4xm: check the return value of read_huffman_tables().
[FFMpeg-mirror/mplayer-patches.git] / libavcodec / ac3enc.c
blobb3be2dbf107a144b02e2ff34dea21287a5a35dea
1 /*
2 * The simplest AC-3 encoder
3 * Copyright (c) 2000 Fabrice Bellard
4 * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
5 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
7 * This file is part of Libav.
9 * Libav is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * Libav is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with Libav; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 /**
25 * @file
26 * The simplest AC-3 encoder.
29 //#define ASSERT_LEVEL 2
31 #include <stdint.h>
33 #include "libavutil/avassert.h"
34 #include "libavutil/avstring.h"
35 #include "libavutil/channel_layout.h"
36 #include "libavutil/crc.h"
37 #include "libavutil/internal.h"
38 #include "libavutil/opt.h"
39 #include "avcodec.h"
40 #include "put_bits.h"
41 #include "ac3dsp.h"
42 #include "ac3.h"
43 #include "fft.h"
44 #include "ac3enc.h"
45 #include "eac3enc.h"
47 typedef struct AC3Mant {
48 int16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
49 int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4
50 } AC3Mant;
52 #define CMIXLEV_NUM_OPTIONS 3
53 static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = {
54 LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB
57 #define SURMIXLEV_NUM_OPTIONS 3
58 static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS] = {
59 LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO
62 #define EXTMIXLEV_NUM_OPTIONS 8
63 static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS] = {
64 LEVEL_PLUS_3DB, LEVEL_PLUS_1POINT5DB, LEVEL_ONE, LEVEL_MINUS_4POINT5DB,
65 LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_ZERO
69 /**
70 * LUT for number of exponent groups.
71 * exponent_group_tab[coupling][exponent strategy-1][number of coefficients]
73 static uint8_t exponent_group_tab[2][3][256];
76 /**
77 * List of supported channel layouts.
79 const uint64_t ff_ac3_channel_layouts[19] = {
80 AV_CH_LAYOUT_MONO,
81 AV_CH_LAYOUT_STEREO,
82 AV_CH_LAYOUT_2_1,
83 AV_CH_LAYOUT_SURROUND,
84 AV_CH_LAYOUT_2_2,
85 AV_CH_LAYOUT_QUAD,
86 AV_CH_LAYOUT_4POINT0,
87 AV_CH_LAYOUT_5POINT0,
88 AV_CH_LAYOUT_5POINT0_BACK,
89 (AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY),
90 (AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
91 (AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
92 (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
93 (AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
94 (AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
95 (AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
96 AV_CH_LAYOUT_5POINT1,
97 AV_CH_LAYOUT_5POINT1_BACK,
103 * LUT to select the bandwidth code based on the bit rate, sample rate, and
104 * number of full-bandwidth channels.
105 * bandwidth_tab[fbw_channels-1][sample rate code][bit rate code]
107 static const uint8_t ac3_bandwidth_tab[5][3][19] = {
108 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
110 { { 0, 0, 0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
111 { 0, 0, 0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
112 { 0, 0, 0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
114 { { 0, 0, 0, 0, 0, 0, 0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 },
115 { 0, 0, 0, 0, 0, 0, 4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 },
116 { 0, 0, 0, 0, 0, 0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } },
118 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 },
119 { 0, 0, 0, 0, 0, 0, 0, 0, 4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 },
120 { 0, 0, 0, 0, 0, 0, 0, 0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } },
122 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 32, 48, 48, 48, 48, 48, 48 },
123 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 28, 36, 56, 56, 56, 56, 56, 56 },
124 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } },
126 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 20, 32, 40, 48, 48, 48, 48 },
127 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 36, 44, 56, 56, 56, 56 },
128 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 44, 60, 60, 60, 60, 60, 60 } }
133 * LUT to select the coupling start band based on the bit rate, sample rate, and
134 * number of full-bandwidth channels. -1 = coupling off
135 * ac3_coupling_start_tab[channel_mode-2][sample rate code][bit rate code]
137 * TODO: more testing for optimal parameters.
138 * multi-channel tests at 44.1kHz and 32kHz.
140 static const int8_t ac3_coupling_start_tab[6][3][19] = {
141 // 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640
143 // 2/0
144 { { 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 8, 11, 12, -1, -1, -1, -1, -1, -1 },
145 { 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 10, 12, 13, -1, -1, -1, -1, -1, -1 },
146 { 0, 0, 0, 0, 1, 2, 2, 9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
148 // 3/0
149 { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
150 { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
151 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
153 // 2/1 - untested
154 { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
155 { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 },
156 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
158 // 3/1
159 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
160 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
161 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
163 // 2/2 - untested
164 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
165 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 },
166 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
168 // 3/2
169 { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
170 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 },
171 { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } },
176 * Adjust the frame size to make the average bit rate match the target bit rate.
177 * This is only needed for 11025, 22050, and 44100 sample rates or any E-AC-3.
179 * @param s AC-3 encoder private context
181 void ff_ac3_adjust_frame_size(AC3EncodeContext *s)
183 while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
184 s->bits_written -= s->bit_rate;
185 s->samples_written -= s->sample_rate;
187 s->frame_size = s->frame_size_min +
188 2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
189 s->bits_written += s->frame_size * 8;
190 s->samples_written += AC3_BLOCK_SIZE * s->num_blocks;
195 * Set the initial coupling strategy parameters prior to coupling analysis.
197 * @param s AC-3 encoder private context
199 void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s)
201 int blk, ch;
202 int got_cpl_snr;
203 int num_cpl_blocks;
205 /* set coupling use flags for each block/channel */
206 /* TODO: turn coupling on/off and adjust start band based on bit usage */
207 for (blk = 0; blk < s->num_blocks; blk++) {
208 AC3Block *block = &s->blocks[blk];
209 for (ch = 1; ch <= s->fbw_channels; ch++)
210 block->channel_in_cpl[ch] = s->cpl_on;
213 /* enable coupling for each block if at least 2 channels have coupling
214 enabled for that block */
215 got_cpl_snr = 0;
216 num_cpl_blocks = 0;
217 for (blk = 0; blk < s->num_blocks; blk++) {
218 AC3Block *block = &s->blocks[blk];
219 block->num_cpl_channels = 0;
220 for (ch = 1; ch <= s->fbw_channels; ch++)
221 block->num_cpl_channels += block->channel_in_cpl[ch];
222 block->cpl_in_use = block->num_cpl_channels > 1;
223 num_cpl_blocks += block->cpl_in_use;
224 if (!block->cpl_in_use) {
225 block->num_cpl_channels = 0;
226 for (ch = 1; ch <= s->fbw_channels; ch++)
227 block->channel_in_cpl[ch] = 0;
230 block->new_cpl_strategy = !blk;
231 if (blk) {
232 for (ch = 1; ch <= s->fbw_channels; ch++) {
233 if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
234 block->new_cpl_strategy = 1;
235 break;
239 block->new_cpl_leak = block->new_cpl_strategy;
241 if (!blk || (block->cpl_in_use && !got_cpl_snr)) {
242 block->new_snr_offsets = 1;
243 if (block->cpl_in_use)
244 got_cpl_snr = 1;
245 } else {
246 block->new_snr_offsets = 0;
249 if (!num_cpl_blocks)
250 s->cpl_on = 0;
252 /* set bandwidth for each channel */
253 for (blk = 0; blk < s->num_blocks; blk++) {
254 AC3Block *block = &s->blocks[blk];
255 for (ch = 1; ch <= s->fbw_channels; ch++) {
256 if (block->channel_in_cpl[ch])
257 block->end_freq[ch] = s->start_freq[CPL_CH];
258 else
259 block->end_freq[ch] = s->bandwidth_code * 3 + 73;
266 * Apply stereo rematrixing to coefficients based on rematrixing flags.
268 * @param s AC-3 encoder private context
270 void ff_ac3_apply_rematrixing(AC3EncodeContext *s)
272 int nb_coefs;
273 int blk, bnd, i;
274 int start, end;
275 uint8_t *flags;
277 if (!s->rematrixing_enabled)
278 return;
280 for (blk = 0; blk < s->num_blocks; blk++) {
281 AC3Block *block = &s->blocks[blk];
282 if (block->new_rematrixing_strategy)
283 flags = block->rematrixing_flags;
284 nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);
285 for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
286 if (flags[bnd]) {
287 start = ff_ac3_rematrix_band_tab[bnd];
288 end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
289 for (i = start; i < end; i++) {
290 int32_t lt = block->fixed_coef[1][i];
291 int32_t rt = block->fixed_coef[2][i];
292 block->fixed_coef[1][i] = (lt + rt) >> 1;
293 block->fixed_coef[2][i] = (lt - rt) >> 1;
302 * Initialize exponent tables.
304 static av_cold void exponent_init(AC3EncodeContext *s)
306 int expstr, i, grpsize;
308 for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) {
309 grpsize = 3 << expstr;
310 for (i = 12; i < 256; i++) {
311 exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize;
312 exponent_group_tab[1][expstr][i] = (i ) / grpsize;
315 /* LFE */
316 exponent_group_tab[0][0][7] = 2;
318 if (CONFIG_EAC3_ENCODER && s->eac3)
319 ff_eac3_exponent_init();
324 * Extract exponents from the MDCT coefficients.
326 static void extract_exponents(AC3EncodeContext *s)
328 int ch = !s->cpl_on;
329 int chan_size = AC3_MAX_COEFS * s->num_blocks * (s->channels - ch + 1);
330 AC3Block *block = &s->blocks[0];
332 s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], chan_size);
337 * Exponent Difference Threshold.
338 * New exponents are sent if their SAD exceed this number.
340 #define EXP_DIFF_THRESHOLD 500
343 * Table used to select exponent strategy based on exponent reuse block interval.
345 static const uint8_t exp_strategy_reuse_tab[4][6] = {
346 { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
347 { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
348 { EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15, EXP_D15 },
349 { EXP_D45, EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15 }
353 * Calculate exponent strategies for all channels.
354 * Array arrangement is reversed to simplify the per-channel calculation.
