3 * Copyright (c) 2010 Marcelo Galvao Povoa
5 * This file is part of Libav.
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * AMR wideband decoder
27 #include "libavutil/channel_layout.h"
28 #include "libavutil/common.h"
29 #include "libavutil/float_dsp.h"
30 #include "libavutil/lfg.h"
34 #include "celp_filters.h"
35 #include "acelp_filters.h"
36 #include "acelp_vectors.h"
37 #include "acelp_pitch_delay.h"
40 #define AMR_USE_16BIT_TABLES
43 #include "amrwbdata.h"
46 AVFrame avframe
; ///< AVFrame for decoded samples
47 AMRWBFrame frame
; ///< AMRWB parameters decoded from bitstream
48 enum Mode fr_cur_mode
; ///< mode index of current frame
49 uint8_t fr_quality
; ///< frame quality index (FQI)
50 float isf_cur
[LP_ORDER
]; ///< working ISF vector from current frame
51 float isf_q_past
[LP_ORDER
]; ///< quantized ISF vector of the previous frame
52 float isf_past_final
[LP_ORDER
]; ///< final processed ISF vector of the previous frame
53 double isp
[4][LP_ORDER
]; ///< ISP vectors from current frame
54 double isp_sub4_past
[LP_ORDER
]; ///< ISP vector for the 4th subframe of the previous frame
56 float lp_coef
[4][LP_ORDER
]; ///< Linear Prediction Coefficients from ISP vector
58 uint8_t base_pitch_lag
; ///< integer part of pitch lag for the next relative subframe
59 uint8_t pitch_lag_int
; ///< integer part of pitch lag of the previous subframe
61 float excitation_buf
[AMRWB_P_DELAY_MAX
+ LP_ORDER
+ 2 + AMRWB_SFR_SIZE
]; ///< current excitation and all necessary excitation history
62 float *excitation
; ///< points to current excitation in excitation_buf[]
64 float pitch_vector
[AMRWB_SFR_SIZE
]; ///< adaptive codebook (pitch) vector for current subframe
65 float fixed_vector
[AMRWB_SFR_SIZE
]; ///< algebraic codebook (fixed) vector for current subframe
67 float prediction_error
[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
68 float pitch_gain
[6]; ///< quantified pitch gains for the current and previous five subframes
69 float fixed_gain
[2]; ///< quantified fixed gains for the current and previous subframes
71 float tilt_coef
; ///< {beta_1} related to the voicing of the previous subframe
73 float prev_sparse_fixed_gain
; ///< previous fixed gain; used by anti-sparseness to determine "onset"
74 uint8_t prev_ir_filter_nr
; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
75 float prev_tr_gain
; ///< previous initial gain used by noise enhancer for threshold
77 float samples_az
[LP_ORDER
+ AMRWB_SFR_SIZE
]; ///< low-band samples and memory from synthesis at 12.8kHz
78 float samples_up
[UPS_MEM_SIZE
+ AMRWB_SFR_SIZE
]; ///< low-band samples and memory processed for upsampling
79 float samples_hb
[LP_ORDER_16k
+ AMRWB_SFR_SIZE_16k
]; ///< high-band samples and memory from synthesis at 16kHz
81 float hpf_31_mem
[2], hpf_400_mem
[2]; ///< previous values in the high pass filters
82 float demph_mem
[1]; ///< previous value in the de-emphasis filter
83 float bpf_6_7_mem
[HB_FIR_SIZE
]; ///< previous values in the high-band band pass filter
84 float lpf_7_mem
[HB_FIR_SIZE
]; ///< previous values in the high-band low pass filter
86 AVLFG prng
; ///< random number generator for white noise excitation
87 uint8_t first_frame
; ///< flag active during decoding of the first frame
90 static av_cold
int amrwb_decode_init(AVCodecContext
*avctx
)
92 AMRWBContext
*ctx
= avctx
->priv_data
;
95 if (avctx
->channels
> 1) {
96 av_log_missing_feature(avctx
, "multi-channel AMR", 0);
97 return AVERROR_PATCHWELCOME
;
101 avctx
->channel_layout
= AV_CH_LAYOUT_MONO
;
102 avctx
->sample_rate
= 16000;
103 avctx
->sample_fmt
= AV_SAMPLE_FMT_FLT
;
105 av_lfg_init(&ctx
->prng
, 1);
107 ctx
->excitation
= &ctx
->excitation_buf
[AMRWB_P_DELAY_MAX
+ LP_ORDER
+ 1];
108 ctx
->first_frame
= 1;
110 for (i
= 0; i
< LP_ORDER
; i
++)
111 ctx
->isf_past_final
[i
] = isf_init
[i
] * (1.0f
/ (1 << 15));
113 for (i
= 0; i
< 4; i
++)
114 ctx
->prediction_error
[i
] = MIN_ENERGY
;
116 avcodec_get_frame_defaults(&ctx
->avframe
);
117 avctx
->coded_frame
= &ctx
->avframe
;
123 * Decode the frame header in the "MIME/storage" format. This format
124 * is simpler and does not carry the auxiliary frame information.
126 * @param[in] ctx The Context
127 * @param[in] buf Pointer to the input buffer
129 * @return The decoded header length in bytes
131 static int decode_mime_header(AMRWBContext
*ctx
, const uint8_t *buf
)
133 /* Decode frame header (1st octet) */
134 ctx
->fr_cur_mode
= buf
[0] >> 3 & 0x0F;
135 ctx
->fr_quality
= (buf
[0] & 0x4) == 0x4;
141 * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
143 * @param[in] ind Array of 5 indexes
144 * @param[out] isf_q Buffer for isf_q[LP_ORDER]
147 static void decode_isf_indices_36b(uint16_t *ind
, float *isf_q
)
151 for (i
= 0; i
< 9; i
++)
152 isf_q
[i
] = dico1_isf
[ind
[0]][i
] * (1.0f
/ (1 << 15));
154 for (i
= 0; i
< 7; i
++)
155 isf_q
[i
+ 9] = dico2_isf
[ind
[1]][i
] * (1.0f
/ (1 << 15));
157 for (i
= 0; i
< 5; i
++)
158 isf_q
[i
] += dico21_isf_36b
[ind
[2]][i
] * (1.0f
/ (1 << 15));
160 for (i
= 0; i
< 4; i
++)
161 isf_q
[i
+ 5] += dico22_isf_36b
[ind
[3]][i
] * (1.0f
/ (1 << 15));
163 for (i
= 0; i
< 7; i
++)
164 isf_q
[i
+ 9] += dico23_isf_36b
[ind
[4]][i
] * (1.0f
/ (1 << 15));
168 * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
170 * @param[in] ind Array of 7 indexes
171 * @param[out] isf_q Buffer for isf_q[LP_ORDER]
174 static void decode_isf_indices_46b(uint16_t *ind
, float *isf_q
)
178 for (i
= 0; i
< 9; i
++)
179 isf_q
[i
] = dico1_isf
[ind
[0]][i
] * (1.0f
/ (1 << 15));
181 for (i
= 0; i
< 7; i
++)
182 isf_q
[i
+ 9] = dico2_isf
[ind
[1]][i
] * (1.0f
/ (1 << 15));
184 for (i
= 0; i
< 3; i
++)
185 isf_q
[i
] += dico21_isf
[ind
[2]][i
] * (1.0f
/ (1 << 15));
187 for (i
= 0; i
< 3; i
++)
188 isf_q
[i
+ 3] += dico22_isf
[ind
[3]][i
] * (1.0f
/ (1 << 15));
190 for (i
= 0; i
< 3; i
++)
191 isf_q
[i
+ 6] += dico23_isf
[ind
[4]][i
] * (1.0f
/ (1 << 15));
193 for (i
= 0; i
< 3; i
++)
194 isf_q
[i
+ 9] += dico24_isf
[ind
[5]][i
] * (1.0f
/ (1 << 15));
196 for (i
= 0; i
< 4; i
++)
197 isf_q
[i
+ 12] += dico25_isf
[ind
[6]][i
] * (1.0f
/ (1 << 15));
201 * Apply mean and past ISF values using the prediction factor.
