h264: simplify calls to ff_er_add_slice().
[FFMpeg-mirror/mplayer-patches.git] / libavcodec / dnxhdenc.c
blob4ea3709b082683f17f32e4a2351c8c20bda7b972
1 /*
2 * VC3/DNxHD encoder
3 * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4 * Copyright (c) 2011 MirriAd Ltd
6 * VC-3 encoder funded by the British Broadcasting Corporation
7 * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
9 * This file is part of Libav.
11 * Libav is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
16 * Libav is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with Libav; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 //#define DEBUG
27 #define RC_VARIANCE 1 // use variance or ssd for fast rc
29 #include "libavutil/internal.h"
30 #include "libavutil/opt.h"
31 #include "avcodec.h"
32 #include "dsputil.h"
33 #include "internal.h"
34 #include "mpegvideo.h"
35 #include "dnxhdenc.h"
37 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
38 #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
40 static const AVOption options[]={
41 {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, VE},
42 {NULL}
44 static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
46 #define LAMBDA_FRAC_BITS 10
48 static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t *pixels, int line_size)
50 int i;
51 for (i = 0; i < 4; i++) {
52 block[0] = pixels[0]; block[1] = pixels[1];
53 block[2] = pixels[2]; block[3] = pixels[3];
54 block[4] = pixels[4]; block[5] = pixels[5];
55 block[6] = pixels[6]; block[7] = pixels[7];
56 pixels += line_size;
57 block += 8;
59 memcpy(block, block - 8, sizeof(*block) * 8);
60 memcpy(block + 8, block - 16, sizeof(*block) * 8);
61 memcpy(block + 16, block - 24, sizeof(*block) * 8);
62 memcpy(block + 24, block - 32, sizeof(*block) * 8);
65 static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block, const uint8_t *pixels, int line_size)
67 int i;
69 block += 32;
71 for (i = 0; i < 4; i++) {
72 memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
73 memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
77 static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
78 int n, int qscale, int *overflow)
80 const uint8_t *scantable= ctx->intra_scantable.scantable;
81 const int *qmat = ctx->q_intra_matrix[qscale];
82 int last_non_zero = 0;
83 int i;
85 ctx->dsp.fdct(block);
87 // Divide by 4 with rounding, to compensate scaling of DCT coefficients
88 block[0] = (block[0] + 2) >> 2;
90 for (i = 1; i < 64; ++i) {
91 int j = scantable[i];
92 int sign = block[j] >> 31;
93 int level = (block[j] ^ sign) - sign;
94 level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
95 block[j] = (level ^ sign) - sign;
96 if (level)
97 last_non_zero = i;
100 return last_non_zero;
103 static int dnxhd_init_vlc(DNXHDEncContext *ctx)
105 int i, j, level, run;
106 int max_level = 1<<(ctx->cid_table->bit_depth+2);
108 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
109 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
110 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
111 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
113 ctx->vlc_codes += max_level*2;
114 ctx->vlc_bits += max_level*2;
115 for (level = -max_level; level < max_level; level++) {
116 for (run = 0; run < 2; run++) {
117 int index = (level<<1)|run;
118 int sign, offset = 0, alevel = level;
120 MASK_ABS(sign, alevel);
121 if (alevel > 64) {
122 offset = (alevel-1)>>6;
123 alevel -= offset<<6;
125 for (j = 0; j < 257; j++) {
126 if (ctx->cid_table->ac_level[j] == alevel &&
127 (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
128 (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
129 assert(!ctx->vlc_codes[index]);
130 if (alevel) {
131 ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
132 ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
133 } else {
134 ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
135 ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
137 break;
140 assert(!alevel || j < 257);
141 if (offset) {
142 ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
143 ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
147 for (i = 0; i < 62; i++) {
148 int run = ctx->cid_table->run[i];
149 assert(run < 63);
150 ctx->run_codes[run] = ctx->cid_table->run_codes[i];
151 ctx->run_bits [run] = ctx->cid_table->run_bits[i];
153 return 0;
154 fail:
155 return -1;
158 static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
160 // init first elem to 1 to avoid div by 0 in convert_matrix
161 uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
162 int qscale, i;
163 const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
164 const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
166 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
167 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
168 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