356 static void compute_exp_strategy(AC3EncodeContext *s)
358 int ch, blk, blk1;
360 for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) {
361 uint8_t *exp_strategy = s->exp_strategy[ch];
362 uint8_t *exp = s->blocks[0].exp[ch];
363 int exp_diff;
365 /* estimate if the exponent variation & decide if they should be
366 reused in the next frame */
367 exp_strategy[0] = EXP_NEW;
368 exp += AC3_MAX_COEFS;
369 for (blk = 1; blk < s->num_blocks; blk++, exp += AC3_MAX_COEFS) {
370 if (ch == CPL_CH) {
371 if (!s->blocks[blk-1].cpl_in_use) {
372 exp_strategy[blk] = EXP_NEW;
373 continue;
374 } else if (!s->blocks[blk].cpl_in_use) {
375 exp_strategy[blk] = EXP_REUSE;
376 continue;
378 } else if (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) {
379 exp_strategy[blk] = EXP_NEW;
380 continue;
382 exp_diff = s->dsp.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16);
383 exp_strategy[blk] = EXP_REUSE;
384 if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS))
385 exp_strategy[blk] = EXP_NEW;
386 else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD)
387 exp_strategy[blk] = EXP_NEW;
390 /* now select the encoding strategy type : if exponents are often
391 recoded, we use a coarse encoding */
392 blk = 0;
393 while (blk < s->num_blocks) {
394 blk1 = blk + 1;
395 while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE)
396 blk1++;
397 exp_strategy[blk] = exp_strategy_reuse_tab[s->num_blks_code][blk1-blk-1];
398 blk = blk1;
401 if (s->lfe_on) {
402 ch = s->lfe_channel;
403 s->exp_strategy[ch][0] = EXP_D15;
404 for (blk = 1; blk < s->num_blocks; blk++)
405 s->exp_strategy[ch][blk] = EXP_REUSE;
408 /* for E-AC-3, determine frame exponent strategy */
409 if (CONFIG_EAC3_ENCODER && s->eac3)
410 ff_eac3_get_frame_exp_strategy(s);
415 * Update the exponents so that they are the ones the decoder will decode.
417 * @param[in,out] exp array of exponents for 1 block in 1 channel
418 * @param nb_exps number of exponents in active bandwidth
419 * @param exp_strategy exponent strategy for the block
420 * @param cpl indicates if the block is in the coupling channel
422 static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy,
423 int cpl)
425 int nb_groups, i, k;
427 nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3;
429 /* for each group, compute the minimum exponent */
430 switch(exp_strategy) {
431 case EXP_D25:
432 for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
433 uint8_t exp_min = exp[k];
434 if (exp[k+1] < exp_min)
435 exp_min = exp[k+1];
436 exp[i-cpl] = exp_min;
437 k += 2;
439 break;
440 case EXP_D45:
441 for (i = 1, k = 1-cpl; i <= nb_groups; i++) {
442 uint8_t exp_min = exp[k];
443 if (exp[k+1] < exp_min)
444 exp_min = exp[k+1];
445 if (exp[k+2] < exp_min)
446 exp_min = exp[k+2];
447 if (exp[k+3] < exp_min)
448 exp_min = exp[k+3];
449 exp[i-cpl] = exp_min;
450 k += 4;
452 break;
455 /* constraint for DC exponent */
456 if (!cpl && exp[0] > 15)
457 exp[0] = 15;
459 /* decrease the delta between each groups to within 2 so that they can be
460 differentially encoded */
461 for (i = 1; i <= nb_groups; i++)
462 exp[i] = FFMIN(exp[i], exp[i-1] + 2);
463 i--;
464 while (--i >= 0)
465 exp[i] = FFMIN(exp[i], exp[i+1] + 2);
467 if (cpl)
468 exp[-1] = exp[0] & ~1;
470 /* now we have the exponent values the decoder will see */
471 switch (exp_strategy) {
472 case EXP_D25:
473 for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) {
474 uint8_t exp1 = exp[i-cpl];
475 exp[k--] = exp1;
476 exp[k--] = exp1;
478 break;
479 case EXP_D45:
480 for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) {
481 exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl];
482 k -= 4;
484 break;
490 * Encode exponents from original extracted form to what the decoder will see.
491 * This copies and groups exponents based on exponent strategy and reduces
492 * deltas between adjacent exponent groups so that they can be differentially
493 * encoded.
495 static void encode_exponents(AC3EncodeContext *s)
497 int blk, blk1, ch, cpl;
498 uint8_t *exp, *exp_strategy;
499 int nb_coefs, num_reuse_blocks;
501 for (ch = !s->cpl_on; ch <= s->channels; ch++) {
502 exp = s->blocks[0].exp[ch] + s->start_freq[ch];
503 exp_strategy = s->exp_strategy[ch];
505 cpl = (ch == CPL_CH);
506 blk = 0;
507 while (blk < s->num_blocks) {
508 AC3Block *block = &s->blocks[blk];
509 if (cpl && !block->cpl_in_use) {
510 exp += AC3_MAX_COEFS;
511 blk++;
512 continue;
514 nb_coefs = block->end_freq[ch] - s->start_freq[ch];
515 blk1 = blk + 1;
517 /* count the number of EXP_REUSE blocks after the current block
518 and set exponent reference block numbers */
519 s->exp_ref_block[ch][blk] = blk;
520 while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) {
521 s->exp_ref_block[ch][blk1] = blk;
522 blk1++;
524 num_reuse_blocks = blk1 - blk - 1;
526 /* for the EXP_REUSE case we select the min of the exponents */
527 s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks,
528 AC3_MAX_COEFS);
530 encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl);
532 exp += AC3_MAX_COEFS * (num_reuse_blocks + 1);
533 blk = blk1;
537 /* reference block numbers have been changed, so reset ref_bap_set */
538 s->ref_bap_set = 0;
543 * Count exponent bits based on bandwidth, coupling, and exponent strategies.
545 static int count_exponent_bits(AC3EncodeContext *s)
547 int blk, ch;
548 int nb_groups, bit_count;
550 bit_count = 0;
551 for (blk = 0; blk < s->num_blocks; blk++) {
552 AC3Block *block = &s->blocks[blk];
553 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
554 int exp_strategy = s->exp_strategy[ch][blk];
555 int cpl = (ch == CPL_CH);
556 int nb_coefs = block->end_freq[ch] - s->start_freq[ch];
558 if (exp_strategy == EXP_REUSE)
559 continue;
561 nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_coefs];
562 bit_count += 4 + (nb_groups * 7);
566 return bit_count;
571 * Group exponents.
572 * 3 delta-encoded exponents are in each 7-bit group. The number of groups
573 * varies depending on exponent strategy and bandwidth.
575 * @param s AC-3 encoder private context
577 void ff_ac3_group_exponents(AC3EncodeContext *s)
579 int blk, ch, i, cpl;
580 int group_size, nb_groups;
581 uint8_t *p;
582 int delta0, delta1, delta2;
583 int exp0, exp1;
585 for (blk = 0; blk < s->num_blocks; blk++) {
586 AC3Block *block = &s->blocks[blk];
587 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
588 int exp_strategy = s->exp_strategy[ch][blk];
589 if (exp_strategy == EXP_REUSE)
590 continue;
591 cpl = (ch == CPL_CH);
592 group_size = exp_strategy + (exp_strategy == EXP_D45);
593 nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]];
594 p = block->exp[ch] + s->start_freq[ch] - cpl;
596 /* DC exponent */
597 exp1 = *p++;
598 block->grouped_exp[ch][0] = exp1;
600 /* remaining exponents are delta encoded */
601 for (i = 1; i <= nb_groups; i++) {
602 /* merge three delta in one code */
603 exp0 = exp1;
604 exp1 = p[0];
605 p += group_size;
606 delta0 = exp1 - exp0 + 2;
607 av_assert2(delta0 >= 0 && delta0 <= 4);
609 exp0 = exp1;
610 exp1 = p[0];
611 p += group_size;
612 delta1 = exp1 - exp0 + 2;
613 av_assert2(delta1 >= 0 && delta1 <= 4);
615 exp0 = exp1;
616 exp1 = p[0];
617 p += group_size;
618 delta2 = exp1 - exp0 + 2;
619 av_assert2(delta2 >= 0 && delta2 <= 4);
621 block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2;
629 * Calculate final exponents from the supplied MDCT coefficients and exponent shift.
630 * Extract exponents from MDCT coefficients, calculate exponent strategies,
631 * and encode final exponents.
633 * @param s AC-3 encoder private context
635 void ff_ac3_process_exponents(AC3EncodeContext *s)
637 extract_exponents(s);
639 compute_exp_strategy(s);
641 encode_exponents(s);
643 emms_c();
648 * Count frame bits that are based solely on fixed parameters.
649 * This only has to be run once when the encoder is initialized.
651 static void count_frame_bits_fixed(AC3EncodeContext *s)
653 static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
654 int blk;
655 int frame_bits;
657 /* assumptions:
658 * no dynamic range codes
659 * bit allocation parameters do not change between blocks
660 * no delta bit allocation
661 * no skipped data
662 * no auxiliary data
663 * no E-AC-3 metadata
666 /* header */
667 frame_bits = 16; /* sync info */
668 if (s->eac3) {
669 /* bitstream info header */
670 frame_bits += 35;
671 frame_bits += 1 + 1;
672 if (s->num_blocks != 0x6)
673 frame_bits++;
674 frame_bits++;
675 /* audio frame header */
676 if (s->num_blocks == 6)
677 frame_bits += 2;
678 frame_bits += 10;
679 /* exponent strategy */
680 if (s->use_frame_exp_strategy)
681 frame_bits += 5 * s->fbw_channels;
682 else
683 frame_bits += s->num_blocks * 2 * s->fbw_channels;
684 if (s->lfe_on)
685 frame_bits += s->num_blocks;
686 /* converter exponent strategy */
687 if (s->num_blks_code != 0x3)
688 frame_bits++;
689 else
690 frame_bits += s->fbw_channels * 5;
691 /* snr offsets */
692 frame_bits += 10;
693 /* block start info */
694 if (s->num_blocks != 1)
695 frame_bits++;
696 } else {
697 frame_bits += 49;
698 frame_bits += frame_bits_inc[s->channel_mode];
701 /* audio blocks */
702 for (blk = 0; blk < s->num_blocks; blk++) {
703 if (!s->eac3) {
704 /* block switch flags */
705 frame_bits += s->fbw_channels;
707 /* dither flags */
708 frame_bits += s->fbw_channels;
711 /* dynamic range */
712 frame_bits++;
714 /* spectral extension */
715 if (s->eac3)
716 frame_bits++;
718 if (!s->eac3) {
719 /* exponent strategy */
720 frame_bits += 2 * s->fbw_channels;
721 if (s->lfe_on)
722 frame_bits++;
724 /* bit allocation params */
725 frame_bits++;
726 if (!blk)
727 frame_bits += 2 + 2 + 2 + 2 + 3;
730 /* converter snr offset */
731 if (s->eac3)
732 frame_bits++;
734 if (!s->eac3) {
735 /* delta bit allocation */
736 frame_bits++;
738 /* skipped data */
739 frame_bits++;
743 /* auxiliary data */
744 frame_bits++;
746 /* CRC */
747 frame_bits += 1 + 16;
749 s->frame_bits_fixed = frame_bits;
754 * Initialize bit allocation.
