h264: simplify calls to ff_er_add_slice().
[FFMpeg-mirror/mplayer-patches.git] / libavcodec / amrnbdec.c
blob237d47b7cbc446dcd54472b20623f084e83ba1d1
1 /*
2 * AMR narrowband decoder
3 * Copyright (c) 2006-2007 Robert Swain
4 * Copyright (c) 2009 Colin McQuillan
6 * This file is part of Libav.
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 /**
25 * @file
26 * AMR narrowband decoder
28 * This decoder uses floats for simplicity and so is not bit-exact. One
29 * difference is that differences in phase can accumulate. The test sequences
30 * in 3GPP TS 26.074 can still be useful.
32 * - Comparing this file's output to the output of the ref decoder gives a
33 * PSNR of 30 to 80. Plotting the output samples shows a difference in
34 * phase in some areas.
36 * - Comparing both decoders against their input, this decoder gives a similar
37 * PSNR. If the test sequence homing frames are removed (this decoder does
38 * not detect them), the PSNR is at least as good as the reference on 140
39 * out of 169 tests.
43 #include <string.h>
44 #include <math.h>
46 #include "libavutil/channel_layout.h"
47 #include "libavutil/float_dsp.h"
48 #include "avcodec.h"
49 #include "libavutil/common.h"
50 #include "celp_filters.h"
51 #include "acelp_filters.h"
52 #include "acelp_vectors.h"
53 #include "acelp_pitch_delay.h"
54 #include "lsp.h"
55 #include "amr.h"
56 #include "internal.h"
58 #include "amrnbdata.h"
60 #define AMR_BLOCK_SIZE 160 ///< samples per frame
61 #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
63 /**
64 * Scale from constructed speech to [-1,1]
66 * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
67 * upscales by two (section 6.2.2).
69 * Fundamentally, this scale is determined by energy_mean through
70 * the fixed vector contribution to the excitation vector.
72 #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
74 /** Prediction factor for 12.2kbit/s mode */
75 #define PRED_FAC_MODE_12k2 0.65
77 #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
78 #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
79 #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
81 /** Initial energy in dB. Also used for bad frames (unimplemented). */
82 #define MIN_ENERGY -14.0
84 /** Maximum sharpening factor
86 * The specification says 0.8, which should be 13107, but the reference C code
87 * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in bitexact G.729.)
89 #define SHARP_MAX 0.79449462890625
91 /** Number of impulse response coefficients used for tilt factor */
92 #define AMR_TILT_RESPONSE 22
93 /** Tilt factor = 1st reflection coefficient * gamma_t */
94 #define AMR_TILT_GAMMA_T 0.8
95 /** Adaptive gain control factor used in post-filter */
96 #define AMR_AGC_ALPHA 0.9
98 typedef struct AMRContext {
99 AMRNBFrame frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
100 uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0
101 enum Mode cur_frame_mode;
103 int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
104 double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
105 double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
107 float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
108 float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
110 float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
112 uint8_t pitch_lag_int; ///< integer part of pitch lag from current subframe
114 float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
115 float *excitation; ///< pointer to the current excitation vector in excitation_buf
117 float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
118 float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
120 float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
121 float pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
122 float fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
124 float beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
125 uint8_t diff_count; ///< the number of subframes for which diff has been above 0.65
126 uint8_t hang_count; ///< the number of subframes since a hangover period started
128 float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
129 uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
130 uint8_t ir_filter_onset; ///< flag for impulse response filter strength
132 float postfilter_mem[10]; ///< previous intermediate values in the formant filter
133 float tilt_mem; ///< previous input to tilt compensation filter
134 float postfilter_agc; ///< previous factor used for adaptive gain control
135 float high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
137 float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
139 } AMRContext;
141 /** Double version of ff_weighted_vector_sumf() */
142 static void weighted_vector_sumd(double *out, const double *in_a,
143 const double *in_b, double weight_coeff_a,
144 double weight_coeff_b, int length)
146 int i;
148 for (i = 0; i < length; i++)
149 out[i] = weight_coeff_a * in_a[i]
150 + weight_coeff_b * in_b[i];
153 static av_cold int amrnb_decode_init(AVCodecContext *avctx)
155 AMRContext *p = avctx->priv_data;
156 int i;
158 if (avctx->channels > 1) {
159 av_log_missing_feature(avctx, "multi-channel AMR", 0);
160 return AVERROR_PATCHWELCOME;
163 avctx->channels = 1;
164 avctx->channel_layout = AV_CH_LAYOUT_MONO;
165 avctx->sample_rate = 8000;
166 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
168 // p->excitation always points to the same position in p->excitation_buf
169 p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
171 for (i = 0; i < LP_FILTER_ORDER; i++) {
172 p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
173 p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
176 for (i = 0; i < 4; i++)
177 p->prediction_error[i] = MIN_ENERGY;
179 return 0;
184 * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
186 * The order of speech bits is specified by 3GPP TS 26.101.