169 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
171 if (ctx->cid_table->bit_depth == 8) {
172 for (i = 1; i < 64; i++) {
173 int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
174 weight_matrix[j] = ctx->cid_table->luma_weight[i];
176 ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
177 ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
178 for (i = 1; i < 64; i++) {
179 int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
180 weight_matrix[j] = ctx->cid_table->chroma_weight[i];
182 ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
183 ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
185 for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
186 for (i = 0; i < 64; i++) {
187 ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
188 ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
189 ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
192 } else {
193 // 10-bit
194 for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
195 for (i = 1; i < 64; i++) {
196 int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
198 // The quantization formula from the VC-3 standard is:
199 // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
200 // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
201 // The s factor compensates scaling of DCT coefficients done by the DCT routines,
202 // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
203 // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
204 // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
205 // For 10-bit samples, p / s == 2
206 ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
207 ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
212 return 0;
213 fail:
214 return -1;
217 static int dnxhd_init_rc(DNXHDEncContext *ctx)
219 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
220 if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
221 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
223 ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
224 ctx->qscale = 1;
225 ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
226 return 0;
227 fail:
228 return -1;
231 static int dnxhd_encode_init(AVCodecContext *avctx)
233 DNXHDEncContext *ctx = avctx->priv_data;
234 int i, index, bit_depth;
236 switch (avctx->pix_fmt) {
237 case AV_PIX_FMT_YUV422P:
238 bit_depth = 8;
239 break;
240 case AV_PIX_FMT_YUV422P10:
241 bit_depth = 10;
242 break;
243 default:
244 av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
245 return -1;
248 ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
249 if (!ctx->cid) {
250 av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
251 return -1;
253 av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
255 index = ff_dnxhd_get_cid_table(ctx->cid);
256 ctx->cid_table = &ff_dnxhd_cid_table[index];
258 ctx->m.avctx = avctx;
259 ctx->m.mb_intra = 1;
260 ctx->m.h263_aic = 1;
262 avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
264 ff_dsputil_init(&ctx->m.dsp, avctx);
265 ff_dct_common_init(&ctx->m);
266 if (!ctx->m.dct_quantize)
267 ctx->m.dct_quantize = ff_dct_quantize_c;
269 if (ctx->cid_table->bit_depth == 10) {
270 ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
271 ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
272 ctx->block_width_l2 = 4;
273 } else {
274 ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
275 ctx->block_width_l2 = 3;
278 if (ARCH_X86)
279 ff_dnxhdenc_init_x86(ctx);
281 ctx->m.mb_height = (avctx->height + 15) / 16;
282 ctx->m.mb_width = (avctx->width + 15) / 16;
284 if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
285 ctx->interlaced = 1;
286 ctx->m.mb_height /= 2;
289 ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
291 if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
292 ctx->m.intra_quant_bias = avctx->intra_quant_bias;
293 if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
294 return -1;
296 // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
297 if (ctx->nitris_compat)
298 ctx->min_padding = 1600;
300 if (dnxhd_init_vlc(ctx) < 0)
301 return -1;
302 if (dnxhd_init_rc(ctx) < 0)
303 return -1;
305 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
306 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
307 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
308 FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
310 ctx->frame.key_frame = 1;
311 ctx->frame.pict_type = AV_PICTURE_TYPE_I;
312 ctx->m.avctx->coded_frame = &ctx->frame;
314 if (avctx->thread_count > MAX_THREADS) {
315 av_log(avctx, AV_LOG_ERROR, "too many threads\n");
316 return -1;
319 ctx->thread[0] = ctx;
320 for (i = 1; i < avctx->thread_count; i++) {
321 ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
322 memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
325 return 0;
326 fail: //for FF_ALLOCZ_OR_GOTO
327 return -1;
330 static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