202 * Updates past ISF vector.
204 * @param[in,out] isf_q Current quantized ISF
205 * @param[in,out] isf_past Past quantized ISF
208 static void isf_add_mean_and_past(float *isf_q
, float *isf_past
)
213 for (i
= 0; i
< LP_ORDER
; i
++) {
215 isf_q
[i
] += isf_mean
[i
] * (1.0f
/ (1 << 15));
216 isf_q
[i
] += PRED_FACTOR
* isf_past
[i
];
222 * Interpolate the fourth ISP vector from current and past frames
223 * to obtain an ISP vector for each subframe.
225 * @param[in,out] isp_q ISPs for each subframe
226 * @param[in] isp4_past Past ISP for subframe 4
228 static void interpolate_isp(double isp_q
[4][LP_ORDER
], const double *isp4_past
)
232 for (k
= 0; k
< 3; k
++) {
233 float c
= isfp_inter
[k
];
234 for (i
= 0; i
< LP_ORDER
; i
++)
235 isp_q
[k
][i
] = (1.0 - c
) * isp4_past
[i
] + c
* isp_q
[3][i
];
240 * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
241 * Calculate integer lag and fractional lag always using 1/4 resolution.
242 * In 1st and 3rd subframes the index is relative to last subframe integer lag.
244 * @param[out] lag_int Decoded integer pitch lag
245 * @param[out] lag_frac Decoded fractional pitch lag
246 * @param[in] pitch_index Adaptive codebook pitch index
247 * @param[in,out] base_lag_int Base integer lag used in relative subframes
248 * @param[in] subframe Current subframe index (0 to 3)
250 static void decode_pitch_lag_high(int *lag_int
, int *lag_frac
, int pitch_index
,
251 uint8_t *base_lag_int
, int subframe
)
253 if (subframe
== 0 || subframe
== 2) {
254 if (pitch_index
< 376) {
255 *lag_int
= (pitch_index
+ 137) >> 2;
256 *lag_frac
= pitch_index
- (*lag_int
<< 2) + 136;
257 } else if (pitch_index
< 440) {
258 *lag_int
= (pitch_index
+ 257 - 376) >> 1;
259 *lag_frac
= (pitch_index
- (*lag_int
<< 1) + 256 - 376) << 1;
260 /* the actual resolution is 1/2 but expressed as 1/4 */
262 *lag_int
= pitch_index
- 280;
265 /* minimum lag for next subframe */
266 *base_lag_int
= av_clip(*lag_int
- 8 - (*lag_frac
< 0),
267 AMRWB_P_DELAY_MIN
, AMRWB_P_DELAY_MAX
- 15);
268 // XXX: the spec states clearly that *base_lag_int should be
269 // the nearest integer to *lag_int (minus 8), but the ref code
270 // actually always uses its floor, I'm following the latter
272 *lag_int
= (pitch_index
+ 1) >> 2;
273 *lag_frac
= pitch_index
- (*lag_int
<< 2);
274 *lag_int
+= *base_lag_int
;
279 * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
280 * The description is analogous to decode_pitch_lag_high, but in 6k60 the
281 * relative index is used for all subframes except the first.
283 static void decode_pitch_lag_low(int *lag_int
, int *lag_frac
, int pitch_index
,
284 uint8_t *base_lag_int
, int subframe
, enum Mode mode
)
286 if (subframe
== 0 || (subframe
== 2 && mode
!= MODE_6k60
)) {
287 if (pitch_index
< 116) {
288 *lag_int
= (pitch_index
+ 69) >> 1;
289 *lag_frac
= (pitch_index
- (*lag_int
<< 1) + 68) << 1;
291 *lag_int
= pitch_index
- 24;
294 // XXX: same problem as before
295 *base_lag_int
= av_clip(*lag_int
- 8 - (*lag_frac
< 0),
296 AMRWB_P_DELAY_MIN
, AMRWB_P_DELAY_MAX
- 15);
298 *lag_int
= (pitch_index
+ 1) >> 1;
299 *lag_frac
= (pitch_index
- (*lag_int
<< 1)) << 1;
300 *lag_int
+= *base_lag_int
;
305 * Find the pitch vector by interpolating the past excitation at the
306 * pitch delay, which is obtained in this function.