755 * Set default parameter codes and calculate parameter values.
757 static void bit_alloc_init(AC3EncodeContext *s)
759 int ch;
761 /* init default parameters */
762 s->slow_decay_code = 2;
763 s->fast_decay_code = 1;
764 s->slow_gain_code = 1;
765 s->db_per_bit_code = s->eac3 ? 2 : 3;
766 s->floor_code = 7;
767 for (ch = 0; ch <= s->channels; ch++)
768 s->fast_gain_code[ch] = 4;
770 /* initial snr offset */
771 s->coarse_snr_offset = 40;
773 /* compute real values */
774 /* currently none of these values change during encoding, so we can just
775 set them once at initialization */
776 s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
777 s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
778 s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
779 s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
780 s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
781 s->bit_alloc.cpl_fast_leak = 0;
782 s->bit_alloc.cpl_slow_leak = 0;
784 count_frame_bits_fixed(s);
789 * Count the bits used to encode the frame, minus exponents and mantissas.
790 * Bits based on fixed parameters have already been counted, so now we just
791 * have to add the bits based on parameters that change during encoding.
793 static void count_frame_bits(AC3EncodeContext *s)
795 AC3EncOptions *opt = &s->options;
796 int blk, ch;
797 int frame_bits = 0;
799 /* header */
800 if (s->eac3) {
801 if (opt->eac3_mixing_metadata) {
802 if (s->channel_mode > AC3_CHMODE_STEREO)
803 frame_bits += 2;
804 if (s->has_center)
805 frame_bits += 6;
806 if (s->has_surround)
807 frame_bits += 6;
808 frame_bits += s->lfe_on;
809 frame_bits += 1 + 1 + 2;
810 if (s->channel_mode < AC3_CHMODE_STEREO)
811 frame_bits++;
812 frame_bits++;
814 if (opt->eac3_info_metadata) {
815 frame_bits += 3 + 1 + 1;
816 if (s->channel_mode == AC3_CHMODE_STEREO)
817 frame_bits += 2 + 2;
818 if (s->channel_mode >= AC3_CHMODE_2F2R)
819 frame_bits += 2;
820 frame_bits++;
821 if (opt->audio_production_info)
822 frame_bits += 5 + 2 + 1;
823 frame_bits++;
825 /* coupling */
826 if (s->channel_mode > AC3_CHMODE_MONO) {
827 frame_bits++;
828 for (blk = 1; blk < s->num_blocks; blk++) {
829 AC3Block *block = &s->blocks[blk];
830 frame_bits++;
831 if (block->new_cpl_strategy)
832 frame_bits++;
835 /* coupling exponent strategy */
836 if (s->cpl_on) {
837 if (s->use_frame_exp_strategy) {
838 frame_bits += 5 * s->cpl_on;
839 } else {
840 for (blk = 0; blk < s->num_blocks; blk++)
841 frame_bits += 2 * s->blocks[blk].cpl_in_use;
844 } else {
845 if (opt->audio_production_info)
846 frame_bits += 7;
847 if (s->bitstream_id == 6) {
848 if (opt->extended_bsi_1)
849 frame_bits += 14;
850 if (opt->extended_bsi_2)
851 frame_bits += 14;
855 /* audio blocks */
856 for (blk = 0; blk < s->num_blocks; blk++) {
857 AC3Block *block = &s->blocks[blk];
859 /* coupling strategy */
860 if (!s->eac3)
861 frame_bits++;
862 if (block->new_cpl_strategy) {
863 if (!s->eac3)
864 frame_bits++;
865 if (block->cpl_in_use) {
866 if (s->eac3)
867 frame_bits++;
868 if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO)
869 frame_bits += s->fbw_channels;
870 if (s->channel_mode == AC3_CHMODE_STEREO)
871 frame_bits++;
872 frame_bits += 4 + 4;
873 if (s->eac3)
874 frame_bits++;
875 else
876 frame_bits += s->num_cpl_subbands - 1;
880 /* coupling coordinates */
881 if (block->cpl_in_use) {
882 for (ch = 1; ch <= s->fbw_channels; ch++) {
883 if (block->channel_in_cpl[ch]) {
884 if (!s->eac3 || block->new_cpl_coords[ch] != 2)
885 frame_bits++;
886 if (block->new_cpl_coords[ch]) {
887 frame_bits += 2;
888 frame_bits += (4 + 4) * s->num_cpl_bands;
894 /* stereo rematrixing */
895 if (s->channel_mode == AC3_CHMODE_STEREO) {
896 if (!s->eac3 || blk > 0)
897 frame_bits++;
898 if (s->blocks[blk].new_rematrixing_strategy)
899 frame_bits += block->num_rematrixing_bands;
902 /* bandwidth codes & gain range */
903 for (ch = 1; ch <= s->fbw_channels; ch++) {
904 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
905 if (!block->channel_in_cpl[ch])
906 frame_bits += 6;
907 frame_bits += 2;
911 /* coupling exponent strategy */
912 if (!s->eac3 && block->cpl_in_use)
913 frame_bits += 2;
915 /* snr offsets and fast gain codes */
916 if (!s->eac3) {
917 frame_bits++;
918 if (block->new_snr_offsets)
919 frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3);
922 /* coupling leak info */
923 if (block->cpl_in_use) {
924 if (!s->eac3 || block->new_cpl_leak != 2)
925 frame_bits++;
926 if (block->new_cpl_leak)
927 frame_bits += 3 + 3;
931 s->frame_bits = s->frame_bits_fixed + frame_bits;
936 * Calculate masking curve based on the final exponents.
937 * Also calculate the power spectral densities to use in future calculations.
939 static void bit_alloc_masking(AC3EncodeContext *s)
941 int blk, ch;
943 for (blk = 0; blk < s->num_blocks; blk++) {
944 AC3Block *block = &s->blocks[blk];
945 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
946 /* We only need psd and mask for calculating bap.
947 Since we currently do not calculate bap when exponent
948 strategy is EXP_REUSE we do not need to calculate psd or mask. */
949 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
950 ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch],
951 block->end_freq[ch], block->psd[ch],
952 block->band_psd[ch]);
953 ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch],
954 s->start_freq[ch], block->end_freq[ch],
955 ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
956 ch == s->lfe_channel,
957 DBA_NONE, 0, NULL, NULL, NULL,
958 block->mask[ch]);
966 * Ensure that bap for each block and channel point to the current bap_buffer.
967 * They may have been switched during the bit allocation search.
969 static void reset_block_bap(AC3EncodeContext *s)
971 int blk, ch;
972 uint8_t *ref_bap;
974 if (s->ref_bap[0][0] == s->bap_buffer && s->ref_bap_set)
975 return;
977 ref_bap = s->bap_buffer;
978 for (ch = 0; ch <= s->channels; ch++) {
979 for (blk = 0; blk < s->num_blocks; blk++)
980 s->ref_bap[ch][blk] = ref_bap + AC3_MAX_COEFS * s->exp_ref_block[ch][blk];
981 ref_bap += AC3_MAX_COEFS * s->num_blocks;
983 s->ref_bap_set = 1;
988 * Initialize mantissa counts.
989 * These are set so that they are padded to the next whole group size when bits
990 * are counted in compute_mantissa_size.
992 * @param[in,out] mant_cnt running counts for each bap value for each block
994 static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16])
996 int blk;
998 for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
999 memset(mant_cnt[blk], 0, sizeof(mant_cnt[blk]));
1000 mant_cnt[blk][1] = mant_cnt[blk][2] = 2;
1001 mant_cnt[blk][4] = 1;
1007 * Update mantissa bit counts for all blocks in 1 channel in a given bandwidth
1008 * range.
1010 * @param s AC-3 encoder private context
1011 * @param ch channel index
1012 * @param[in,out] mant_cnt running counts for each bap value for each block
1013 * @param start starting coefficient bin
1014 * @param end ending coefficient bin
1016 static void count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch,
1017 uint16_t mant_cnt[AC3_MAX_BLOCKS][16],
1018 int start, int end)
1020 int blk;
1022 for (blk = 0; blk < s->num_blocks; blk++) {
1023 AC3Block *block = &s->blocks[blk];
1024 if (ch == CPL_CH && !block->cpl_in_use)
1025 continue;
1026 s->ac3dsp.update_bap_counts(mant_cnt[blk],
1027 s->ref_bap[ch][blk] + start,
1028 FFMIN(end, block->end_freq[ch]) - start);
1034 * Count the number of mantissa bits in the frame based on the bap values.
1036 static int count_mantissa_bits(AC3EncodeContext *s)
1038 int ch, max_end_freq;
1039 LOCAL_ALIGNED_16(uint16_t, mant_cnt, [AC3_MAX_BLOCKS], [16]);
1041 count_mantissa_bits_init(mant_cnt);
1043 max_end_freq = s->bandwidth_code * 3 + 73;
1044 for (ch = !s->cpl_enabled; ch <= s->channels; ch++)
1045 count_mantissa_bits_update_ch(s, ch, mant_cnt, s->start_freq[ch],
1046 max_end_freq);
1048 return s->ac3dsp.compute_mantissa_size(mant_cnt);
1053 * Run the bit allocation with a given SNR offset.
1054 * This calculates the bit allocation pointers that will be used to determine
1055 * the quantization of each mantissa.
1057 * @param s AC-3 encoder private context
1058 * @param snr_offset SNR offset, 0 to 1023
1059 * @return the number of bits needed for mantissas if the given SNR offset is
1060 * is used.
1062 static int bit_alloc(AC3EncodeContext *s, int snr_offset)
1064 int blk, ch;
1066 snr_offset = (snr_offset - 240) << 2;
1068 reset_block_bap(s);
1069 for (blk = 0; blk < s->num_blocks; blk++) {
1070 AC3Block *block = &s->blocks[blk];
1072 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1073 /* Currently the only bit allocation parameters which vary across
1074 blocks within a frame are the exponent values. We can take
1075 advantage of that by reusing the bit allocation pointers
1076 whenever we reuse exponents. */
1077 if (s->exp_strategy[ch][blk] != EXP_REUSE) {
1078 s->ac3dsp.bit_alloc_calc_bap(block->mask[ch], block->psd[ch],
1079 s->start_freq[ch], block->end_freq[ch],
1080 snr_offset, s->bit_alloc.floor,
1081 ff_ac3_bap_tab, s->ref_bap[ch][blk]);
1085 return count_mantissa_bits(s);
1090 * Constant bitrate bit allocation search.