332 DNXHDEncContext *ctx = avctx->priv_data;
333 const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
335 memset(buf, 0, 640);
337 memcpy(buf, header_prefix, 5);
338 buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
339 buf[6] = 0x80; // crc flag off
340 buf[7] = 0xa0; // reserved
341 AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
342 AV_WB16(buf + 0x1a, avctx->width); // SPL
343 AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
345 buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
346 buf[0x22] = 0x88 + (ctx->interlaced<<2);
347 AV_WB32(buf + 0x28, ctx->cid); // CID
348 buf[0x2c] = ctx->interlaced ? 0 : 0x80;
350 buf[0x5f] = 0x01; // UDL
352 buf[0x167] = 0x02; // reserved
353 AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
354 buf[0x16d] = ctx->m.mb_height; // Ns
355 buf[0x16f] = 0x10; // reserved
357 ctx->msip = buf + 0x170;
358 return 0;
361 static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
363 int nbits;
364 if (diff < 0) {
365 nbits = av_log2_16bit(-2*diff);
366 diff--;
367 } else {
368 nbits = av_log2_16bit(2*diff);
370 put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
371 (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
374 static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block, int last_index, int n)
376 int last_non_zero = 0;
377 int slevel, i, j;
379 dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
380 ctx->m.last_dc[n] = block[0];
382 for (i = 1; i <= last_index; i++) {
383 j = ctx->m.intra_scantable.permutated[i];
384 slevel = block[j];
385 if (slevel) {
386 int run_level = i - last_non_zero - 1;
387 int rlevel = (slevel<<1)|!!run_level;
388 put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
389 if (run_level)
390 put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
391 last_non_zero = i;
394 put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
397 static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n, int qscale, int last_index)
399 const uint8_t *weight_matrix;
400 int level;
401 int i;
403 weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
405 for (i = 1; i <= last_index; i++) {
406 int j = ctx->m.intra_scantable.permutated[i];
407 level = block[j];
408 if (level) {
409 if (level < 0) {
410 level = (1-2*level) * qscale * weight_matrix[i];
411 if (ctx->cid_table->bit_depth == 10) {
412 if (weight_matrix[i] != 8)
413 level += 8;
414 level >>= 4;
415 } else {
416 if (weight_matrix[i] != 32)
417 level += 32;
418 level >>= 6;
420 level = -level;
421 } else {
422 level = (2*level+1) * qscale * weight_matrix[i];
423 if (ctx->cid_table->bit_depth == 10) {
424 if (weight_matrix[i] != 8)
425 level += 8;
426 level >>= 4;
427 } else {
428 if (weight_matrix[i] != 32)
429 level += 32;
430 level >>= 6;
433 block[j] = level;
438 static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
440 int score = 0;
441 int i;
442 for (i = 0; i < 64; i++)
443 score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
444 return score;
447 static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
449 int last_non_zero = 0;
450 int bits = 0;
451 int i, j, level;
452 for (i = 1; i <= last_index; i++) {
453 j = ctx->m.intra_scantable.permutated[i];
454 level = block[j];
455 if (level) {
456 int run_level = i - last_non_zero - 1;
457 bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
458 last_non_zero = i;
461 return bits;
464 static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
466 const int bs = ctx->block_width_l2;
467 const int bw = 1 << bs;
468 const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
469 const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
470 const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
471 DSPContext *dsp = &ctx->m.dsp;
473 dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
474 dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
475 dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
476 dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
478 if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
479 if (ctx->interlaced) {
480 ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
481 ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
482 ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
483 ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
484 } else {
485 dsp->clear_block(ctx->blocks[4]);
486 dsp->clear_block(ctx->blocks[5]);
487 dsp->clear_block(ctx->blocks[6]);
488 dsp->clear_block(ctx->blocks[7]);
490 } else {
491 dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
492 dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
493 dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
494 dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
498 static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
500 if (i&2) {
501 ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
502 ctx->m.q_intra_matrix = ctx->qmatrix_c;