308 * @param[in,out] ctx The context
309 * @param[in] amr_subframe Current subframe data
310 * @param[in] subframe Current subframe index (0 to 3)
312 static void decode_pitch_vector(AMRWBContext
*ctx
,
313 const AMRWBSubFrame
*amr_subframe
,
316 int pitch_lag_int
, pitch_lag_frac
;
318 float *exc
= ctx
->excitation
;
319 enum Mode mode
= ctx
->fr_cur_mode
;
321 if (mode
<= MODE_8k85
) {
322 decode_pitch_lag_low(&pitch_lag_int
, &pitch_lag_frac
, amr_subframe
->adap
,
323 &ctx
->base_pitch_lag
, subframe
, mode
);
325 decode_pitch_lag_high(&pitch_lag_int
, &pitch_lag_frac
, amr_subframe
->adap
,
326 &ctx
->base_pitch_lag
, subframe
);
328 ctx
->pitch_lag_int
= pitch_lag_int
;
329 pitch_lag_int
+= pitch_lag_frac
> 0;
331 /* Calculate the pitch vector by interpolating the past excitation at the
332 pitch lag using a hamming windowed sinc function */
333 ff_acelp_interpolatef(exc
, exc
+ 1 - pitch_lag_int
,
335 pitch_lag_frac
+ (pitch_lag_frac
> 0 ? 0 : 4),
336 LP_ORDER
, AMRWB_SFR_SIZE
+ 1);
338 /* Check which pitch signal path should be used
339 * 6k60 and 8k85 modes have the ltp flag set to 0 */
340 if (amr_subframe
->ltp
) {
341 memcpy(ctx
->pitch_vector
, exc
, AMRWB_SFR_SIZE
* sizeof(float));
343 for (i
= 0; i
< AMRWB_SFR_SIZE
; i
++)
344 ctx
->pitch_vector
[i
] = 0.18 * exc
[i
- 1] + 0.64 * exc
[i
] +
346 memcpy(exc
, ctx
->pitch_vector
, AMRWB_SFR_SIZE
* sizeof(float));
350 /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
351 #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
353 /** Get the bit at specified position */
354 #define BIT_POS(x, p) (((x) >> (p)) & 1)
357 * The next six functions decode_[i]p_track decode exactly i pulses
358 * positions and amplitudes (-1 or 1) in a subframe track using
359 * an encoded pulse indexing (TS 26.190 section 5.8.2).
361 * The results are given in out[], in which a negative number means
362 * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
364 * @param[out] out Output buffer (writes i elements)
365 * @param[in] code Pulse index (no. of bits varies, see below)
366 * @param[in] m (log2) Number of potential positions
367 * @param[in] off Offset for decoded positions
369 static inline void decode_1p_track(int *out
, int code
, int m
, int off
)
371 int pos
= BIT_STR(code
, 0, m
) + off
; ///code: m+1 bits
373 out
[0] = BIT_POS(code
, m
) ? -pos
: pos
;
376 static inline void decode_2p_track(int *out
, int code
, int m
, int off
) ///code: 2m+1 bits
378 int pos0
= BIT_STR(code
, m
, m
) + off
;
379 int pos1
= BIT_STR(code
, 0, m
) + off
;
381 out
[0] = BIT_POS(code
, 2*m
) ? -pos0
: pos0
;
382 out
[1] = BIT_POS(code
, 2*m
) ? -pos1
: pos1
;
383 out
[1] = pos0
> pos1
? -out
[1] : out
[1];
386 static void decode_3p_track(int *out
, int code
, int m
, int off
) ///code: 3m+1 bits
388 int half_2p
= BIT_POS(code
, 2*m
- 1) << (m
- 1);
390 decode_2p_track(out
, BIT_STR(code
, 0, 2*m
- 1),
391 m
- 1, off
+ half_2p
);
392 decode_1p_track(out
+ 2, BIT_STR(code
, 2*m
, m
+ 1), m
, off
);
395 static void decode_4p_track(int *out
, int code
, int m
, int off
) ///code: 4m bits
397 int half_4p
, subhalf_2p
;
398 int b_offset
= 1 << (m
- 1);
400 switch (BIT_STR(code
, 4*m
- 2, 2)) { /* case ID (2 bits) */
401 case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
402 half_4p
= BIT_POS(code
, 4*m
- 3) << (m
- 1); // which has 4 pulses
403 subhalf_2p
= BIT_POS(code
, 2*m
- 3) << (m
- 2);
405 decode_2p_track(out
, BIT_STR(code
, 0, 2*m
- 3),
406 m
- 2, off
+ half_4p
+ subhalf_2p
);
407 decode_2p_track(out
+ 2, BIT_STR(code
, 2*m
- 2, 2*m
- 1),
408 m
- 1, off
+ half_4p
);
410 case 1: /* 1 pulse in A, 3 pulses in B */
411 decode_1p_track(out
, BIT_STR(code
, 3*m
- 2, m
),
413 decode_3p_track(out
+ 1, BIT_STR(code
, 0, 3*m
- 2),
414 m
- 1, off
+ b_offset
);
416 case 2: /* 2 pulses in each half */
417 decode_2p_track(out
, BIT_STR(code
, 2*m
- 1, 2*m
- 1),
419 decode_2p_track(out
+ 2, BIT_STR(code
, 0, 2*m
- 1),
420 m
- 1, off
+ b_offset
);
422 case 3: /* 3 pulses in A, 1 pulse in B */
423 decode_3p_track(out
, BIT_STR(code
, m
, 3*m
- 2),
425 decode_1p_track(out
+ 3, BIT_STR(code
, 0, m
),
426 m
- 1, off
+ b_offset
);
431 static void decode_5p_track(int *out
, int code
, int m
, int off
) ///code: 5m bits
433 int half_3p
= BIT_POS(code
, 5*m
- 1) << (m
- 1);
435 decode_3p_track(out
, BIT_STR(code
, 2*m
+ 1, 3*m
- 2),
436 m
- 1, off
+ half_3p
);
438 decode_2p_track(out
+ 3, BIT_STR(code
, 0, 2*m
+ 1), m
, off
);
441 static void decode_6p_track(int *out
, int code
, int m
, int off
) ///code: 6m-2 bits
443 int b_offset
= 1 << (m
- 1);
444 /* which half has more pulses in cases 0 to 2 */
445 int half_more
= BIT_POS(code
, 6*m
- 5) << (m
- 1);
446 int half_other
= b_offset
- half_more
;
448 switch (BIT_STR(code
, 6*m
- 4, 2)) { /* case ID (2 bits) */
449 case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
450 decode_1p_track(out
, BIT_STR(code
, 0, m
),
451 m
- 1, off
+ half_more
);
452 decode_5p_track(out
+ 1, BIT_STR(code
, m
, 5*m
- 5),
453 m
- 1, off
+ half_more
);
455 case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
456 decode_1p_track(out
, BIT_STR(code
, 0, m
),
457 m
- 1, off
+ half_other
);
458 decode_5p_track(out
+ 1, BIT_STR(code
, m
, 5*m
- 5),
459 m
- 1, off
+ half_more
);
461 case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
462 decode_2p_track(out
, BIT_STR(code
, 0, 2*m
- 1),
463 m
- 1, off
+ half_other
);
464 decode_4p_track(out
+ 2, BIT_STR(code
, 2*m
- 1, 4*m
- 4),
465 m
- 1, off
+ half_more
);
467 case 3: /* 3 pulses in A, 3 pulses in B */
468 decode_3p_track(out
, BIT_STR(code
, 3*m
- 2, 3*m
- 2),
470 decode_3p_track(out
+ 3, BIT_STR(code
, 0, 3*m
- 2),
471 m
- 1, off
+ b_offset
);
477 * Decode the algebraic codebook index to pulse positions and signs,
478 * then construct the algebraic codebook vector.