1091 * Find the largest SNR offset that will allow data to fit in the frame.
1093 static int cbr_bit_allocation(AC3EncodeContext *s)
1095 int ch;
1096 int bits_left;
1097 int snr_offset, snr_incr;
1099 bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
1100 if (bits_left < 0)
1101 return AVERROR(EINVAL);
1103 snr_offset = s->coarse_snr_offset << 4;
1105 /* if previous frame SNR offset was 1023, check if current frame can also
1106 use SNR offset of 1023. if so, skip the search. */
1107 if ((snr_offset | s->fine_snr_offset[1]) == 1023) {
1108 if (bit_alloc(s, 1023) <= bits_left)
1109 return 0;
1112 while (snr_offset >= 0 &&
1113 bit_alloc(s, snr_offset) > bits_left) {
1114 snr_offset -= 64;
1116 if (snr_offset < 0)
1117 return AVERROR(EINVAL);
1119 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1120 for (snr_incr = 64; snr_incr > 0; snr_incr >>= 2) {
1121 while (snr_offset + snr_incr <= 1023 &&
1122 bit_alloc(s, snr_offset + snr_incr) <= bits_left) {
1123 snr_offset += snr_incr;
1124 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1127 FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer);
1128 reset_block_bap(s);
1130 s->coarse_snr_offset = snr_offset >> 4;
1131 for (ch = !s->cpl_on; ch <= s->channels; ch++)
1132 s->fine_snr_offset[ch] = snr_offset & 0xF;
1134 return 0;
1139 * Perform bit allocation search.
1140 * Finds the SNR offset value that maximizes quality and fits in the specified
1141 * frame size. Output is the SNR offset and a set of bit allocation pointers
1142 * used to quantize the mantissas.
1144 int ff_ac3_compute_bit_allocation(AC3EncodeContext *s)
1146 count_frame_bits(s);
1148 s->exponent_bits = count_exponent_bits(s);
1150 bit_alloc_masking(s);
1152 return cbr_bit_allocation(s);
1157 * Symmetric quantization on 'levels' levels.
1159 * @param c unquantized coefficient
1160 * @param e exponent
1161 * @param levels number of quantization levels
1162 * @return quantized coefficient
1164 static inline int sym_quant(int c, int e, int levels)
1166 int v = (((levels * c) >> (24 - e)) + levels) >> 1;
1167 av_assert2(v >= 0 && v < levels);
1168 return v;
1173 * Asymmetric quantization on 2^qbits levels.
1175 * @param c unquantized coefficient
1176 * @param e exponent
1177 * @param qbits number of quantization bits
1178 * @return quantized coefficient
1180 static inline int asym_quant(int c, int e, int qbits)
1182 int m;
1184 c = (((c << e) >> (24 - qbits)) + 1) >> 1;
1185 m = (1 << (qbits-1));
1186 if (c >= m)
1187 c = m - 1;
1188 av_assert2(c >= -m);
1189 return c;
1194 * Quantize a set of mantissas for a single channel in a single block.
1196 * @param s Mantissa count context
1197 * @param fixed_coef unquantized fixed-point coefficients
1198 * @param exp exponents
1199 * @param bap bit allocation pointer indices
1200 * @param[out] qmant quantized coefficients
1201 * @param start_freq starting coefficient bin
1202 * @param end_freq ending coefficient bin
1204 static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef,
1205 uint8_t *exp, uint8_t *bap,
1206 int16_t *qmant, int start_freq,
1207 int end_freq)
1209 int i;
1211 for (i = start_freq; i < end_freq; i++) {
1212 int v;
1213 int c = fixed_coef[i];
1214 int e = exp[i];
1215 int b = bap[i];
1216 switch (b) {
1217 case 0:
1218 v = 0;
1219 break;
1220 case 1:
1221 v = sym_quant(c, e, 3);
1222 switch (s->mant1_cnt) {
1223 case 0:
1224 s->qmant1_ptr = &qmant[i];
1225 v = 9 * v;
1226 s->mant1_cnt = 1;
1227 break;
1228 case 1:
1229 *s->qmant1_ptr += 3 * v;
1230 s->mant1_cnt = 2;
1231 v = 128;
1232 break;
1233 default:
1234 *s->qmant1_ptr += v;
1235 s->mant1_cnt = 0;
1236 v = 128;
1237 break;
1239 break;
1240 case 2:
1241 v = sym_quant(c, e, 5);
1242 switch (s->mant2_cnt) {
1243 case 0:
1244 s->qmant2_ptr = &qmant[i];
1245 v = 25 * v;
1246 s->mant2_cnt = 1;
1247 break;
1248 case 1:
1249 *s->qmant2_ptr += 5 * v;
1250 s->mant2_cnt = 2;
1251 v = 128;
1252 break;
1253 default:
1254 *s->qmant2_ptr += v;
1255 s->mant2_cnt = 0;
1256 v = 128;
1257 break;
1259 break;
1260 case 3:
1261 v = sym_quant(c, e, 7);
1262 break;
1263 case 4:
1264 v = sym_quant(c, e, 11);
1265 switch (s->mant4_cnt) {
1266 case 0:
1267 s->qmant4_ptr = &qmant[i];
1268 v = 11 * v;
1269 s->mant4_cnt = 1;
1270 break;
1271 default:
1272 *s->qmant4_ptr += v;
1273 s->mant4_cnt = 0;
1274 v = 128;
1275 break;
1277 break;
1278 case 5:
1279 v = sym_quant(c, e, 15);
1280 break;
1281 case 14:
1282 v = asym_quant(c, e, 14);
1283 break;
1284 case 15:
1285 v = asym_quant(c, e, 16);
1286 break;
1287 default:
1288 v = asym_quant(c, e, b - 1);
1289 break;
1291 qmant[i] = v;
1297 * Quantize mantissas using coefficients, exponents, and bit allocation pointers.
1299 * @param s AC-3 encoder private context
1301 void ff_ac3_quantize_mantissas(AC3EncodeContext *s)
1303 int blk, ch, ch0=0, got_cpl;
1305 for (blk = 0; blk < s->num_blocks; blk++) {
1306 AC3Block *block = &s->blocks[blk];
1307 AC3Mant m = { 0 };
1309 got_cpl = !block->cpl_in_use;
1310 for (ch = 1; ch <= s->channels; ch++) {
1311 if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1312 ch0 = ch - 1;
1313 ch = CPL_CH;
1314 got_cpl = 1;
1316 quantize_mantissas_blk_ch(&m, block->fixed_coef[ch],
1317 s->blocks[s->exp_ref_block[ch][blk]].exp[ch],
1318 s->ref_bap[ch][blk], block->qmant[ch],
1319 s->start_freq[ch], block->end_freq[ch]);
1320 if (ch == CPL_CH)
1321 ch = ch0;
1328 * Write the AC-3 frame header to the output bitstream.
1330 static void ac3_output_frame_header(AC3EncodeContext *s)
1332 AC3EncOptions *opt = &s->options;
1334 put_bits(&s->pb, 16, 0x0b77); /* frame header */
1335 put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
1336 put_bits(&s->pb, 2, s->bit_alloc.sr_code);
1337 put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2);
1338 put_bits(&s->pb, 5, s->bitstream_id);
1339 put_bits(&s->pb, 3, s->bitstream_mode);
1340 put_bits(&s->pb, 3, s->channel_mode);
1341 if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
1342 put_bits(&s->pb, 2, s->center_mix_level);
1343 if (s->channel_mode & 0x04)
1344 put_bits(&s->pb, 2, s->surround_mix_level);
1345 if (s->channel_mode == AC3_CHMODE_STEREO)
1346 put_bits(&s->pb, 2, opt->dolby_surround_mode);
1347 put_bits(&s->pb, 1, s->lfe_on); /* LFE */
1348 put_bits(&s->pb, 5, -opt->dialogue_level);
1349 put_bits(&s->pb, 1, 0); /* no compression control word */
1350 put_bits(&s->pb, 1, 0); /* no lang code */
1351 put_bits(&s->pb, 1, opt->audio_production_info);
1352 if (opt->audio_production_info) {
1353 put_bits(&s->pb, 5, opt->mixing_level - 80);
1354 put_bits(&s->pb, 2, opt->room_type);
1356 put_bits(&s->pb, 1, opt->copyright);
1357 put_bits(&s->pb, 1, opt->original);
1358 if (s->bitstream_id == 6) {
1359 /* alternate bit stream syntax */
1360 put_bits(&s->pb, 1, opt->extended_bsi_1);
1361 if (opt->extended_bsi_1) {
1362 put_bits(&s->pb, 2, opt->preferred_stereo_downmix);
1363 put_bits(&s->pb, 3, s->ltrt_center_mix_level);
1364 put_bits(&s->pb, 3, s->ltrt_surround_mix_level);
1365 put_bits(&s->pb, 3, s->loro_center_mix_level);
1366 put_bits(&s->pb, 3, s->loro_surround_mix_level);
1368 put_bits(&s->pb, 1, opt->extended_bsi_2);
1369 if (opt->extended_bsi_2) {
1370 put_bits(&s->pb, 2, opt->dolby_surround_ex_mode);
1371 put_bits(&s->pb, 2, opt->dolby_headphone_mode);
1372 put_bits(&s->pb, 1, opt->ad_converter_type);
1373 put_bits(&s->pb, 9, 0); /* xbsi2 and encinfo : reserved */
1375 } else {
1376 put_bits(&s->pb, 1, 0); /* no time code 1 */
1377 put_bits(&s->pb, 1, 0); /* no time code 2 */
1379 put_bits(&s->pb, 1, 0); /* no additional bit stream info */
1384 * Write one audio block to the output bitstream.