188 * @param p the context
189 * @param buf pointer to the input buffer
190 * @param buf_size size of the input buffer
192 * @return the frame mode
194 static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
195 int buf_size)
197 enum Mode mode;
199 // Decode the first octet.
200 mode = buf[0] >> 3 & 0x0F; // frame type
201 p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit
203 if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
204 return NO_DATA;
207 if (mode < MODE_DTX)
208 ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
209 amr_unpacking_bitmaps_per_mode[mode]);
211 return mode;
215 /// @name AMR pitch LPC coefficient decoding functions
216 /// @{
219 * Interpolate the LSF vector (used for fixed gain smoothing).
220 * The interpolation is done over all four subframes even in MODE_12k2.
222 * @param[in,out] lsf_q LSFs in [0,1] for each subframe
223 * @param[in] lsf_new New LSFs in [0,1] for subframe 4
225 static void interpolate_lsf(float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
227 int i;
229 for (i = 0; i < 4; i++)
230 ff_weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
231 0.25 * (3 - i), 0.25 * (i + 1),
232 LP_FILTER_ORDER);
236 * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
238 * @param p the context
239 * @param lsp output LSP vector
240 * @param lsf_no_r LSF vector without the residual vector added
241 * @param lsf_quantizer pointers to LSF dictionary tables
242 * @param quantizer_offset offset in tables
243 * @param sign for the 3 dictionary table
244 * @param update store data for computing the next frame's LSFs
246 static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
247 const float lsf_no_r[LP_FILTER_ORDER],
248 const int16_t *lsf_quantizer[5],
249 const int quantizer_offset,
250 const int sign, const int update)
252 int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
253 float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
254 int i;
256 for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
257 memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
258 2 * sizeof(*lsf_r));
260 if (sign) {
261 lsf_r[4] *= -1;
262 lsf_r[5] *= -1;
265 if (update)
266 memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
268 for (i = 0; i < LP_FILTER_ORDER; i++)
269 lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
271 ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
273 if (update)
274 interpolate_lsf(p->lsf_q, lsf_q);
276 ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
280 * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
282 * @param p pointer to the AMRContext
284 static void lsf2lsp_5(AMRContext *p)
286 const uint16_t *lsf_param = p->frame.lsf;
287 float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
288 const int16_t *lsf_quantizer[5];
289 int i;
291 lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
292 lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
293 lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
294 lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
295 lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
297 for (i = 0; i < LP_FILTER_ORDER; i++)
298 lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
300 lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
301 lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
303 // interpolate LSP vectors at subframes 1 and 3
304 weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
305 weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
309 * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
311 * @param p pointer to the AMRContext
313 static void lsf2lsp_3(AMRContext *p)
315 const uint16_t *lsf_param = p->frame.lsf;
316 int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
317 float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
318 const int16_t *lsf_quantizer;
319 int i, j;
321 lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
322 memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
324 lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
325 memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
327 lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
328 memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
330 // calculate mean-removed LSF vector and add mean
331 for (i = 0; i < LP_FILTER_ORDER; i++)
332 lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
334 ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
336 // store data for computing the next frame's LSFs
337 interpolate_lsf(p->lsf_q, lsf_q);
338 memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
340 ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
342 // interpolate LSP vectors at subframes 1, 2 and 3
343 for (i = 1; i <= 3; i++)
344 for(j = 0; j < LP_FILTER_ORDER; j++)
345 p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
346 (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
349 /// @}
352 /// @name AMR pitch vector decoding functions
353 /// @{
356 * Like ff_decode_pitch_lag(), but with 1/6 resolution
358 static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
359 const int prev_lag_int, const int subframe)
361 if (subframe == 0 || subframe == 2) {
362 if (pitch_index < 463) {
363 *lag_int = (pitch_index + 107) * 10923 >> 16;
364 *lag_frac = pitch_index - *lag_int * 6 + 105;
365 } else {
366 *lag_int = pitch_index - 368;
367 *lag_frac = 0;
369 } else {
370 *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
371 *lag_frac = pitch_index - *lag_int * 6 - 3;
372 *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
373 PITCH_DELAY_MAX - 9);
377 static void decode_pitch_vector(AMRContext *p,
378 const AMRNBSubframe *amr_subframe,
379 const int subframe)
381 int pitch_lag_int, pitch_lag_frac;
382 enum Mode mode = p->cur_frame_mode;
384 if (p->cur_frame_mode == MODE_12k2) {
385 decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
386 amr_subframe->p_lag, p->pitch_lag_int,
387 subframe);
388 } else
389 ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
390 amr_subframe->p_lag,
391 p->pitch_lag_int, subframe,
392 mode != MODE_4k75 && mode != MODE_5k15,
393 mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
395 p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
397 pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
399 pitch_lag_int += pitch_lag_frac > 0;
401 /* Calculate the pitch vector by interpolating the past excitation at the
402 pitch lag using a b60 hamming windowed sinc function. */
403 ff_acelp_interpolatef(p->excitation, p->excitation + 1 - pitch_lag_int,
404 ff_b60_sinc, 6,
405 pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
406 10, AMR_SUBFRAME_SIZE);
408 memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
411 /// @}
414 /// @name AMR algebraic code book (fixed) vector decoding functions
415 /// @{
418 * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
420 static void decode_10bit_pulse(int code, int pulse_position[8],
421 int i1, int i2, int i3)
423 // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
424 // the 3 pulses and the upper 7 bits being coded in base 5
425 const uint8_t *positions = base_five_table[code >> 3];
426 pulse_position[i1] = (positions[2] << 1) + ( code & 1);
427 pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
428 pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
432 * Decode the algebraic codebook index to pulse positions and signs and
433 * construct the algebraic codebook vector for MODE_10k2.