503 return 1 + (i&1);
504 } else {
505 ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
506 ctx->m.q_intra_matrix = ctx->qmatrix_l;
507 return 0;
511 static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
513 DNXHDEncContext *ctx = avctx->priv_data;
514 int mb_y = jobnr, mb_x;
515 int qscale = ctx->qscale;
516 LOCAL_ALIGNED_16(int16_t, block, [64]);
517 ctx = ctx->thread[threadnr];
519 ctx->m.last_dc[0] =
520 ctx->m.last_dc[1] =
521 ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
523 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
524 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
525 int ssd = 0;
526 int ac_bits = 0;
527 int dc_bits = 0;
528 int i;
530 dnxhd_get_blocks(ctx, mb_x, mb_y);
532 for (i = 0; i < 8; i++) {
533 int16_t *src_block = ctx->blocks[i];
534 int overflow, nbits, diff, last_index;
535 int n = dnxhd_switch_matrix(ctx, i);
537 memcpy(block, src_block, 64*sizeof(*block));
538 last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow);
539 ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
541 diff = block[0] - ctx->m.last_dc[n];
542 if (diff < 0) nbits = av_log2_16bit(-2*diff);
543 else nbits = av_log2_16bit( 2*diff);
545 assert(nbits < ctx->cid_table->bit_depth + 4);
546 dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
548 ctx->m.last_dc[n] = block[0];
550 if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
551 dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
552 ctx->m.dsp.idct(block);
553 ssd += dnxhd_ssd_block(block, src_block);
556 ctx->mb_rc[qscale][mb].ssd = ssd;
557 ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
559 return 0;
562 static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
564 DNXHDEncContext *ctx = avctx->priv_data;
565 int mb_y = jobnr, mb_x;
566 ctx = ctx->thread[threadnr];
567 init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
569 ctx->m.last_dc[0] =
570 ctx->m.last_dc[1] =
571 ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
572 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
573 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
574 int qscale = ctx->mb_qscale[mb];
575 int i;
577 put_bits(&ctx->m.pb, 12, qscale<<1);
579 dnxhd_get_blocks(ctx, mb_x, mb_y);
581 for (i = 0; i < 8; i++) {
582 int16_t *block = ctx->blocks[i];
583 int overflow, n = dnxhd_switch_matrix(ctx, i);
584 int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
585 qscale, &overflow);
586 //START_TIMER;
587 dnxhd_encode_block(ctx, block, last_index, n);
588 //STOP_TIMER("encode_block");
591 if (put_bits_count(&ctx->m.pb)&31)
592 put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
593 flush_put_bits(&ctx->m.pb);
594 return 0;
597 static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
599 int mb_y, mb_x;
600 int offset = 0;
601 for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
602 int thread_size;
603 ctx->slice_offs[mb_y] = offset;
604 ctx->slice_size[mb_y] = 0;
605 for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
606 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
607 ctx->slice_size[mb_y] += ctx->mb_bits[mb];
609 ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
610 ctx->slice_size[mb_y] >>= 3;
611 thread_size = ctx->slice_size[mb_y];
612 offset += thread_size;
616 static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
618 DNXHDEncContext *ctx = avctx->priv_data;
619 int mb_y = jobnr, mb_x, x, y;
620 int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
621 ((avctx->height >> ctx->interlaced) & 0xF);
623 ctx = ctx->thread[threadnr];
624 if (ctx->cid_table->bit_depth == 8) {
625 uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
626 for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
627 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
628 int sum;
629 int varc;
631 if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
632 sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
633 varc = ctx->m.dsp.pix_norm1(pix, ctx->m.linesize);
634 } else {
635 int bw = FFMIN(avctx->width - 16 * mb_x, 16);
636 int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
637 sum = varc = 0;
638 for (y = 0; y < bh; y++) {
639 for (x = 0; x < bw; x++) {
640 uint8_t val = pix[x + y * ctx->m.linesize];
641 sum += val;
642 varc += val * val;
646 varc = (varc - (((unsigned)sum * sum) >> 8) + 128) >> 8;
648 ctx->mb_cmp[mb].value = varc;
649 ctx->mb_cmp[mb].mb = mb;
651 } else { // 10-bit
652 int const linesize = ctx->m.linesize >> 1;
653 for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
654 uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
655 unsigned mb = mb_y * ctx->m.mb_width + mb_x;
656 int sum = 0;
657 int sqsum = 0;
658 int mean, sqmean;
659 int i, j;
660 // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
661 for (i = 0; i < 16; ++i) {
662 for (j = 0; j < 16; ++j) {
663 // Turn 16-bit pixels into 10-bit ones.