480 * @param[out] fixed_vector Buffer for the fixed codebook excitation
481 * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
482 * @param[in] pulse_lo LSBs part of the pulse index array
483 * @param[in] mode Mode of the current frame
485 static void decode_fixed_vector(float *fixed_vector
, const uint16_t *pulse_hi
,
486 const uint16_t *pulse_lo
, const enum Mode mode
)
488 /* sig_pos stores for each track the decoded pulse position indexes
489 * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
491 int spacing
= (mode
== MODE_6k60
) ? 2 : 4;
496 for (i
= 0; i
< 2; i
++)
497 decode_1p_track(sig_pos
[i
], pulse_lo
[i
], 5, 1);
500 for (i
= 0; i
< 4; i
++)
501 decode_1p_track(sig_pos
[i
], pulse_lo
[i
], 4, 1);
504 for (i
= 0; i
< 4; i
++)
505 decode_2p_track(sig_pos
[i
], pulse_lo
[i
], 4, 1);
508 for (i
= 0; i
< 2; i
++)
509 decode_3p_track(sig_pos
[i
], pulse_lo
[i
], 4, 1);
510 for (i
= 2; i
< 4; i
++)
511 decode_2p_track(sig_pos
[i
], pulse_lo
[i
], 4, 1);
514 for (i
= 0; i
< 4; i
++)
515 decode_3p_track(sig_pos
[i
], pulse_lo
[i
], 4, 1);
518 for (i
= 0; i
< 4; i
++)
519 decode_4p_track(sig_pos
[i
], (int) pulse_lo
[i
] +
520 ((int) pulse_hi
[i
] << 14), 4, 1);
523 for (i
= 0; i
< 2; i
++)
524 decode_5p_track(sig_pos
[i
], (int) pulse_lo
[i
] +
525 ((int) pulse_hi
[i
] << 10), 4, 1);
526 for (i
= 2; i
< 4; i
++)
527 decode_4p_track(sig_pos
[i
], (int) pulse_lo
[i
] +
528 ((int) pulse_hi
[i
] << 14), 4, 1);
532 for (i
= 0; i
< 4; i
++)
533 decode_6p_track(sig_pos
[i
], (int) pulse_lo
[i
] +
534 ((int) pulse_hi
[i
] << 11), 4, 1);
538 memset(fixed_vector
, 0, sizeof(float) * AMRWB_SFR_SIZE
);
540 for (i
= 0; i
< 4; i
++)
541 for (j
= 0; j
< pulses_nb_per_mode_tr
[mode
][i
]; j
++) {
542 int pos
= (FFABS(sig_pos
[i
][j
]) - 1) * spacing
+ i
;
544 fixed_vector
[pos
] += sig_pos
[i
][j
] < 0 ? -1.0 : 1.0;
549 * Decode pitch gain and fixed gain correction factor.
551 * @param[in] vq_gain Vector-quantized index for gains
552 * @param[in] mode Mode of the current frame
553 * @param[out] fixed_gain_factor Decoded fixed gain correction factor
554 * @param[out] pitch_gain Decoded pitch gain
556 static void decode_gains(const uint8_t vq_gain
, const enum Mode mode
,
557 float *fixed_gain_factor
, float *pitch_gain
)
559 const int16_t *gains
= (mode
<= MODE_8k85
? qua_gain_6b
[vq_gain
] :
560 qua_gain_7b
[vq_gain
]);
562 *pitch_gain
= gains
[0] * (1.0f
/ (1 << 14));
563 *fixed_gain_factor
= gains
[1] * (1.0f
/ (1 << 11));
567 * Apply pitch sharpening filters to the fixed codebook vector.
569 * @param[in] ctx The context
570 * @param[in,out] fixed_vector Fixed codebook excitation
572 // XXX: Spec states this procedure should be applied when the pitch
573 // lag is less than 64, but this checking seems absent in reference and AMR-NB
574 static void pitch_sharpening(AMRWBContext
*ctx
, float *fixed_vector
)
579 for (i
= AMRWB_SFR_SIZE
- 1; i
!= 0; i
--)
580 fixed_vector
[i
] -= fixed_vector
[i
- 1] * ctx
->tilt_coef
;
582 /* Periodicity enhancement part */
583 for (i
= ctx
->pitch_lag_int
; i
< AMRWB_SFR_SIZE
; i
++)
584 fixed_vector
[i
] += fixed_vector
[i
- ctx
->pitch_lag_int
] * 0.85;
588 * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
590 * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
591 * @param[in] p_gain, f_gain Pitch and fixed gains
593 // XXX: There is something wrong with the precision here! The magnitudes
594 // of the energies are not correct. Please check the reference code carefully
595 static float voice_factor(float *p_vector
, float p_gain
,
596 float *f_vector
, float f_gain
)
598 double p_ener
= (double) avpriv_scalarproduct_float_c(p_vector
, p_vector
,
601 double f_ener
= (double) avpriv_scalarproduct_float_c(f_vector
, f_vector
,
605 return (p_ener
- f_ener
) / (p_ener
+ f_ener
);
609 * Reduce fixed vector sparseness by smoothing with one of three IR filters,
610 * also known as "adaptive phase dispersion".
612 * @param[in] ctx The context
613 * @param[in,out] fixed_vector Unfiltered fixed vector
614 * @param[out] buf Space for modified vector if necessary
616 * @return The potentially overwritten filtered fixed vector address
618 static float *anti_sparseness(AMRWBContext
*ctx
,
619 float *fixed_vector
, float *buf
)
623 if (ctx
->fr_cur_mode
> MODE_8k85
) // no filtering in higher modes
626 if (ctx
->pitch_gain
[0] < 0.6) {
627 ir_filter_nr
= 0; // strong filtering
628 } else if (ctx
->pitch_gain
[0] < 0.9) {
629 ir_filter_nr
= 1; // medium filtering
631 ir_filter_nr
= 2; // no filtering
634 if (ctx
->fixed_gain
[0] > 3.0 * ctx
->fixed_gain
[1]) {
635 if (ir_filter_nr
< 2)
640 for (i
= 0; i
< 6; i
++)
641 if (ctx
->pitch_gain
[i
] < 0.6)
647 if (ir_filter_nr
> ctx
->prev_ir_filter_nr
+ 1)
651 /* update ir filter strength history */
652 ctx
->prev_ir_filter_nr
= ir_filter_nr
;
654 ir_filter_nr
+= (ctx
->fr_cur_mode
== MODE_8k85
);
656 if (ir_filter_nr
< 2) {
658 const float *coef
= ir_filters_lookup
[ir_filter_nr
];
660 /* Circular convolution code in the reference
661 * decoder was modified to avoid using one
662 * extra array. The filtered vector is given by:
664 * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
667 memset(buf
, 0, sizeof(float) * AMRWB_SFR_SIZE
);
668 for (i
= 0; i
< AMRWB_SFR_SIZE
; i
++)
670 ff_celp_circ_addf(buf
, buf
, coef
, i
, fixed_vector
[i
],
679 * Calculate a stability factor {teta} based on distance between
680 * current and past isf. A value of 1 shows maximum signal stability.