1386 static void output_audio_block(AC3EncodeContext *s, int blk)
1388 int ch, i, baie, bnd, got_cpl, ch0;
1389 AC3Block *block = &s->blocks[blk];
1391 /* block switching */
1392 if (!s->eac3) {
1393 for (ch = 0; ch < s->fbw_channels; ch++)
1394 put_bits(&s->pb, 1, 0);
1397 /* dither flags */
1398 if (!s->eac3) {
1399 for (ch = 0; ch < s->fbw_channels; ch++)
1400 put_bits(&s->pb, 1, 1);
1403 /* dynamic range codes */
1404 put_bits(&s->pb, 1, 0);
1406 /* spectral extension */
1407 if (s->eac3)
1408 put_bits(&s->pb, 1, 0);
1410 /* channel coupling */
1411 if (!s->eac3)
1412 put_bits(&s->pb, 1, block->new_cpl_strategy);
1413 if (block->new_cpl_strategy) {
1414 if (!s->eac3)
1415 put_bits(&s->pb, 1, block->cpl_in_use);
1416 if (block->cpl_in_use) {
1417 int start_sub, end_sub;
1418 if (s->eac3)
1419 put_bits(&s->pb, 1, 0); /* enhanced coupling */
1420 if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) {
1421 for (ch = 1; ch <= s->fbw_channels; ch++)
1422 put_bits(&s->pb, 1, block->channel_in_cpl[ch]);
1424 if (s->channel_mode == AC3_CHMODE_STEREO)
1425 put_bits(&s->pb, 1, 0); /* phase flags in use */
1426 start_sub = (s->start_freq[CPL_CH] - 37) / 12;
1427 end_sub = (s->cpl_end_freq - 37) / 12;
1428 put_bits(&s->pb, 4, start_sub);
1429 put_bits(&s->pb, 4, end_sub - 3);
1430 /* coupling band structure */
1431 if (s->eac3) {
1432 put_bits(&s->pb, 1, 0); /* use default */
1433 } else {
1434 for (bnd = start_sub+1; bnd < end_sub; bnd++)
1435 put_bits(&s->pb, 1, ff_eac3_default_cpl_band_struct[bnd]);
1440 /* coupling coordinates */
1441 if (block->cpl_in_use) {
1442 for (ch = 1; ch <= s->fbw_channels; ch++) {
1443 if (block->channel_in_cpl[ch]) {
1444 if (!s->eac3 || block->new_cpl_coords[ch] != 2)
1445 put_bits(&s->pb, 1, block->new_cpl_coords[ch]);
1446 if (block->new_cpl_coords[ch]) {
1447 put_bits(&s->pb, 2, block->cpl_master_exp[ch]);
1448 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
1449 put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]);
1450 put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]);
1457 /* stereo rematrixing */
1458 if (s->channel_mode == AC3_CHMODE_STEREO) {
1459 if (!s->eac3 || blk > 0)
1460 put_bits(&s->pb, 1, block->new_rematrixing_strategy);
1461 if (block->new_rematrixing_strategy) {
1462 /* rematrixing flags */
1463 for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++)
1464 put_bits(&s->pb, 1, block->rematrixing_flags[bnd]);
1468 /* exponent strategy */
1469 if (!s->eac3) {
1470 for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++)
1471 put_bits(&s->pb, 2, s->exp_strategy[ch][blk]);
1472 if (s->lfe_on)
1473 put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]);
1476 /* bandwidth */
1477 for (ch = 1; ch <= s->fbw_channels; ch++) {
1478 if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch])
1479 put_bits(&s->pb, 6, s->bandwidth_code);
1482 /* exponents */
1483 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1484 int nb_groups;
1485 int cpl = (ch == CPL_CH);
1487 if (s->exp_strategy[ch][blk] == EXP_REUSE)
1488 continue;
1490 /* DC exponent */
1491 put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl);
1493 /* exponent groups */
1494 nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]];
1495 for (i = 1; i <= nb_groups; i++)
1496 put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
1498 /* gain range info */
1499 if (ch != s->lfe_channel && !cpl)
1500 put_bits(&s->pb, 2, 0);
1503 /* bit allocation info */
1504 if (!s->eac3) {
1505 baie = (blk == 0);
1506 put_bits(&s->pb, 1, baie);
1507 if (baie) {
1508 put_bits(&s->pb, 2, s->slow_decay_code);
1509 put_bits(&s->pb, 2, s->fast_decay_code);
1510 put_bits(&s->pb, 2, s->slow_gain_code);
1511 put_bits(&s->pb, 2, s->db_per_bit_code);
1512 put_bits(&s->pb, 3, s->floor_code);
1516 /* snr offset */
1517 if (!s->eac3) {
1518 put_bits(&s->pb, 1, block->new_snr_offsets);
1519 if (block->new_snr_offsets) {
1520 put_bits(&s->pb, 6, s->coarse_snr_offset);
1521 for (ch = !block->cpl_in_use; ch <= s->channels; ch++) {
1522 put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
1523 put_bits(&s->pb, 3, s->fast_gain_code[ch]);
1526 } else {
1527 put_bits(&s->pb, 1, 0); /* no converter snr offset */
1530 /* coupling leak */
1531 if (block->cpl_in_use) {
1532 if (!s->eac3 || block->new_cpl_leak != 2)
1533 put_bits(&s->pb, 1, block->new_cpl_leak);
1534 if (block->new_cpl_leak) {
1535 put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak);
1536 put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak);
1540 if (!s->eac3) {
1541 put_bits(&s->pb, 1, 0); /* no delta bit allocation */
1542 put_bits(&s->pb, 1, 0); /* no data to skip */
1545 /* mantissas */
1546 got_cpl = !block->cpl_in_use;
1547 for (ch = 1; ch <= s->channels; ch++) {
1548 int b, q;
1550 if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) {
1551 ch0 = ch - 1;
1552 ch = CPL_CH;
1553 got_cpl = 1;
1555 for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) {
1556 q = block->qmant[ch][i];
1557 b = s->ref_bap[ch][blk][i];
1558 switch (b) {
1559 case 0: break;
1560 case 1: if (q != 128) put_bits (&s->pb, 5, q); break;
1561 case 2: if (q != 128) put_bits (&s->pb, 7, q); break;
1562 case 3: put_sbits(&s->pb, 3, q); break;
1563 case 4: if (q != 128) put_bits (&s->pb, 7, q); break;
1564 case 14: put_sbits(&s->pb, 14, q); break;
1565 case 15: put_sbits(&s->pb, 16, q); break;
1566 default: put_sbits(&s->pb, b-1, q); break;
1569 if (ch == CPL_CH)
1570 ch = ch0;
1575 /** CRC-16 Polynomial */
1576 #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
1579 static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
1581 unsigned int c;
1583 c = 0;
1584 while (a) {
1585 if (a & 1)
1586 c ^= b;
1587 a = a >> 1;
1588 b = b << 1;
1589 if (b & (1 << 16))
1590 b ^= poly;
1592 return c;
1596 static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
1598 unsigned int r;
1599 r = 1;
1600 while (n) {
1601 if (n & 1)
1602 r = mul_poly(r, a, poly);
1603 a = mul_poly(a, a, poly);
1604 n >>= 1;
1606 return r;
1611 * Fill the end of the frame with 0's and compute the two CRCs.
1613 static void output_frame_end(AC3EncodeContext *s)
1615 const AVCRC *crc_ctx = av_crc_get_table(AV_CRC_16_ANSI);
1616 int frame_size_58, pad_bytes, crc1, crc2_partial, crc2, crc_inv;
1617 uint8_t *frame;
1619 frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1;
1621 /* pad the remainder of the frame with zeros */
1622 av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18);
1623 flush_put_bits(&s->pb);
1624 frame = s->pb.buf;
1625 pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
1626 av_assert2(pad_bytes >= 0);
1627 if (pad_bytes > 0)
1628 memset(put_bits_ptr(&s->pb), 0, pad_bytes);
1630 if (s->eac3) {
1631 /* compute crc2 */
1632 crc2_partial = av_crc(crc_ctx, 0, frame + 2, s->frame_size - 5);
1633 } else {
1634 /* compute crc1 */
1635 /* this is not so easy because it is at the beginning of the data... */
1636 crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4));
1637 crc_inv = s->crc_inv[s->frame_size > s->frame_size_min];
1638 crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
1639 AV_WB16(frame + 2, crc1);
1641 /* compute crc2 */
1642 crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58,
1643 s->frame_size - frame_size_58 - 3);
1645 crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1646 /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */
1647 if (crc2 == 0x770B) {
1648 frame[s->frame_size - 3] ^= 0x1;
1649 crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1);
1651 crc2 = av_bswap16(crc2);
1652 AV_WB16(frame + s->frame_size - 2, crc2);
1657 * Write the frame to the output bitstream.