664 int const sample = (unsigned)pix[j] >> 6;
665 sum += sample;
666 sqsum += sample * sample;
667 // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
669 pix += linesize;
671 mean = sum >> 8; // 16*16 == 2^8
672 sqmean = sqsum >> 8;
673 ctx->mb_cmp[mb].value = sqmean - mean * mean;
674 ctx->mb_cmp[mb].mb = mb;
677 return 0;
680 static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
682 int lambda, up_step, down_step;
683 int last_lower = INT_MAX, last_higher = 0;
684 int x, y, q;
686 for (q = 1; q < avctx->qmax; q++) {
687 ctx->qscale = q;
688 avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
690 up_step = down_step = 2<<LAMBDA_FRAC_BITS;
691 lambda = ctx->lambda;
693 for (;;) {
694 int bits = 0;
695 int end = 0;
696 if (lambda == last_higher) {
697 lambda++;
698 end = 1; // need to set final qscales/bits
700 for (y = 0; y < ctx->m.mb_height; y++) {
701 for (x = 0; x < ctx->m.mb_width; x++) {
702 unsigned min = UINT_MAX;
703 int qscale = 1;
704 int mb = y*ctx->m.mb_width+x;
705 for (q = 1; q < avctx->qmax; q++) {
706 unsigned score = ctx->mb_rc[q][mb].bits*lambda+
707 ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
708 if (score < min) {
709 min = score;
710 qscale = q;
713 bits += ctx->mb_rc[qscale][mb].bits;
714 ctx->mb_qscale[mb] = qscale;
715 ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
717 bits = (bits+31)&~31; // padding
718 if (bits > ctx->frame_bits)
719 break;
721 //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
722 // lambda, last_higher, last_lower, bits, ctx->frame_bits);
723 if (end) {
724 if (bits > ctx->frame_bits)
725 return -1;
726 break;
728 if (bits < ctx->frame_bits) {
729 last_lower = FFMIN(lambda, last_lower);
730 if (last_higher != 0)
731 lambda = (lambda+last_higher)>>1;
732 else
733 lambda -= down_step;
734 down_step = FFMIN((int64_t)down_step*5, INT_MAX);
735 up_step = 1<<LAMBDA_FRAC_BITS;
736 lambda = FFMAX(1, lambda);
737 if (lambda == last_lower)
738 break;
739 } else {
740 last_higher = FFMAX(lambda, last_higher);
741 if (last_lower != INT_MAX)
742 lambda = (lambda+last_lower)>>1;
743 else if ((int64_t)lambda + up_step > INT_MAX)
744 return -1;
745 else
746 lambda += up_step;
747 up_step = FFMIN((int64_t)up_step*5, INT_MAX);
748 down_step = 1<<LAMBDA_FRAC_BITS;
751 //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
752 ctx->lambda = lambda;
753 return 0;
756 static int dnxhd_find_qscale(DNXHDEncContext *ctx)
758 int bits = 0;
759 int up_step = 1;
760 int down_step = 1;
761 int last_higher = 0;
762 int last_lower = INT_MAX;
763 int qscale;
764 int x, y;
766 qscale = ctx->qscale;
767 for (;;) {
768 bits = 0;
769 ctx->qscale = qscale;
770 // XXX avoid recalculating bits
771 ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
772 for (y = 0; y < ctx->m.mb_height; y++) {
773 for (x = 0; x < ctx->m.mb_width; x++)
774 bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
775 bits = (bits+31)&~31; // padding