682 static float stability_factor(const float *isf
, const float *isf_past
)
687 for (i
= 0; i
< LP_ORDER
- 1; i
++)
688 acc
+= (isf
[i
] - isf_past
[i
]) * (isf
[i
] - isf_past
[i
]);
690 // XXX: This part is not so clear from the reference code
691 // the result is more accurate changing the "/ 256" to "* 512"
692 return FFMAX(0.0, 1.25 - acc
* 0.8 * 512);
696 * Apply a non-linear fixed gain smoothing in order to reduce
697 * fluctuation in the energy of excitation.
699 * @param[in] fixed_gain Unsmoothed fixed gain
700 * @param[in,out] prev_tr_gain Previous threshold gain (updated)
701 * @param[in] voice_fac Frame voicing factor
702 * @param[in] stab_fac Frame stability factor
704 * @return The smoothed gain
706 static float noise_enhancer(float fixed_gain
, float *prev_tr_gain
,
707 float voice_fac
, float stab_fac
)
709 float sm_fac
= 0.5 * (1 - voice_fac
) * stab_fac
;
712 // XXX: the following fixed-point constants used to in(de)crement
713 // gain by 1.5dB were taken from the reference code, maybe it could
715 if (fixed_gain
< *prev_tr_gain
) {
716 g0
= FFMIN(*prev_tr_gain
, fixed_gain
+ fixed_gain
*
717 (6226 * (1.0f
/ (1 << 15)))); // +1.5 dB
719 g0
= FFMAX(*prev_tr_gain
, fixed_gain
*
720 (27536 * (1.0f
/ (1 << 15)))); // -1.5 dB
722 *prev_tr_gain
= g0
; // update next frame threshold
724 return sm_fac
* g0
+ (1 - sm_fac
) * fixed_gain
;
728 * Filter the fixed_vector to emphasize the higher frequencies.
730 * @param[in,out] fixed_vector Fixed codebook vector
731 * @param[in] voice_fac Frame voicing factor
733 static void pitch_enhancer(float *fixed_vector
, float voice_fac
)
736 float cpe
= 0.125 * (1 + voice_fac
);
737 float last
= fixed_vector
[0]; // holds c(i - 1)
739 fixed_vector
[0] -= cpe
* fixed_vector
[1];
741 for (i
= 1; i
< AMRWB_SFR_SIZE
- 1; i
++) {
742 float cur
= fixed_vector
[i
];
744 fixed_vector
[i
] -= cpe
* (last
+ fixed_vector
[i
+ 1]);
748 fixed_vector
[AMRWB_SFR_SIZE
- 1] -= cpe
* last
;
752 * Conduct 16th order linear predictive coding synthesis from excitation.
754 * @param[in] ctx Pointer to the AMRWBContext
755 * @param[in] lpc Pointer to the LPC coefficients
756 * @param[out] excitation Buffer for synthesis final excitation
757 * @param[in] fixed_gain Fixed codebook gain for synthesis
758 * @param[in] fixed_vector Algebraic codebook vector
759 * @param[in,out] samples Pointer to the output samples and memory
761 static void synthesis(AMRWBContext
*ctx
, float *lpc
, float *excitation
,
762 float fixed_gain
, const float *fixed_vector
,
765 ff_weighted_vector_sumf(excitation
, ctx
->pitch_vector
, fixed_vector
,
766 ctx
->pitch_gain
[0], fixed_gain
, AMRWB_SFR_SIZE
);
768 /* emphasize pitch vector contribution in low bitrate modes */
769 if (ctx
->pitch_gain
[0] > 0.5 && ctx
->fr_cur_mode
<= MODE_8k85
) {
771 float energy
= avpriv_scalarproduct_float_c(excitation
, excitation
,
774 // XXX: Weird part in both ref code and spec. A unknown parameter
775 // {beta} seems to be identical to the current pitch gain
776 float pitch_factor
= 0.25 * ctx
->pitch_gain
[0] * ctx
->pitch_gain
[0];
778 for (i
= 0; i
< AMRWB_SFR_SIZE
; i
++)
779 excitation
[i
] += pitch_factor
* ctx
->pitch_vector
[i
];
781 ff_scale_vector_to_given_sum_of_squares(excitation
, excitation
,
782 energy
, AMRWB_SFR_SIZE
);
785 ff_celp_lp_synthesis_filterf(samples
, lpc
, excitation
,
786 AMRWB_SFR_SIZE
, LP_ORDER
);
790 * Apply to synthesis a de-emphasis filter of the form:
791 * H(z) = 1 / (1 - m * z^-1)
793 * @param[out] out Output buffer
794 * @param[in] in Input samples array with in[-1]
795 * @param[in] m Filter coefficient
796 * @param[in,out] mem State from last filtering
798 static void de_emphasis(float *out
, float *in
, float m
, float mem
[1])
802 out
[0] = in
[0] + m
* mem
[0];
804 for (i
= 1; i
< AMRWB_SFR_SIZE
; i
++)
805 out
[i
] = in
[i
] + out
[i
- 1] * m
;
807 mem
[0] = out
[AMRWB_SFR_SIZE
- 1];
811 * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
812 * a FIR interpolation filter. Uses past data from before *in address.
814 * @param[out] out Buffer for interpolated signal
815 * @param[in] in Current signal data (length 0.8*o_size)
816 * @param[in] o_size Output signal length
818 static void upsample_5_4(float *out
, const float *in
, int o_size
)
820 const float *in0
= in
- UPS_FIR_SIZE
+ 1;
822 int int_part
= 0, frac_part
;
825 for (j
= 0; j
< o_size
/ 5; j
++) {
826 out
[i
] = in
[int_part
];
830 for (k
= 1; k
< 5; k
++) {
831 out
[i
] = avpriv_scalarproduct_float_c(in0
+ int_part
,
832 upsample_fir
[4 - frac_part
],
842 * Calculate the high-band gain based on encoded index (23k85 mode) or
843 * on the low-band speech signal and the Voice Activity Detection flag.