1659 * @param s AC-3 encoder private context
1660 * @param frame output data buffer
1662 void ff_ac3_output_frame(AC3EncodeContext *s, unsigned char *frame)
1664 int blk;
1666 init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
1668 s->output_frame_header(s);
1670 for (blk = 0; blk < s->num_blocks; blk++)
1671 output_audio_block(s, blk);
1673 output_frame_end(s);
1677 static void dprint_options(AC3EncodeContext *s)
1679 #ifdef DEBUG
1680 AVCodecContext *avctx = s->avctx;
1681 AC3EncOptions *opt = &s->options;
1682 char strbuf[32];
1684 switch (s->bitstream_id) {
1685 case 6: av_strlcpy(strbuf, "AC-3 (alt syntax)", 32); break;
1686 case 8: av_strlcpy(strbuf, "AC-3 (standard)", 32); break;
1687 case 9: av_strlcpy(strbuf, "AC-3 (dnet half-rate)", 32); break;
1688 case 10: av_strlcpy(strbuf, "AC-3 (dnet quater-rate)", 32); break;
1689 case 16: av_strlcpy(strbuf, "E-AC-3 (enhanced)", 32); break;
1690 default: snprintf(strbuf, 32, "ERROR");
1692 av_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id);
1693 av_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt));
1694 av_get_channel_layout_string(strbuf, 32, s->channels, avctx->channel_layout);
1695 av_dlog(avctx, "channel_layout: %s\n", strbuf);
1696 av_dlog(avctx, "sample_rate: %d\n", s->sample_rate);
1697 av_dlog(avctx, "bit_rate: %d\n", s->bit_rate);
1698 av_dlog(avctx, "blocks/frame: %d (code=%d)\n", s->num_blocks, s->num_blks_code);
1699 if (s->cutoff)
1700 av_dlog(avctx, "cutoff: %d\n", s->cutoff);
1702 av_dlog(avctx, "per_frame_metadata: %s\n",
1703 opt->allow_per_frame_metadata?"on":"off");
1704 if (s->has_center)
1705 av_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level,
1706 s->center_mix_level);
1707 else
1708 av_dlog(avctx, "center_mixlev: {not written}\n");
1709 if (s->has_surround)
1710 av_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level,
1711 s->surround_mix_level);
1712 else
1713 av_dlog(avctx, "surround_mixlev: {not written}\n");
1714 if (opt->audio_production_info) {
1715 av_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level);
1716 switch (opt->room_type) {
1717 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1718 case AC3ENC_OPT_LARGE_ROOM: av_strlcpy(strbuf, "large", 32); break;
1719 case AC3ENC_OPT_SMALL_ROOM: av_strlcpy(strbuf, "small", 32); break;
1720 default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type);
1722 av_dlog(avctx, "room_type: %s\n", strbuf);
1723 } else {
1724 av_dlog(avctx, "mixing_level: {not written}\n");
1725 av_dlog(avctx, "room_type: {not written}\n");
1727 av_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off");
1728 av_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level);
1729 if (s->channel_mode == AC3_CHMODE_STEREO) {
1730 switch (opt->dolby_surround_mode) {
1731 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1732 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1733 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1734 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode);
1736 av_dlog(avctx, "dsur_mode: %s\n", strbuf);
1737 } else {
1738 av_dlog(avctx, "dsur_mode: {not written}\n");
1740 av_dlog(avctx, "original: %s\n", opt->original?"on":"off");
1742 if (s->bitstream_id == 6) {
1743 if (opt->extended_bsi_1) {
1744 switch (opt->preferred_stereo_downmix) {
1745 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1746 case AC3ENC_OPT_DOWNMIX_LTRT: av_strlcpy(strbuf, "ltrt", 32); break;
1747 case AC3ENC_OPT_DOWNMIX_LORO: av_strlcpy(strbuf, "loro", 32); break;
1748 default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix);
1750 av_dlog(avctx, "dmix_mode: %s\n", strbuf);
1751 av_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n",
1752 opt->ltrt_center_mix_level, s->ltrt_center_mix_level);
1753 av_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n",
1754 opt->ltrt_surround_mix_level, s->ltrt_surround_mix_level);
1755 av_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n",
1756 opt->loro_center_mix_level, s->loro_center_mix_level);
1757 av_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n",
1758 opt->loro_surround_mix_level, s->loro_surround_mix_level);
1759 } else {
1760 av_dlog(avctx, "extended bitstream info 1: {not written}\n");
1762 if (opt->extended_bsi_2) {
1763 switch (opt->dolby_surround_ex_mode) {
1764 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1765 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1766 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1767 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode);
1769 av_dlog(avctx, "dsurex_mode: %s\n", strbuf);
1770 switch (opt->dolby_headphone_mode) {
1771 case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break;
1772 case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break;
1773 case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break;
1774 default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode);
1776 av_dlog(avctx, "dheadphone_mode: %s\n", strbuf);
1778 switch (opt->ad_converter_type) {
1779 case AC3ENC_OPT_ADCONV_STANDARD: av_strlcpy(strbuf, "standard", 32); break;
1780 case AC3ENC_OPT_ADCONV_HDCD: av_strlcpy(strbuf, "hdcd", 32); break;
1781 default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type);
1783 av_dlog(avctx, "ad_conv_type: %s\n", strbuf);
1784 } else {
1785 av_dlog(avctx, "extended bitstream info 2: {not written}\n");
1788 #endif
1792 #define FLT_OPTION_THRESHOLD 0.01
1794 static int validate_float_option(float v, const float *v_list, int v_list_size)
1796 int i;
1798 for (i = 0; i < v_list_size; i++) {
1799 if (v < (v_list[i] + FLT_OPTION_THRESHOLD) &&
1800 v > (v_list[i] - FLT_OPTION_THRESHOLD))
1801 break;
1803 if (i == v_list_size)
1804 return -1;
1806 return i;
1810 static void validate_mix_level(void *log_ctx, const char *opt_name,
1811 float *opt_param, const float *list,
1812 int list_size, int default_value, int min_value,
1813 int *ctx_param)
1815 int mixlev = validate_float_option(*opt_param, list, list_size);
1816 if (mixlev < min_value) {
1817 mixlev = default_value;
1818 if (*opt_param >= 0.0) {
1819 av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using "
1820 "default value: %0.3f\n", opt_name, list[mixlev]);
1823 *opt_param = list[mixlev];
1824 *ctx_param = mixlev;
1829 * Validate metadata options as set by AVOption system.
1830 * These values can optionally be changed per-frame.
1832 * @param s AC-3 encoder private context
1834 int ff_ac3_validate_metadata(AC3EncodeContext *s)
1836 AVCodecContext *avctx = s->avctx;
1837 AC3EncOptions *opt = &s->options;
1839 opt->audio_production_info = 0;
1840 opt->extended_bsi_1 = 0;
1841 opt->extended_bsi_2 = 0;
1842 opt->eac3_mixing_metadata = 0;
1843 opt->eac3_info_metadata = 0;
1845 /* determine mixing metadata / xbsi1 use */
1846 if (s->channel_mode > AC3_CHMODE_STEREO && opt->preferred_stereo_downmix != AC3ENC_OPT_NONE) {
1847 opt->extended_bsi_1 = 1;
1848 opt->eac3_mixing_metadata = 1;
1850 if (s->has_center &&
1851 (opt->ltrt_center_mix_level >= 0 || opt->loro_center_mix_level >= 0)) {
1852 opt->extended_bsi_1 = 1;
1853 opt->eac3_mixing_metadata = 1;
1855 if (s->has_surround &&
1856 (opt->ltrt_surround_mix_level >= 0 || opt->loro_surround_mix_level >= 0)) {
1857 opt->extended_bsi_1 = 1;
1858 opt->eac3_mixing_metadata = 1;
1861 if (s->eac3) {
1862 /* determine info metadata use */
1863 if (avctx->audio_service_type != AV_AUDIO_SERVICE_TYPE_MAIN)
1864 opt->eac3_info_metadata = 1;
1865 if (opt->copyright != AC3ENC_OPT_NONE || opt->original != AC3ENC_OPT_NONE)
1866 opt->eac3_info_metadata = 1;
1867 if (s->channel_mode == AC3_CHMODE_STEREO &&
1868 (opt->dolby_headphone_mode != AC3ENC_OPT_NONE || opt->dolby_surround_mode != AC3ENC_OPT_NONE))
1869 opt->eac3_info_metadata = 1;
1870 if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
1871 opt->eac3_info_metadata = 1;
1872 if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE ||
1873 opt->ad_converter_type != AC3ENC_OPT_NONE) {
1874 opt->audio_production_info = 1;
1875 opt->eac3_info_metadata = 1;
1877 } else {
1878 /* determine audio production info use */
1879 if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE)
1880 opt->audio_production_info = 1;
1882 /* determine xbsi2 use */
1883 if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE)
1884 opt->extended_bsi_2 = 1;
1885 if (s->channel_mode == AC3_CHMODE_STEREO && opt->dolby_headphone_mode != AC3ENC_OPT_NONE)
1886 opt->extended_bsi_2 = 1;
1887 if (opt->ad_converter_type != AC3ENC_OPT_NONE)
1888 opt->extended_bsi_2 = 1;
1891 /* validate AC-3 mixing levels */
1892 if (!s->eac3) {
1893 if (s->has_center) {
1894 validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level,
1895 cmixlev_options, CMIXLEV_NUM_OPTIONS, 1, 0,
1896 &s->center_mix_level);
1898 if (s->has_surround) {
1899 validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level,
1900 surmixlev_options, SURMIXLEV_NUM_OPTIONS, 1, 0,
1901 &s->surround_mix_level);
1905 /* validate extended bsi 1 / mixing metadata */
1906 if (opt->extended_bsi_1 || opt->eac3_mixing_metadata) {
1907 /* default preferred stereo downmix */
1908 if (opt->preferred_stereo_downmix == AC3ENC_OPT_NONE)
1909 opt->preferred_stereo_downmix = AC3ENC_OPT_NOT_INDICATED;
1910 if (!s->eac3 || s->has_center) {
1911 /* validate Lt/Rt center mix level */
1912 validate_mix_level(avctx, "ltrt_center_mix_level",
1913 &opt->ltrt_center_mix_level, extmixlev_options,
1914 EXTMIXLEV_NUM_OPTIONS, 5, 0,
1915 &s->ltrt_center_mix_level);
1916 /* validate Lo/Ro center mix level */
1917 validate_mix_level(avctx, "loro_center_mix_level",
1918 &opt->loro_center_mix_level, extmixlev_options,
1919 EXTMIXLEV_NUM_OPTIONS, 5, 0,
1920 &s->loro_center_mix_level);
1922 if (!s->eac3 || s->has_surround) {
1923 /* validate Lt/Rt surround mix level */
1924 validate_mix_level(avctx, "ltrt_surround_mix_level",
1925 &opt->ltrt_surround_mix_level, extmixlev_options,
1926 EXTMIXLEV_NUM_OPTIONS, 6, 3,
1927 &s->ltrt_surround_mix_level);
1928 /* validate Lo/Ro surround mix level */
1929 validate_mix_level(avctx, "loro_surround_mix_level",
1930 &opt->loro_surround_mix_level, extmixlev_options,
1931 EXTMIXLEV_NUM_OPTIONS, 6, 3,
1932 &s->loro_surround_mix_level);
1936 /* validate audio service type / channels combination */
1937 if ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_KARAOKE &&
1938 avctx->channels == 1) ||
1939 ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_COMMENTARY ||
1940 avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_EMERGENCY ||
1941 avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_VOICE_OVER)
1942 && avctx->channels > 1)) {
1943 av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the "
1944 "specified number of channels\n");
1945 return AVERROR(EINVAL);
1948 /* validate extended bsi 2 / info metadata */
1949 if (opt->extended_bsi_2 || opt->eac3_info_metadata) {
1950 /* default dolby headphone mode */
1951 if (opt->dolby_headphone_mode == AC3ENC_OPT_NONE)
1952 opt->dolby_headphone_mode = AC3ENC_OPT_NOT_INDICATED;
1953 /* default dolby surround ex mode */
1954 if (opt->dolby_surround_ex_mode == AC3ENC_OPT_NONE)
1955 opt->dolby_surround_ex_mode = AC3ENC_OPT_NOT_INDICATED;
1956 /* default A/D converter type */
1957 if (opt->ad_converter_type == AC3ENC_OPT_NONE)
1958 opt->ad_converter_type = AC3ENC_OPT_ADCONV_STANDARD;
1961 /* copyright & original defaults */
1962 if (!s->eac3 || opt->eac3_info_metadata) {
1963 /* default copyright */
1964 if (opt->copyright == AC3ENC_OPT_NONE)
1965 opt->copyright = AC3ENC_OPT_OFF;
1966 /* default original */
1967 if (opt->original == AC3ENC_OPT_NONE)
1968 opt->original = AC3ENC_OPT_ON;
1971 /* dolby surround mode default */
1972 if (!s->eac3 || opt->eac3_info_metadata) {
1973 if (opt->dolby_surround_mode == AC3ENC_OPT_NONE)
1974 opt->dolby_surround_mode = AC3ENC_OPT_NOT_INDICATED;
1977 /* validate audio production info */
1978 if (opt->audio_production_info) {
1979 if (opt->mixing_level == AC3ENC_OPT_NONE) {
1980 av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if "
1981 "room_type is set\n");
1982 return AVERROR(EINVAL);
1984 if (opt->mixing_level < 80) {
1985 av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between "
1986 "80dB and 111dB\n");
1987 return AVERROR(EINVAL);
1989 /* default room type */
1990 if (opt->room_type == AC3ENC_OPT_NONE)
1991 opt->room_type = AC3ENC_OPT_NOT_INDICATED;
1994 /* set bitstream id for alternate bitstream syntax */
1995 if (!s->eac3 && (opt->extended_bsi_1 || opt->extended_bsi_2)) {
1996 if (s->bitstream_id > 8 && s->bitstream_id < 11) {
1997 static int warn_once = 1;
1998 if (warn_once) {
1999 av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is "
2000 "not compatible with reduced samplerates. writing of "
2001 "extended bitstream information will be disabled.\n");
2002 warn_once = 0;
2004 } else {
2005 s->bitstream_id = 6;
2009 return 0;
2014 * Finalize encoding and free any memory allocated by the encoder.