776 if (bits > ctx->frame_bits)
777 break;
779 //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
780 // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
781 if (bits < ctx->frame_bits) {
782 if (qscale == 1)
783 return 1;
784 if (last_higher == qscale - 1) {
785 qscale = last_higher;
786 break;
788 last_lower = FFMIN(qscale, last_lower);
789 if (last_higher != 0)
790 qscale = (qscale+last_higher)>>1;
791 else
792 qscale -= down_step++;
793 if (qscale < 1)
794 qscale = 1;
795 up_step = 1;
796 } else {
797 if (last_lower == qscale + 1)
798 break;
799 last_higher = FFMAX(qscale, last_higher);
800 if (last_lower != INT_MAX)
801 qscale = (qscale+last_lower)>>1;
802 else
803 qscale += up_step++;
804 down_step = 1;
805 if (qscale >= ctx->m.avctx->qmax)
806 return -1;
809 //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
810 ctx->qscale = qscale;
811 return 0;
814 #define BUCKET_BITS 8
815 #define RADIX_PASSES 4
816 #define NBUCKETS (1 << BUCKET_BITS)
818 static inline int get_bucket(int value, int shift)
820 value >>= shift;
821 value &= NBUCKETS - 1;
822 return NBUCKETS - 1 - value;
825 static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
827 int i, j;
828 memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
829 for (i = 0; i < size; i++) {
830 int v = data[i].value;
831 for (j = 0; j < RADIX_PASSES; j++) {
832 buckets[j][get_bucket(v, 0)]++;
833 v >>= BUCKET_BITS;
835 assert(!v);
837 for (j = 0; j < RADIX_PASSES; j++) {
838 int offset = size;
839 for (i = NBUCKETS - 1; i >= 0; i--)
840 buckets[j][i] = offset -= buckets[j][i];
841 assert(!buckets[j][0]);
845 static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
847 int shift = pass * BUCKET_BITS;
848 int i;
849 for (i = 0; i < size; i++) {
850 int v = get_bucket(data[i].value, shift);
851 int pos = buckets[v]++;
852 dst[pos] = data[i];
856 static void radix_sort(RCCMPEntry *data, int size)
858 int buckets[RADIX_PASSES][NBUCKETS];
859 RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
860 radix_count(data, size, buckets);
861 radix_sort_pass(tmp, data, size, buckets[0], 0);
862 radix_sort_pass(data, tmp, size, buckets[1], 1);
863 if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
864 radix_sort_pass(tmp, data, size, buckets[2], 2);
865 radix_sort_pass(data, tmp, size, buckets[3], 3);
867 av_free(tmp);
870 static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
872 int max_bits = 0;
873 int ret, x, y;
874 if ((ret = dnxhd_find_qscale(ctx)) < 0)
875 return -1;
876 for (y = 0; y < ctx->m.mb_height; y++) {
877 for (x = 0; x < ctx->m.mb_width; x++) {
878 int mb = y*ctx->m.mb_width+x;
879 int delta_bits;
880 ctx->mb_qscale[mb] = ctx->qscale;
881 ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
882 max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
883 if (!RC_VARIANCE) {
884 delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
885 ctx->mb_cmp[mb].mb = mb;
886 ctx->mb_cmp[mb].value = delta_bits ?