845 * @param[in] ctx The context
846 * @param[in] synth LB speech synthesis at 12.8k
847 * @param[in] hb_idx Gain index for mode 23k85 only
848 * @param[in] vad VAD flag for the frame
850 static float find_hb_gain(AMRWBContext
*ctx
, const float *synth
,
851 uint16_t hb_idx
, uint8_t vad
)
856 if (ctx
->fr_cur_mode
== MODE_23k85
)
857 return qua_hb_gain
[hb_idx
] * (1.0f
/ (1 << 14));
859 tilt
= avpriv_scalarproduct_float_c(synth
, synth
+ 1, AMRWB_SFR_SIZE
- 1) /
860 avpriv_scalarproduct_float_c(synth
, synth
, AMRWB_SFR_SIZE
);
862 /* return gain bounded by [0.1, 1.0] */
863 return av_clipf((1.0 - FFMAX(0.0, tilt
)) * (1.25 - 0.25 * wsp
), 0.1, 1.0);
867 * Generate the high-band excitation with the same energy from the lower
868 * one and scaled by the given gain.
870 * @param[in] ctx The context
871 * @param[out] hb_exc Buffer for the excitation
872 * @param[in] synth_exc Low-band excitation used for synthesis
873 * @param[in] hb_gain Wanted excitation gain
875 static void scaled_hb_excitation(AMRWBContext
*ctx
, float *hb_exc
,
876 const float *synth_exc
, float hb_gain
)
879 float energy
= avpriv_scalarproduct_float_c(synth_exc
, synth_exc
,
882 /* Generate a white-noise excitation */
883 for (i
= 0; i
< AMRWB_SFR_SIZE_16k
; i
++)
884 hb_exc
[i
] = 32768.0 - (uint16_t) av_lfg_get(&ctx
->prng
);
886 ff_scale_vector_to_given_sum_of_squares(hb_exc
, hb_exc
,
887 energy
* hb_gain
* hb_gain
,
892 * Calculate the auto-correlation for the ISF difference vector.
894 static float auto_correlation(float *diff_isf
, float mean
, int lag
)
899 for (i
= 7; i
< LP_ORDER
- 2; i
++) {
900 float prod
= (diff_isf
[i
] - mean
) * (diff_isf
[i
- lag
] - mean
);
907 * Extrapolate a ISF vector to the 16kHz range (20th order LP)
908 * used at mode 6k60 LP filter for the high frequency band.
910 * @param[out] isf Buffer for extrapolated isf; contains LP_ORDER
913 static void extrapolate_isf(float isf
[LP_ORDER_16k
])
915 float diff_isf
[LP_ORDER
- 2], diff_mean
;
918 int i
, j
, i_max_corr
;
920 isf
[LP_ORDER_16k
- 1] = isf
[LP_ORDER
- 1];
922 /* Calculate the difference vector */
923 for (i
= 0; i
< LP_ORDER
- 2; i
++)
924 diff_isf
[i
] = isf
[i
+ 1] - isf
[i
];
927 for (i
= 2; i
< LP_ORDER
- 2; i
++)
928 diff_mean
+= diff_isf
[i
] * (1.0f
/ (LP_ORDER
- 4));
930 /* Find which is the maximum autocorrelation */
932 for (i
= 0; i
< 3; i
++) {
933 corr_lag
[i
] = auto_correlation(diff_isf
, diff_mean
, i
+ 2);
935 if (corr_lag
[i
] > corr_lag
[i_max_corr
])
940 for (i
= LP_ORDER
- 1; i
< LP_ORDER_16k
- 1; i
++)
941 isf
[i
] = isf
[i
- 1] + isf
[i
- 1 - i_max_corr
]
942 - isf
[i
- 2 - i_max_corr
];
944 /* Calculate an estimate for ISF(18) and scale ISF based on the error */
945 est
= 7965 + (isf
[2] - isf
[3] - isf
[4]) / 6.0;
946 scale
= 0.5 * (FFMIN(est
, 7600) - isf
[LP_ORDER
- 2]) /
947 (isf
[LP_ORDER_16k
- 2] - isf
[LP_ORDER
- 2]);
949 for (i
= LP_ORDER
- 1, j
= 0; i
< LP_ORDER_16k
- 1; i
++, j
++)
950 diff_isf
[j
] = scale
* (isf
[i
] - isf
[i
- 1]);
952 /* Stability insurance */
953 for (i
= 1; i
< LP_ORDER_16k
- LP_ORDER
; i
++)
954 if (diff_isf
[i
] + diff_isf
[i
- 1] < 5.0) {
955 if (diff_isf
[i
] > diff_isf
[i
- 1]) {
956 diff_isf
[i
- 1] = 5.0 - diff_isf
[i
];
958 diff_isf
[i
] = 5.0 - diff_isf
[i
- 1];
961 for (i
= LP_ORDER
- 1, j
= 0; i
< LP_ORDER_16k
- 1; i
++, j
++)
962 isf
[i
] = isf
[i
- 1] + diff_isf
[j
] * (1.0f
/ (1 << 15));
964 /* Scale the ISF vector for 16000 Hz */
965 for (i
= 0; i
< LP_ORDER_16k
- 1; i
++)
970 * Spectral expand the LP coefficients using the equation:
971 * y[i] = x[i] * (gamma ** i)
973 * @param[out] out Output buffer (may use input array)
974 * @param[in] lpc LP coefficients array
975 * @param[in] gamma Weighting factor
976 * @param[in] size LP array size
978 static void lpc_weighting(float *out
, const float *lpc
, float gamma
, int size
)
983 for (i
= 0; i
< size
; i
++) {
984 out
[i
] = lpc
[i
] * fac
;
990 * Conduct 20th order linear predictive coding synthesis for the high
991 * frequency band excitation at 16kHz.
993 * @param[in] ctx The context
994 * @param[in] subframe Current subframe index (0 to 3)
995 * @param[in,out] samples Pointer to the output speech samples
996 * @param[in] exc Generated white-noise scaled excitation
997 * @param[in] isf Current frame isf vector
998 * @param[in] isf_past Past frame final isf vector
1000 static void hb_synthesis(AMRWBContext
*ctx
, int subframe
, float *samples
,
1001 const float *exc
, const float *isf
, const float *isf_past
)
1003 float hb_lpc
[LP_ORDER_16k
];
1004 enum Mode mode
= ctx
->fr_cur_mode
;
1006 if (mode
== MODE_6k60
) {
1007 float e_isf
[LP_ORDER_16k
]; // ISF vector for extrapolation
1008 double e_isp
[LP_ORDER_16k
];
1010 ff_weighted_vector_sumf(e_isf
, isf_past
, isf
, isfp_inter
[subframe
],
1011 1.0 - isfp_inter
[subframe
], LP_ORDER
);
1013 extrapolate_isf(e_isf
);
1015 e_isf
[LP_ORDER_16k
- 1] *= 2.0;
1016 ff_acelp_lsf2lspd(e_isp
, e_isf
, LP_ORDER_16k
);
1017 ff_amrwb_lsp2lpc(e_isp
, hb_lpc
, LP_ORDER_16k
);
1019 lpc_weighting(hb_lpc
, hb_lpc
, 0.9, LP_ORDER_16k
);
1021 lpc_weighting(hb_lpc
, ctx
->lp_coef
[subframe
], 0.6, LP_ORDER
);
1024 ff_celp_lp_synthesis_filterf(samples
, hb_lpc
, exc
, AMRWB_SFR_SIZE_16k
,
1025 (mode
== MODE_6k60
) ? LP_ORDER_16k
: LP_ORDER
);
1029 * Apply a 15th order filter to high-band samples.