2016 * @param avctx Codec context
2018 av_cold int ff_ac3_encode_close(AVCodecContext *avctx)
2020 int blk, ch;
2021 AC3EncodeContext *s = avctx->priv_data;
2023 av_freep(&s->windowed_samples);
2024 for (ch = 0; ch < s->channels; ch++)
2025 av_freep(&s->planar_samples[ch]);
2026 av_freep(&s->planar_samples);
2027 av_freep(&s->bap_buffer);
2028 av_freep(&s->bap1_buffer);
2029 av_freep(&s->mdct_coef_buffer);
2030 av_freep(&s->fixed_coef_buffer);
2031 av_freep(&s->exp_buffer);
2032 av_freep(&s->grouped_exp_buffer);
2033 av_freep(&s->psd_buffer);
2034 av_freep(&s->band_psd_buffer);
2035 av_freep(&s->mask_buffer);
2036 av_freep(&s->qmant_buffer);
2037 av_freep(&s->cpl_coord_exp_buffer);
2038 av_freep(&s->cpl_coord_mant_buffer);
2039 for (blk = 0; blk < s->num_blocks; blk++) {
2040 AC3Block *block = &s->blocks[blk];
2041 av_freep(&block->mdct_coef);
2042 av_freep(&block->fixed_coef);
2043 av_freep(&block->exp);
2044 av_freep(&block->grouped_exp);
2045 av_freep(&block->psd);
2046 av_freep(&block->band_psd);
2047 av_freep(&block->mask);
2048 av_freep(&block->qmant);
2049 av_freep(&block->cpl_coord_exp);
2050 av_freep(&block->cpl_coord_mant);
2053 s->mdct_end(s);
2055 #if FF_API_OLD_ENCODE_AUDIO
2056 av_freep(&avctx->coded_frame);
2057 #endif
2058 return 0;
2063 * Set channel information during initialization.
2065 static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
2066 uint64_t *channel_layout)
2068 int ch_layout;
2070 if (channels < 1 || channels > AC3_MAX_CHANNELS)
2071 return AVERROR(EINVAL);
2072 if (*channel_layout > 0x7FF)
2073 return AVERROR(EINVAL);
2074 ch_layout = *channel_layout;
2075 if (!ch_layout)
2076 ch_layout = av_get_default_channel_layout(channels);
2078 s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY);
2079 s->channels = channels;
2080 s->fbw_channels = channels - s->lfe_on;
2081 s->lfe_channel = s->lfe_on ? s->fbw_channels + 1 : -1;
2082 if (s->lfe_on)
2083 ch_layout -= AV_CH_LOW_FREQUENCY;
2085 switch (ch_layout) {
2086 case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break;
2087 case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
2088 case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
2089 case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
2090 case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
2091 case AV_CH_LAYOUT_QUAD:
2092 case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
2093 case AV_CH_LAYOUT_5POINT0:
2094 case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
2095 default:
2096 return AVERROR(EINVAL);
2098 s->has_center = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO;
2099 s->has_surround = s->channel_mode & 0x04;
2101 s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
2102 *channel_layout = ch_layout;
2103 if (s->lfe_on)
2104 *channel_layout |= AV_CH_LOW_FREQUENCY;
2106 return 0;
2110 static av_cold int validate_options(AC3EncodeContext *s)
2112 AVCodecContext *avctx = s->avctx;
2113 int i, ret, max_sr;
2115 /* validate channel layout */
2116 if (!avctx->channel_layout) {
2117 av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
2118 "encoder will guess the layout, but it "
2119 "might be incorrect.\n");
2121 ret = set_channel_info(s, avctx->channels, &avctx->channel_layout);
2122 if (ret) {
2123 av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
2124 return ret;
2127 /* validate sample rate */
2128 /* note: max_sr could be changed from 2 to 5 for E-AC-3 once we find a
2129 decoder that supports half sample rate so we can validate that
2130 the generated files are correct. */
2131 max_sr = s->eac3 ? 2 : 8;
2132 for (i = 0; i <= max_sr; i++) {
2133 if ((ff_ac3_sample_rate_tab[i % 3] >> (i / 3)) == avctx->sample_rate)
2134 break;
2136 if (i > max_sr) {
2137 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
2138 return AVERROR(EINVAL);
2140 s->sample_rate = avctx->sample_rate;
2141 s->bit_alloc.sr_shift = i / 3;
2142 s->bit_alloc.sr_code = i % 3;
2143 s->bitstream_id = s->eac3 ? 16 : 8 + s->bit_alloc.sr_shift;
2145 /* select a default bit rate if not set by the user */
2146 if (!avctx->bit_rate) {
2147 switch (s->fbw_channels) {
2148 case 1: avctx->bit_rate = 96000; break;
2149 case 2: avctx->bit_rate = 192000; break;
2150 case 3: avctx->bit_rate = 320000; break;
2151 case 4: avctx->bit_rate = 384000; break;
2152 case 5: avctx->bit_rate = 448000; break;
2156 /* validate bit rate */
2157 if (s->eac3) {
2158 int max_br, min_br, wpf, min_br_dist, min_br_code;
2159 int num_blks_code, num_blocks, frame_samples;
2161 /* calculate min/max bitrate */
2162 /* TODO: More testing with 3 and 2 blocks. All E-AC-3 samples I've
2163 found use either 6 blocks or 1 block, even though 2 or 3 blocks
2164 would work as far as the bit rate is concerned. */
2165 for (num_blks_code = 3; num_blks_code >= 0; num_blks_code--) {
2166 num_blocks = ((int[]){ 1, 2, 3, 6 })[num_blks_code];
2167 frame_samples = AC3_BLOCK_SIZE * num_blocks;
2168 max_br = 2048 * s->sample_rate / frame_samples * 16;
2169 min_br = ((s->sample_rate + (frame_samples-1)) / frame_samples) * 16;
2170 if (avctx->bit_rate <= max_br)
2171 break;
2173 if (avctx->bit_rate < min_br || avctx->bit_rate > max_br) {
2174 av_log(avctx, AV_LOG_ERROR, "invalid bit rate. must be %d to %d "
2175 "for this sample rate\n", min_br, max_br);
2176 return AVERROR(EINVAL);
2178 s->num_blks_code = num_blks_code;
2179 s->num_blocks = num_blocks;
2181 /* calculate words-per-frame for the selected bitrate */
2182 wpf = (avctx->bit_rate / 16) * frame_samples / s->sample_rate;
2183 av_assert1(wpf > 0 && wpf <= 2048);
2185 /* find the closest AC-3 bitrate code to the selected bitrate.
2186 this is needed for lookup tables for bandwidth and coupling
2187 parameter selection */
2188 min_br_code = -1;
2189 min_br_dist = INT_MAX;
2190 for (i = 0; i < 19; i++) {
2191 int br_dist = abs(ff_ac3_bitrate_tab[i] * 1000 - avctx->bit_rate);
2192 if (br_dist < min_br_dist) {
2193 min_br_dist = br_dist;
2194 min_br_code = i;
2198 /* make sure the minimum frame size is below the average frame size */
2199 s->frame_size_code = min_br_code << 1;
2200 while (wpf > 1 && wpf * s->sample_rate / AC3_FRAME_SIZE * 16 > avctx->bit_rate)
2201 wpf--;
2202 s->frame_size_min = 2 * wpf;
2203 } else {
2204 int best_br = 0, best_code = 0, best_diff = INT_MAX;
2205 for (i = 0; i < 19; i++) {
2206 int br = (ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift) * 1000;
2207 int diff = abs(br - avctx->bit_rate);
2208 if (diff < best_diff) {
2209 best_br = br;
2210 best_code = i;
2211 best_diff = diff;
2213 if (!best_diff)
2214 break;
2216 avctx->bit_rate = best_br;
2217 s->frame_size_code = best_code << 1;
2218 s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
2219 s->num_blks_code = 0x3;
2220 s->num_blocks = 6;
2222 s->bit_rate = avctx->bit_rate;
2223 s->frame_size = s->frame_size_min;
2225 /* validate cutoff */
2226 if (avctx->cutoff < 0) {
2227 av_log(avctx, AV_LOG_ERROR, "invalid cutoff frequency\n");
2228 return AVERROR(EINVAL);
2230 s->cutoff = avctx->cutoff;
2231 if (s->cutoff > (s->sample_rate >> 1))
2232 s->cutoff = s->sample_rate >> 1;
2234 ret = ff_ac3_validate_metadata(s);
2235 if (ret)
2236 return ret;
2238 s->rematrixing_enabled = s->options.stereo_rematrixing &&
2239 (s->channel_mode == AC3_CHMODE_STEREO);
2241 s->cpl_enabled = s->options.channel_coupling &&
2242 s->channel_mode >= AC3_CHMODE_STEREO;
2244 return 0;
2249 * Set bandwidth for all channels.
