4xm: check the return value of read_huffman_tables().
[FFMpeg-mirror/mplayer-patches.git] / libavcodec / lsp.c
blob8a05aede620724067224fa7e38cce47527f914f6
1 /*
2 * LSP routines for ACELP-based codecs
4 * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
5 * Copyright (c) 2008 Vladimir Voroshilov
7 * This file is part of Libav.
9 * Libav is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * Libav is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with Libav; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <inttypes.h>
26 #include "avcodec.h"
27 #define FRAC_BITS 14
28 #include "mathops.h"
29 #include "lsp.h"
31 void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
33 int i, j;
35 /* sort lsfq in ascending order. float bubble agorithm,
36 O(n) if data already sorted, O(n^2) - otherwise */
37 for(i=0; i<lp_order-1; i++)
38 for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
39 FFSWAP(int16_t, lsfq[j], lsfq[j+1]);
41 for(i=0; i<lp_order; i++)
43 lsfq[i] = FFMAX(lsfq[i], lsfq_min);
44 lsfq_min = lsfq[i] + lsfq_min_distance;
46 lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
49 void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
51 int i;
52 float prev = 0.0;
53 for (i = 0; i < size; i++)
54 prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing);
58 /* Cosine table: base_cos[i] = (1 << 15) * cos(i * PI / 64) */
59 static const int16_t tab_cos[65] =
61 32767, 32738, 32617, 32421, 32145, 31793, 31364, 30860,
62 30280, 29629, 28905, 28113, 27252, 26326, 25336, 24285,
63 23176, 22011, 20793, 19525, 18210, 16851, 15451, 14014,
64 12543, 11043, 9515, 7965, 6395, 4810, 3214, 1609,
65 1, -1607, -3211, -4808, -6393, -7962, -9513, -11040,
66 -12541, -14012, -15449, -16848, -18207, -19523, -20791, -22009,
67 -23174, -24283, -25334, -26324, -27250, -28111, -28904, -29627,
68 -30279, -30858, -31363, -31792, -32144, -32419, -32616, -32736, -32768,
71 static int16_t ff_cos(uint16_t arg)
73 uint8_t offset= arg;
74 uint8_t ind = arg >> 8;
76 assert(arg <= 0x3fff);
78 return tab_cos[ind] + (offset * (tab_cos[ind+1] - tab_cos[ind]) >> 8);
81 void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
83 int i;
85 /* Convert LSF to LSP, lsp=cos(lsf) */
86 for(i=0; i<lp_order; i++)
87 // 20861 = 2.0 / PI in (0.15)
88 lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
91 void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order)
93 int i;
95 for(i = 0; i < lp_order; i++)
96 lsp[i] = cos(2.0 * M_PI * lsf[i]);
99 /**
100 * @brief decodes polynomial coefficients from LSP
101 * @param[out] f decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
102 * @param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
104 static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
106 int i, j;
108 f[0] = 0x400000; // 1.0 in (3.22)
109 f[1] = -lsp[0] << 8; // *2 and (0.15) -> (3.22)
111 for(i=2; i<=lp_half_order; i++)
113 f[i] = f[i-2];
114 for(j=i; j>1; j--)
115 f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];
117 f[1] -= lsp[2*i-2] << 8;
121 void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
123 int i;
124 int f1[MAX_LP_HALF_ORDER+1]; // (3.22)
125 int f2[MAX_LP_HALF_ORDER+1]; // (3.22)
127 lsp2poly(f1, lsp , lp_half_order);
128 lsp2poly(f2, lsp+1, lp_half_order);
130 /* 3.2.6 of G.729, Equations 25 and 26*/
131 lp[0] = 4096;
132 for(i=1; i<lp_half_order+1; i++)
134 int ff1 = f1[i] + f1[i-1]; // (3.22)
135 int ff2 = f2[i] - f2[i-1]; // (3.22)
137 ff1 += 1 << 10; // for rounding
138 lp[i] = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
139 lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
143 void ff_amrwb_lsp2lpc(const double *lsp, float *lp, int lp_order)
145 int lp_half_order = lp_order >> 1;
146 double buf[MAX_LP_HALF_ORDER + 1];
147 double pa[MAX_LP_HALF_ORDER + 1];
148 double *qa = buf + 1;
149 int i,j;
151 qa[-1] = 0.0;
153 ff_lsp2polyf(lsp , pa, lp_half_order );
154 ff_lsp2polyf(lsp + 1, qa, lp_half_order - 1);
156 for (i = 1, j = lp_order - 1; i < lp_half_order; i++, j--) {
157 double paf = pa[i] * (1 + lsp[lp_order - 1]);
158 double qaf = (qa[i] - qa[i-2]) * (1 - lsp[lp_order - 1]);
159 lp[i-1] = (paf + qaf) * 0.5;
160 lp[j-1] = (paf - qaf) * 0.5;
163 lp[lp_half_order - 1] = (1.0 + lsp[lp_order - 1]) *
164 pa[lp_half_order] * 0.5;
166 lp[lp_order - 1] = lsp[lp_order - 1];
169 void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
171 int16_t lsp_1st[MAX_LP_ORDER]; // (0.15)
172 int i;
174 /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
175 for(i=0; i<lp_order; i++)
176 lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
178 ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);
180 /* LSP values for second subframe (3.2.5 of G.729)*/
181 ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
184 void ff_lsp2polyf(const double *lsp, double *f, int lp_half_order)
186 int i, j;
188 f[0] = 1.0;
189 f[1] = -2 * lsp[0];
190 lsp -= 2;
191 for(i=2; i<=lp_half_order; i++)
193 double val = -2 * lsp[2*i];
194 f[i] = val * f[i-1] + 2*f[i-2];
195 for(j=i-1; j>1; j--)
196 f[j] += f[j-1] * val + f[j-2];
197 f[1] += val;
201 void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
203 double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1];
204 float *lpc2 = lpc + (lp_half_order << 1) - 1;
206 assert(lp_half_order <= MAX_LP_HALF_ORDER);
208 ff_lsp2polyf(lsp, pa, lp_half_order);
209 ff_lsp2polyf(lsp + 1, qa, lp_half_order);
211 while (lp_half_order--) {
212 double paf = pa[lp_half_order+1] + pa[lp_half_order];
213 double qaf = qa[lp_half_order+1] - qa[lp_half_order];
215 lpc [ lp_half_order] = 0.5*(paf+qaf);
216 lpc2[-lp_half_order] = 0.5*(paf-qaf);
220 void ff_sort_nearly_sorted_floats(float *vals, int len)
222 int i,j;
224 for (i = 0; i < len - 1; i++)
225 for (j = i; j >= 0 && vals[j] > vals[j+1]; j--)
226 FFSWAP(float, vals[j], vals[j+1]);