1030 * The filter characteristic depends on the given coefficients.
1032 * @param[out] out Buffer for filtered output
1033 * @param[in] fir_coef Filter coefficients
1034 * @param[in,out] mem State from last filtering (updated)
1035 * @param[in] in Input speech data (high-band)
1037 * @remark It is safe to pass the same array in in and out parameters
1039 static void hb_fir_filter(float *out
, const float fir_coef
[HB_FIR_SIZE
+ 1],
1040 float mem
[HB_FIR_SIZE
], const float *in
)
1043 float data
[AMRWB_SFR_SIZE_16k
+ HB_FIR_SIZE
]; // past and current samples
1045 memcpy(data
, mem
, HB_FIR_SIZE
* sizeof(float));
1046 memcpy(data
+ HB_FIR_SIZE
, in
, AMRWB_SFR_SIZE_16k
* sizeof(float));
1048 for (i
= 0; i
< AMRWB_SFR_SIZE_16k
; i
++) {
1050 for (j
= 0; j
<= HB_FIR_SIZE
; j
++)
1051 out
[i
] += data
[i
+ j
] * fir_coef
[j
];
1054 memcpy(mem
, data
+ AMRWB_SFR_SIZE_16k
, HB_FIR_SIZE
* sizeof(float));
1058 * Update context state before the next subframe.
1060 static void update_sub_state(AMRWBContext
*ctx
)
1062 memmove(&ctx
->excitation_buf
[0], &ctx
->excitation_buf
[AMRWB_SFR_SIZE
],
1063 (AMRWB_P_DELAY_MAX
+ LP_ORDER
+ 1) * sizeof(float));
1065 memmove(&ctx
->pitch_gain
[1], &ctx
->pitch_gain
[0], 5 * sizeof(float));
1066 memmove(&ctx
->fixed_gain
[1], &ctx
->fixed_gain
[0], 1 * sizeof(float));
1068 memmove(&ctx
->samples_az
[0], &ctx
->samples_az
[AMRWB_SFR_SIZE
],
1069 LP_ORDER
* sizeof(float));
1070 memmove(&ctx
->samples_up
[0], &ctx
->samples_up
[AMRWB_SFR_SIZE
],
1071 UPS_MEM_SIZE
* sizeof(float));
1072 memmove(&ctx
->samples_hb
[0], &ctx
->samples_hb
[AMRWB_SFR_SIZE_16k
],
1073 LP_ORDER_16k
* sizeof(float));
1076 static int amrwb_decode_frame(AVCodecContext
*avctx
, void *data
,
1077 int *got_frame_ptr
, AVPacket
*avpkt
)
1079 AMRWBContext
*ctx
= avctx
->priv_data
;
1080 AMRWBFrame
*cf
= &ctx
->frame
;
1081 const uint8_t *buf
= avpkt
->data
;
1082 int buf_size
= avpkt
->size
;
1083 int expected_fr_size
, header_size
;
1085 float spare_vector
[AMRWB_SFR_SIZE
]; // extra stack space to hold result from anti-sparseness processing
1086 float fixed_gain_factor
; // fixed gain correction factor (gamma)
1087 float *synth_fixed_vector
; // pointer to the fixed vector that synthesis should use
1088 float synth_fixed_gain
; // the fixed gain that synthesis should use
1089 float voice_fac
, stab_fac
; // parameters used for gain smoothing
1090 float synth_exc
[AMRWB_SFR_SIZE
]; // post-processed excitation for synthesis
1091 float hb_exc
[AMRWB_SFR_SIZE_16k
]; // excitation for the high frequency band
1092 float hb_samples
[AMRWB_SFR_SIZE_16k
]; // filtered high-band samples from synthesis
1096 /* get output buffer */
1097 ctx
->avframe
.nb_samples
= 4 * AMRWB_SFR_SIZE_16k
;
1098 if ((ret
= ff_get_buffer(avctx
, &ctx
->avframe
)) < 0) {
1099 av_log(avctx
, AV_LOG_ERROR
, "get_buffer() failed\n");
1102 buf_out
= (float *)ctx
->avframe
.data
[0];
1104 header_size
= decode_mime_header(ctx
, buf
);
1105 if (ctx
->fr_cur_mode
> MODE_SID
) {
1106 av_log(avctx
, AV_LOG_ERROR
,
1107 "Invalid mode %d\n", ctx
->fr_cur_mode
);
1108 return AVERROR_INVALIDDATA
;
1110 expected_fr_size
= ((cf_sizes_wb
[ctx
->fr_cur_mode
] + 7) >> 3) + 1;
1112 if (buf_size
< expected_fr_size
) {
1113 av_log(avctx
, AV_LOG_ERROR
,
1114 "Frame too small (%d bytes). Truncated file?\n", buf_size
);
1116 return AVERROR_INVALIDDATA
;
1119 if (!ctx
->fr_quality
|| ctx
->fr_cur_mode
> MODE_SID
)
1120 av_log(avctx
, AV_LOG_ERROR
, "Encountered a bad or corrupted frame\n");
1122 if (ctx
->fr_cur_mode
== MODE_SID
) { /* Comfort noise frame */
1123 av_log_missing_feature(avctx
, "SID mode", 1);
1124 return AVERROR_PATCHWELCOME
;
1127 ff_amr_bit_reorder((uint16_t *) &ctx
->frame
, sizeof(AMRWBFrame
),
1128 buf
+ header_size
, amr_bit_orderings_by_mode
[ctx
->fr_cur_mode
]);
1130 /* Decode the quantized ISF vector */
1131 if (ctx
->fr_cur_mode
== MODE_6k60
) {
1132 decode_isf_indices_36b(cf
->isp_id
, ctx
->isf_cur
);
1134 decode_isf_indices_46b(cf
->isp_id
, ctx
->isf_cur
);
1137 isf_add_mean_and_past(ctx
->isf_cur
, ctx
->isf_q_past
);
1138 ff_set_min_dist_lsf(ctx
->isf_cur
, MIN_ISF_SPACING
, LP_ORDER
- 1);
1140 stab_fac
= stability_factor(ctx
->isf_cur
, ctx
->isf_past_final
);
1142 ctx
->isf_cur
[LP_ORDER
- 1] *= 2.0;
1143 ff_acelp_lsf2lspd(ctx
->isp
[3], ctx