2250 * The user can optionally supply a cutoff frequency. Otherwise an appropriate
2251 * default value will be used.
2253 static av_cold void set_bandwidth(AC3EncodeContext *s)
2255 int blk, ch, cpl_start;
2257 if (s->cutoff) {
2258 /* calculate bandwidth based on user-specified cutoff frequency */
2259 int fbw_coeffs;
2260 fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
2261 s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
2262 } else {
2263 /* use default bandwidth setting */
2264 s->bandwidth_code = ac3_bandwidth_tab[s->fbw_channels-1][s->bit_alloc.sr_code][s->frame_size_code/2];
2267 /* set number of coefficients for each channel */
2268 for (ch = 1; ch <= s->fbw_channels; ch++) {
2269 s->start_freq[ch] = 0;
2270 for (blk = 0; blk < s->num_blocks; blk++)
2271 s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73;
2273 /* LFE channel always has 7 coefs */
2274 if (s->lfe_on) {
2275 s->start_freq[s->lfe_channel] = 0;
2276 for (blk = 0; blk < s->num_blocks; blk++)
2277 s->blocks[blk].end_freq[ch] = 7;
2280 /* initialize coupling strategy */
2281 if (s->cpl_enabled) {
2282 if (s->options.cpl_start != AC3ENC_OPT_AUTO) {
2283 cpl_start = s->options.cpl_start;
2284 } else {
2285 cpl_start = ac3_coupling_start_tab[s->channel_mode-2][s->bit_alloc.sr_code][s->frame_size_code/2];
2286 if (cpl_start < 0) {
2287 if (s->options.channel_coupling == AC3ENC_OPT_AUTO)
2288 s->cpl_enabled = 0;
2289 else
2290 cpl_start = 15;
2294 if (s->cpl_enabled) {
2295 int i, cpl_start_band, cpl_end_band;
2296 uint8_t *cpl_band_sizes = s->cpl_band_sizes;
2298 cpl_end_band = s->bandwidth_code / 4 + 3;
2299 cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15));
2301 s->num_cpl_subbands = cpl_end_band - cpl_start_band;
2303 s->num_cpl_bands = 1;
2304 *cpl_band_sizes = 12;
2305 for (i = cpl_start_band + 1; i < cpl_end_band; i++) {
2306 if (ff_eac3_default_cpl_band_struct[i]) {
2307 *cpl_band_sizes += 12;
2308 } else {
2309 s->num_cpl_bands++;
2310 cpl_band_sizes++;
2311 *cpl_band_sizes = 12;
2315 s->start_freq[CPL_CH] = cpl_start_band * 12 + 37;
2316 s->cpl_end_freq = cpl_end_band * 12 + 37;
2317 for (blk = 0; blk < s->num_blocks; blk++)
2318 s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq;
2323 static av_cold int allocate_buffers(AC3EncodeContext *s)
2325 AVCodecContext *avctx = s->avctx;
2326 int blk, ch;
2327 int channels = s->channels + 1; /* includes coupling channel */
2328 int channel_blocks = channels * s->num_blocks;
2329 int total_coefs = AC3_MAX_COEFS * channel_blocks;
2331 if (s->allocate_sample_buffers(s))
2332 goto alloc_fail;
2334 FF_ALLOC_OR_GOTO(avctx, s->bap_buffer, total_coefs *
2335 sizeof(*s->bap_buffer), alloc_fail);
2336 FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, total_coefs *
2337 sizeof(*s->bap1_buffer), alloc_fail);
2338 FF_ALLOCZ_OR_GOTO(avctx, s->mdct_coef_buffer, total_coefs *
2339 sizeof(*s->mdct_coef_buffer), alloc_fail);
2340 FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, total_coefs *
2341 sizeof(*s->exp_buffer), alloc_fail);
2342 FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, channel_blocks * 128 *
2343 sizeof(*s->grouped_exp_buffer), alloc_fail);
2344 FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, total_coefs *
2345 sizeof(*s->psd_buffer), alloc_fail);
2346 FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, channel_blocks * 64 *
2347 sizeof(*s->band_psd_buffer), alloc_fail);
2348 FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, channel_blocks * 64 *
2349 sizeof(*s->mask_buffer), alloc_fail);
2350 FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, total_coefs *
2351 sizeof(*s->qmant_buffer), alloc_fail);
2352 if (s->cpl_enabled) {
2353 FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_exp_buffer, channel_blocks * 16 *
2354 sizeof(*s->cpl_coord_exp_buffer), alloc_fail);
2355 FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_mant_buffer, channel_blocks * 16 *
2356 sizeof(*s->cpl_coord_mant_buffer), alloc_fail);
2358 for (blk = 0; blk < s->num_blocks; blk++) {
2359 AC3Block *block = &s->blocks[blk];
2360 FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, channels * sizeof(*block->mdct_coef),
2361 alloc_fail);
2362 FF_ALLOCZ_OR_GOTO(avctx, block->exp, channels * sizeof(*block->exp),
2363 alloc_fail);
2364 FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, channels * sizeof(*block->grouped_exp),
2365 alloc_fail);
2366 FF_ALLOCZ_OR_GOTO(avctx, block->psd, channels * sizeof(*block->psd),
2367 alloc_fail);
2368 FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, channels * sizeof(*block->band_psd),
2369 alloc_fail);
2370 FF_ALLOCZ_OR_GOTO(avctx, block->mask, channels * sizeof(*block->mask),
2371 alloc_fail);
2372 FF_ALLOCZ_OR_GOTO(avctx, block->qmant, channels * sizeof(*block->qmant),
2373 alloc_fail);
2374 if (s->cpl_enabled) {
2375 FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_exp, channels * sizeof(*block->cpl_coord_exp),
2376 alloc_fail);
2377 FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_mant, channels * sizeof(*block->cpl_coord_mant),
2378 alloc_fail);
2381 for (ch = 0; ch < channels; ch++) {
2382 /* arrangement: block, channel, coeff */
2383 block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * channels + ch)];
2384 block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2385 block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * channels + ch)];
2386 block->mask[ch] = &s->mask_buffer [64 * (blk * channels + ch)];
2387 block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * channels + ch)];
2388 if (s->cpl_enabled) {
2389 block->cpl_coord_exp[ch] = &s->cpl_coord_exp_buffer [16 * (blk * channels + ch)];
2390 block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16 * (blk * channels + ch)];
2393 /* arrangement: channel, block, coeff */
2394 block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2395 block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2399 if (!s->fixed_point) {
2400 FF_ALLOCZ_OR_GOTO(avctx, s->fixed_coef_buffer, total_coefs *
2401 sizeof(*s->fixed_coef_buffer), alloc_fail);
2402 for (blk = 0; blk < s->num_blocks; blk++) {
2403 AC3Block *block = &s->blocks[blk];
2404 FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels *
2405 sizeof(*block->fixed_coef), alloc_fail);
2406 for (ch = 0; ch < channels; ch++)
2407 block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (s->num_blocks * ch + blk)];
2409 } else {
2410 for (blk = 0; blk < s->num_blocks; blk++) {
2411 AC3Block *block = &s->blocks[blk];
2412 FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels *
2413 sizeof(*block->fixed_coef), alloc_fail);
2414 for (ch = 0; ch < channels; ch++)
2415 block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch];
2419 return 0;
2420 alloc_fail:
2421 return AVERROR(ENOMEM);
2425 av_cold int ff_ac3_encode_init(AVCodecContext *avctx)
2427 AC3EncodeContext *s = avctx->priv_data;
2428 int ret, frame_size_58;
2430 s->avctx = avctx;
2432 s->eac3 = avctx->codec_id == AV_CODEC_ID_EAC3;
2434 ff_ac3_common_init();
2436 ret = validate_options(s);
2437 if (ret)
2438 return ret;
2440 avctx->frame_size = AC3_BLOCK_SIZE * s->num_blocks;
2441 avctx->delay = AC3_BLOCK_SIZE;
2443 s->bitstream_mode = avctx->audio_service_type;
2444 if (s->bitstream_mode == AV_AUDIO_SERVICE_TYPE_KARAOKE)
2445 s->bitstream_mode = 0x7;
2447 s->bits_written = 0;
2448 s->samples_written = 0;
2450 /* calculate crc_inv for both possible frame sizes */
2451 frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1;
2452 s->crc_inv[0] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2453 if (s->bit_alloc.sr_code == 1) {
2454 frame_size_58 = (((s->frame_size+2) >> 2) + ((s->frame_size+2) >> 4)) << 1;
2455 s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY);
2458 /* set function pointers */
2459 if (CONFIG_AC3_FIXED_ENCODER && s->fixed_point) {
2460 s->mdct_end = ff_ac3_fixed_mdct_end;
2461 s->mdct_init = ff_ac3_fixed_mdct_init;
2462 s->allocate_sample_buffers = ff_ac3_fixed_allocate_sample_buffers;
2463 } else if (CONFIG_AC3_ENCODER || CONFIG_EAC3_ENCODER) {
2464 s->mdct_end = ff_ac3_float_mdct_end;
2465 s->mdct_init = ff_ac3_float_mdct_init;
2466 s->allocate_sample_buffers = ff_ac3_float_allocate_sample_buffers;
2468 if (CONFIG_EAC3_ENCODER && s->eac3)
2469 s->output_frame_header = ff_eac3_output_frame_header;
2470 else
2471 s->output_frame_header = ac3_output_frame_header;
2473 set_bandwidth(s);
2475 exponent_init(s);
2477 bit_alloc_init(s);
2479 ret = s->mdct_init(s);
2480 if (ret)
2481 goto init_fail;
2483 ret = allocate_buffers(s);
2484 if (ret)
2485 goto init_fail;
2487 #if FF_API_OLD_ENCODE_AUDIO
2488 avctx->coded_frame= avcodec_alloc_frame();
2489 if (!avctx->coded_frame) {
2490 ret = AVERROR(ENOMEM);
2491 goto init_fail;
2493 #endif
2495 ff_dsputil_init(&s->dsp, avctx);
2496 avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
2497 ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT);
2499 dprint_options(s);
2501 return 0;
2502 init_fail:
2503 ff_ac3_encode_close(avctx);
2504 return ret;