887 ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
888 : INT_MIN; //avoid increasing qscale
891 max_bits += 31; //worst padding
893 if (!ret) {
894 if (RC_VARIANCE)
895 avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
896 radix_sort(ctx->mb_cmp, ctx->m.mb_num);
897 for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
898 int mb = ctx->mb_cmp[x].mb;
899 max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
900 ctx->mb_qscale[mb] = ctx->qscale+1;
901 ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
904 return 0;
907 static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
909 int i;
911 for (i = 0; i < 3; i++) {
912 ctx->frame.data[i] = frame->data[i];
913 ctx->frame.linesize[i] = frame->linesize[i];
916 for (i = 0; i < ctx->m.avctx->thread_count; i++) {
917 ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
918 ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
919 ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
920 ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
923 ctx->frame.interlaced_frame = frame->interlaced_frame;
924 ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
927 static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
928 const AVFrame *frame, int *got_packet)
930 DNXHDEncContext *ctx = avctx->priv_data;
931 int first_field = 1;
932 int offset, i, ret;
933 uint8_t *buf;
935 if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
936 av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
937 return ret;
939 buf = pkt->data;
941 dnxhd_load_picture(ctx, frame);
943 encode_coding_unit:
944 for (i = 0; i < 3; i++) {
945 ctx->src[i] = ctx->frame.data[i];
946 if (ctx->interlaced && ctx->cur_field)
947 ctx->src[i] += ctx->frame.linesize[i];
950 dnxhd_write_header(avctx, buf);
952 if (avctx->mb_decision == FF_MB_DECISION_RD)
953 ret = dnxhd_encode_rdo(avctx, ctx);
954 else
955 ret = dnxhd_encode_fast(avctx, ctx);
956 if (ret < 0) {
957 av_log(avctx, AV_LOG_ERROR,
958 "picture could not fit ratecontrol constraints, increase qmax\n");
959 return -1;
962 dnxhd_setup_threads_slices(ctx);
964 offset = 0;
965 for (i = 0; i < ctx->m.mb_height; i++) {
966 AV_WB32(ctx->msip + i * 4, offset);
967 offset += ctx->slice_size[i];
968 assert(!(ctx->slice_size[i] & 3));
971 avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
973 assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
974 memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
976 AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
978 if (ctx->interlaced && first_field) {
979 first_field = 0;
980 ctx->cur_field ^= 1;
981 buf += ctx->cid_table->coding_unit_size;
982 goto encode_coding_unit;
985 ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
987 pkt->flags |= AV_PKT_FLAG_KEY;
988 *got_packet = 1;
989 return 0;
992 static int dnxhd_encode_end(AVCodecContext *avctx)
994 DNXHDEncContext *ctx = avctx->priv_data;
995 int max_level = 1<<(ctx->cid_table->bit_depth+2);
996 int i;
998 av_free(ctx->vlc_codes-max_level*2);
999 av_free(ctx->vlc_bits -max_level*2);
1000 av_freep(&ctx->run_codes);
1001 av_freep(&ctx->run_bits);
1003 av_freep(&ctx->mb_bits);
1004 av_freep(&ctx->mb_qscale);
1005 av_freep(&ctx->mb_rc);
1006 av_freep(&ctx->mb_cmp);
1007 av_freep(&ctx->slice_size);
1008 av_freep(&ctx->slice_offs);
1010 av_freep(&ctx->qmatrix_c);
1011 av_freep(&ctx->qmatrix_l);
1012 av_freep(&ctx->qmatrix_c16);
1013 av_freep(&ctx->qmatrix_l16);
1015 for (i = 1; i < avctx->thread_count; i++)
1016 av_freep(&ctx->thread[i]);
1018 return 0;
1021 AVCodec ff_dnxhd_encoder = {
1022 .name = "dnxhd",
1023 .type = AVMEDIA_TYPE_VIDEO,
1024 .id = AV_CODEC_ID_DNXHD,
1025 .priv_data_size = sizeof(DNXHDEncContext),
1026 .init = dnxhd_encode_init,
1027 .encode2 = dnxhd_encode_picture,
1028 .close = dnxhd_encode_end,
1029 .capabilities = CODEC_CAP_SLICE_THREADS,
1030 .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_YUV422P,
1031 AV_PIX_FMT_YUV422P10,
1032 AV_PIX_FMT_NONE },
1033 .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1034 .priv_class = &class,