->isf_cur
, LP_ORDER
);
1145 /* Generate a ISP vector for each subframe */
1146 if (ctx
->first_frame
) {
1147 ctx
->first_frame
= 0;
1148 memcpy(ctx
->isp_sub4_past
, ctx
->isp
[3], LP_ORDER
* sizeof(double));
1150 interpolate_isp(ctx
->isp
, ctx
->isp_sub4_past
);
1152 for (sub
= 0; sub
< 4; sub
++)
1153 ff_amrwb_lsp2lpc(ctx
->isp
[sub
], ctx
->lp_coef
[sub
], LP_ORDER
);
1155 for (sub
= 0; sub
< 4; sub
++) {
1156 const AMRWBSubFrame
*cur_subframe
= &cf
->subframe
[sub
];
1157 float *sub_buf
= buf_out
+ sub
* AMRWB_SFR_SIZE_16k
;
1159 /* Decode adaptive codebook (pitch vector) */
1160 decode_pitch_vector(ctx
, cur_subframe
, sub
);
1161 /* Decode innovative codebook (fixed vector) */
1162 decode_fixed_vector(ctx
->fixed_vector
, cur_subframe
->pul_ih
,
1163 cur_subframe
->pul_il
, ctx
->fr_cur_mode
);
1165 pitch_sharpening(ctx
, ctx
->fixed_vector
);
1167 decode_gains(cur_subframe
->vq_gain
, ctx
->fr_cur_mode
,
1168 &fixed_gain_factor
, &ctx
->pitch_gain
[0]);
1170 ctx
->fixed_gain
[0] =
1171 ff_amr_set_fixed_gain(fixed_gain_factor
,
1172 avpriv_scalarproduct_float_c(ctx
->fixed_vector
,
1176 ctx
->prediction_error
,
1177 ENERGY_MEAN
, energy_pred_fac
);
1179 /* Calculate voice factor and store tilt for next subframe */
1180 voice_fac
= voice_factor(ctx
->pitch_vector
, ctx
->pitch_gain
[0],
1181 ctx
->fixed_vector
, ctx
->fixed_gain
[0]);
1182 ctx
->tilt_coef
= voice_fac
* 0.25 + 0.25;
1184 /* Construct current excitation */
1185 for (i
= 0; i
< AMRWB_SFR_SIZE
; i
++) {
1186 ctx
->excitation
[i
] *= ctx
->pitch_gain
[0];
1187 ctx
->excitation
[i
] += ctx
->fixed_gain
[0] * ctx
->fixed_vector
[i
];
1188 ctx
->excitation
[i
] = truncf(ctx
->excitation
[i
]);
1191 /* Post-processing of excitation elements */
1192 synth_fixed_gain
= noise_enhancer(ctx
->fixed_gain
[0], &ctx
->prev_tr_gain
,
1193 voice_fac
, stab_fac
);
1195 synth_fixed_vector
= anti_sparseness(ctx
, ctx
->fixed_vector
,
1198 pitch_enhancer(synth_fixed_vector
, voice_fac
);
1200 synthesis(ctx
, ctx
->lp_coef
[sub
], synth_exc
, synth_fixed_gain
,
1201 synth_fixed_vector
, &ctx
->samples_az
[LP_ORDER
]);
1203 /* Synthesis speech post-processing */
1204 de_emphasis(&ctx
->samples_up
[UPS_MEM_SIZE
],
1205 &ctx
->samples_az
[LP_ORDER
], PREEMPH_FAC
, ctx
->demph_mem
);
1207 ff_acelp_apply_order_2_transfer_function(&ctx
->samples_up
[UPS_MEM_SIZE
],
1208 &ctx
->samples_up
[UPS_MEM_SIZE
], hpf_zeros
, hpf_31_poles
,
1209 hpf_31_gain
, ctx
->hpf_31_mem
, AMRWB_SFR_SIZE
);
1211 upsample_5_4(sub_buf
, &ctx
->samples_up
[UPS_FIR_SIZE
],
1212 AMRWB_SFR_SIZE_16k
);
1214 /* High frequency band (6.4 - 7.0 kHz) generation part */
1215 ff_acelp_apply_order_2_transfer_function(hb_samples
,
1216 &ctx
->samples_up
[UPS_MEM_SIZE
], hpf_zeros
, hpf_400_poles
,
1217 hpf_400_gain
, ctx
->hpf_400_mem
, AMRWB_SFR_SIZE
);
1219 hb_gain
= find_hb_gain(ctx
, hb_samples
,
1220 cur_subframe
->hb_gain
, cf
->vad
);
1222 scaled_hb_excitation(ctx
, hb_exc
, synth_exc
, hb_gain
);
1224 hb_synthesis(ctx
, sub
, &ctx
->samples_hb
[LP_ORDER_16k
],
1225 hb_exc
, ctx
->isf_cur
, ctx
->isf_past_final
);
1227 /* High-band post-processing filters */
1228 hb_fir_filter(hb_samples
, bpf_6_7_coef
, ctx
->bpf_6_7_mem
,
1229 &ctx
->samples_hb
[LP_ORDER_16k
]);
1231 if (ctx
->fr_cur_mode
== MODE_23k85
)
1232 hb_fir_filter(hb_samples
, lpf_7_coef
, ctx
->lpf_7_mem
,
1235 /* Add the low and high frequency bands */
1236 for (i
= 0; i
< AMRWB_SFR_SIZE_16k
; i
++)
1237 sub_buf
[i
] = (sub_buf
[i
] + hb_samples
[i
]) * (1.0f
/ (1 << 15));
1239 /* Update buffers and history */
1240 update_sub_state(ctx
);
1243 /* update state for next frame */
1244 memcpy(ctx
->isp_sub4_past
, ctx
->isp
[3], LP_ORDER
* sizeof(ctx
->isp
[3][0]));
1245 memcpy(ctx
->isf_past_final
, ctx
->isf_cur
, LP_ORDER
* sizeof(float));
1248 *(AVFrame
*)data
= ctx
->avframe
;
1250 return expected_fr_size
;
1253 AVCodec ff_amrwb_decoder
= {
1255 .type
= AVMEDIA_TYPE_AUDIO
,
1256 .id
= AV_CODEC_ID_AMR_WB
,
1257 .priv_data_size
= sizeof(AMRWBContext
),
1258 .init
= amrwb_decode_init
,
1259 .decode
= amrwb_decode_frame
,
1260 .capabilities
= CODEC_CAP_DR1
,
1261 .long_name
= NULL_IF_CONFIG_SMALL("AMR-WB (Adaptive Multi-Rate WideBand)"),
1262 .sample_fmts
= (const enum AVSampleFormat
[]){ AV_SAMPLE_FMT_FLT
,
1263 AV_SAMPLE_FMT_NONE
},