) {
663 const int b_xy = h->mb2b_xy[topright_xy] + 3 * b_stride;
664 AV_COPY32(mv_cache[4 - 1 * 8], mv[b_xy]);
665 ref_cache[4 - 1 * 8] = ref[4 * topright_xy + 2];
666 } else {
667 AV_ZERO32(mv_cache[4 - 1 * 8]);
668 ref_cache[4 - 1 * 8] = topright_type ? LIST_NOT_USED
669 : PART_NOT_AVAILABLE;
671 if (ref_cache[4 - 1 * 8] < 0) {
672 if (USES_LIST(topleft_type, list)) {
673 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + b_stride +
674 (h->topleft_partition & 2 * b_stride);
675 const int b8_xy = 4 * topleft_xy + 1 + (h->topleft_partition & 2);
676 AV_COPY32(mv_cache[-1 - 1 * 8], mv[b_xy]);
677 ref_cache[-1 - 1 * 8] = ref[b8_xy];
678 } else {
679 AV_ZERO32(mv_cache[-1 - 1 * 8]);
680 ref_cache[-1 - 1 * 8] = topleft_type ? LIST_NOT_USED
681 : PART_NOT_AVAILABLE;
685 if ((mb_type & (MB_TYPE_SKIP | MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
686 continue;
688 if (!(mb_type & (MB_TYPE_SKIP | MB_TYPE_DIRECT2))) {
689 uint8_t(*mvd_cache)[2] = &h->mvd_cache[list][scan8[0]];
690 uint8_t(*mvd)[2] = h->mvd_table[list];
691 ref_cache[2 + 8 * 0] =
692 ref_cache[2 + 8 * 2] = PART_NOT_AVAILABLE;
693 AV_ZERO32(mv_cache[2 + 8 * 0]);
694 AV_ZERO32(mv_cache[2 + 8 * 2]);
696 if (CABAC) {
697 if (USES_LIST(top_type, list)) {
698 const int b_xy = h->mb2br_xy[top_xy];
699 AV_COPY64(mvd_cache[0 - 1 * 8], mvd[b_xy + 0]);
700 } else {
701 AV_ZERO64(mvd_cache[0 - 1 * 8]);
703 if (USES_LIST(left_type[LTOP], list)) {
704 const int b_xy = h->mb2br_xy[left_xy[LTOP]] + 6;
705 AV_COPY16(mvd_cache[-1 + 0 * 8], mvd[b_xy - left_block[0]]);
706 AV_COPY16(mvd_cache[-1 + 1 * 8], mvd[b_xy - left_block[1]]);
707 } else {
708 AV_ZERO16(mvd_cache[-1 + 0 * 8]);
709 AV_ZERO16(mvd_cache[-1 + 1 * 8]);
711 if (USES_LIST(left_type[LBOT], list)) {
712 const int b_xy = h->mb2br_xy[left_xy[LBOT]] + 6;
713 AV_COPY16(mvd_cache[-1 + 2 * 8], mvd[b_xy - left_block[2]]);
714 AV_COPY16(mvd_cache[-1 + 3 * 8], mvd[b_xy - left_block[3]]);
715 } else {
716 AV_ZERO16(mvd_cache[-1 + 2 * 8]);
717 AV_ZERO16(mvd_cache[-1 + 3 * 8]);
719 AV_ZERO16(mvd_cache[2 + 8 * 0]);
720 AV_ZERO16(mvd_cache[2 + 8 * 2]);
721 if (h->slice_type_nos == AV_PICTURE_TYPE_B) {
722 uint8_t *direct_cache = &h->direct_cache[scan8[0]];
723 uint8_t *direct_table = h->direct_table;
724 fill_rectangle(direct_cache, 4, 4, 8, MB_TYPE_16x16 >> 1, 1);
726 if (IS_DIRECT(top_type)) {
727 AV_WN32A(&direct_cache[-1 * 8],
728 0x01010101u * (MB_TYPE_DIRECT2 >> 1));
729 } else if (IS_8X8(top_type)) {
730 int b8_xy = 4 * top_xy;
731 direct_cache[0 - 1 * 8] = direct_table[b8_xy + 2];
732 direct_cache[2 - 1 * 8] = direct_table[b8_xy + 3];
733 } else {
734 AV_WN32A(&direct_cache[-1 * 8],
735 0x01010101 * (MB_TYPE_16x16 >> 1));
738 if (IS_DIRECT(left_type[LTOP]))
739 direct_cache[-1 + 0 * 8] = MB_TYPE_DIRECT2 >> 1;