435 * @param fixed_index positions of the eight pulses
436 * @param fixed_sparse pointer to the algebraic codebook vector
438 static void decode_8_pulses_31bits(const int16_t *fixed_index,
439 AMRFixed *fixed_sparse)
441 int pulse_position[8];
442 int i, temp;
444 decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
445 decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
447 // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
448 // the 2 pulses and the upper 5 bits being coded in base 5
449 temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
450 pulse_position[3] = temp % 5;
451 pulse_position[7] = temp / 5;
452 if (pulse_position[7] & 1)
453 pulse_position[3] = 4 - pulse_position[3];
454 pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
455 pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
457 fixed_sparse->n = 8;
458 for (i = 0; i < 4; i++) {
459 const int pos1 = (pulse_position[i] << 2) + i;
460 const int pos2 = (pulse_position[i + 4] << 2) + i;
461 const float sign = fixed_index[i] ? -1.0 : 1.0;
462 fixed_sparse->x[i ] = pos1;
463 fixed_sparse->x[i + 4] = pos2;
464 fixed_sparse->y[i ] = sign;
465 fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
470 * Decode the algebraic codebook index to pulse positions and signs,
471 * then construct the algebraic codebook vector.
473 * nb of pulses | bits encoding pulses
474 * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
475 * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
476 * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
477 * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
479 * @param fixed_sparse pointer to the algebraic codebook vector
480 * @param pulses algebraic codebook indexes
481 * @param mode mode of the current frame
482 * @param subframe current subframe number
484 static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
485 const enum Mode mode, const int subframe)
487 assert(MODE_4k75 <= mode && mode <= MODE_12k2);
489 if (mode == MODE_12k2) {
490 ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
491 } else if (mode == MODE_10k2) {
492 decode_8_pulses_31bits(pulses, fixed_sparse);
493 } else {
494 int *pulse_position = fixed_sparse->x;
495 int i, pulse_subset;
496 const int fixed_index = pulses[0];
498 if (mode <= MODE_5k15) {
499 pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
500 pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
501 pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
502 fixed_sparse->n = 2;
503 } else if (mode == MODE_5k9) {
504 pulse_subset = ((fixed_index & 1) << 1) + 1;
505 pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
506 pulse_subset = (fixed_index >> 4) & 3;
507 pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
508 fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
509 } else if (mode == MODE_6k7) {
510 pulse_position[0] = (fixed_index & 7) * 5;
511 pulse_subset = (fixed_index >> 2) & 2;
512 pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
513 pulse_subset = (fixed_index >> 6) & 2;
514 pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
515 fixed_sparse->n = 3;
516 } else { // mode <= MODE_7k95
517 pulse_position[0] = gray_decode[ fixed_index & 7];
518 pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
519 pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
520 pulse_subset = (fixed_index >> 9) & 1;
521 pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
522 fixed_sparse->n = 4;
524 for (i = 0; i < fixed_sparse->n; i++)
525 fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
530 * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
532 * @param p the context
533 * @param subframe unpacked amr subframe
534 * @param mode mode of the current frame
535 * @param fixed_sparse sparse respresentation of the fixed vector
537 static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
538 AMRFixed *fixed_sparse)
540 // The spec suggests the current pitch gain is always used, but in other
541 // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
542 // so the codebook gain cannot depend on the quantized pitch gain.