740 else if (IS_8X8(left_type[LTOP]))
741 direct_cache[-1 + 0 * 8] = direct_table[4 * left_xy[LTOP] + 1 + (left_block[0] & ~1)];
742 else
743 direct_cache[-1 + 0 * 8] = MB_TYPE_16x16 >> 1;
745 if (IS_DIRECT(left_type[LBOT]))
746 direct_cache[-1 + 2 * 8] = MB_TYPE_DIRECT2 >> 1;
747 else if (IS_8X8(left_type[LBOT]))
748 direct_cache[-1 + 2 * 8] = direct_table[4 * left_xy[LBOT] + 1 + (left_block[2] & ~1)];
749 else
750 direct_cache[-1 + 2 * 8] = MB_TYPE_16x16 >> 1;
755 #define MAP_MVS \
756 MAP_F2F(scan8[0] - 1 - 1 * 8, topleft_type) \
757 MAP_F2F(scan8[0] + 0 - 1 * 8, top_type) \
758 MAP_F2F(scan8[0] + 1 - 1 * 8, top_type) \
759 MAP_F2F(scan8[0] + 2 - 1 * 8, top_type) \
760 MAP_F2F(scan8[0] + 3 - 1 * 8, top_type) \
761 MAP_F2F(scan8[0] + 4 - 1 * 8, topright_type) \
762 MAP_F2F(scan8[0] - 1 + 0 * 8, left_type[LTOP]) \
763 MAP_F2F(scan8[0] - 1 + 1 * 8, left_type[LTOP]) \
764 MAP_F2F(scan8[0] - 1 + 2 * 8, left_type[LBOT]) \
765 MAP_F2F(scan8[0] - 1 + 3 * 8, left_type[LBOT])
767 if (FRAME_MBAFF) {
768 if (MB_FIELD) {
770 #define MAP_F2F(idx, mb_type) \
771 if (!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0) { \
772 h->ref_cache[list][idx] <<= 1; \
773 h->mv_cache[list][idx][1] /= 2; \
774 h->mvd_cache[list][idx][1] >>= 1; \
777 MAP_MVS
778 } else {
780 #undef MAP_F2F
781 #define MAP_F2F(idx, mb_type) \
782 if (IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0) { \
783 h->ref_cache[list][idx] >>= 1; \
784 h->mv_cache[list][idx][1] <<= 1; \
785 h->mvd_cache[list][idx][1] <<= 1; \
788 MAP_MVS
789 #undef MAP_F2F
795 h->neighbor_transform_size = !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[LTOP]);
799 * decodes a P_SKIP or B_SKIP macroblock
801 static void av_unused decode_mb_skip(H264Context *h)
803 MpegEncContext *const s = &h->s;
804 const int mb_xy = h->mb_xy;
805 int mb_type = 0;
807 memset(h->non_zero_count[mb_xy], 0, 48);
809 if (MB_FIELD)
810 mb_type |= MB_TYPE_INTERLACED;
812 if (h->slice_type_nos == AV_PICTURE_TYPE_B) {
813 // just for fill_caches. pred_direct_motion will set the real mb_type
814 mb_type |= MB_TYPE_L0L1 | MB_TYPE_DIRECT2 | MB_TYPE_SKIP;
815 if (h->direct_spatial_mv_pred) {
816 fill_decode_neighbors(h, mb_type);
817 fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
819 ff_h264_pred_direct_motion(h, &mb_type);
820 mb_type |= MB_TYPE_SKIP;
821 } else {
822 mb_type |= MB_TYPE_16x16 | MB_TYPE_P0L0 | MB_TYPE_P1L0 | MB_TYPE_SKIP;
824 fill_decode_neighbors(h, mb_type);
825 pred_pskip_motion(h);
828 write_back_motion(h, mb_type);
829 s->current_picture.f.mb_type[mb_xy] = mb_type;
830 s->current_picture.f.qscale_table[mb_xy] = s->qscale;
831 h->slice_table[mb_xy] = h->slice_num;
832 h->prev_mb_skipped = 1;
835 #endif /* AVCODEC_H264_MVPRED_H */