543 if (mode == MODE_12k2)
544 p->beta = FFMIN(p->pitch_gain[4], 1.0);
546 fixed_sparse->pitch_lag = p->pitch_lag_int;
547 fixed_sparse->pitch_fac = p->beta;
549 // Save pitch sharpening factor for the next subframe
550 // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
551 // the fact that the gains for two subframes are jointly quantized.
552 if (mode != MODE_4k75 || subframe & 1)
553 p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
555 /// @}
558 /// @name AMR gain decoding functions
559 /// @{
562 * fixed gain smoothing
563 * Note that where the spec specifies the "spectrum in the q domain"
564 * in section 6.1.4, in fact frequencies should be used.
566 * @param p the context
567 * @param lsf LSFs for the current subframe, in the range [0,1]
568 * @param lsf_avg averaged LSFs
569 * @param mode mode of the current frame
571 * @return fixed gain smoothed
573 static float fixed_gain_smooth(AMRContext *p , const float *lsf,
574 const float *lsf_avg, const enum Mode mode)
576 float diff = 0.0;
577 int i;
579 for (i = 0; i < LP_FILTER_ORDER; i++)
580 diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
582 // If diff is large for ten subframes, disable smoothing for a 40-subframe
583 // hangover period.
584 p->diff_count++;
585 if (diff <= 0.65)
586 p->diff_count = 0;
588 if (p->diff_count > 10) {
589 p->hang_count = 0;
590 p->diff_count--; // don't let diff_count overflow
593 if (p->hang_count < 40) {
594 p->hang_count++;
595 } else if (mode < MODE_7k4 || mode == MODE_10k2) {
596 const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
597 const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
598 p->fixed_gain[2] + p->fixed_gain[3] +
599 p->fixed_gain[4]) * 0.2;
600 return smoothing_factor * p->fixed_gain[4] +
601 (1.0 - smoothing_factor) * fixed_gain_mean;
603 return p->fixed_gain[4];
607 * Decode pitch gain and fixed gain factor (part of section 6.1.3).
609 * @param p the context
610 * @param amr_subframe unpacked amr subframe
611 * @param mode mode of the current frame
612 * @param subframe current subframe number
613 * @param fixed_gain_factor decoded gain correction factor
615 static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
616 const enum Mode mode, const int subframe,
617 float *fixed_gain_factor)
619 if (mode == MODE_12k2 || mode == MODE_7k95) {
620 p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
621 * (1.0 / 16384.0);
622 *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
623 * (1.0 / 2048.0);
624 } else {
625 const uint16_t *gains;
627 if (mode >= MODE_6k7) {
628 gains = gains_high[amr_subframe->p_gain];
629 } else if (mode >= MODE_5k15) {
630 gains = gains_low [amr_subframe->p_gain];
631 } else {
632 // gain index is only coded in subframes 0,2 for MODE_4k75
633 gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
636 p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
637 *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
641 /// @}
644 /// @name AMR preprocessing functions
645 /// @{
648 * Circularly convolve a sparse fixed vector with a phase dispersion impulse
649 * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
651 * @param out vector with filter applied
652 * @param in source vector
653 * @param filter phase filter coefficients
655 * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
657 static void apply_ir_filter(float *out, const AMRFixed *in,
658 const float *filter)
660 float filter1[AMR_SUBFRAME_SIZE], ///< filters at pitch lag*1 and *2
661 filter2[AMR_SUBFRAME_SIZE];
662 int lag = in->pitch_lag;
663 float fac = in->pitch_fac;
664 int i;
666 if (lag < AMR_SUBFRAME_SIZE) {
667 ff_celp_circ_addf(filter1, filter, filter, lag, fac,
668 AMR_SUBFRAME_SIZE);
670 if (lag < AMR_SUBFRAME_SIZE >> 1)
671 ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
672 AMR_SUBFRAME_SIZE);
675 memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
676 for (i = 0; i < in->n; i++) {
677 int x = in->x[i];
678 float y = in->y[i];
679 const float *filterp;
681 if (x >= AMR_SUBFRAME_SIZE - lag) {
682 filterp = filter;
683 } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
684 filterp = filter1;
685 } else
686 filterp = filter2;
688 ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
693 * Reduce fixed vector sparseness by smoothing with one of three IR filters.
694 * Also know as "adaptive phase dispersion".
696 * This implements 3GPP TS 26.090 section 6.1(5).
698 * @param p the context
699 * @param fixed_sparse algebraic codebook vector
700 * @param fixed_vector unfiltered fixed vector
701 * @param fixed_gain smoothed gain
702 * @param out space for modified vector if necessary
704 static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
705 const float *fixed_vector,
706 float fixed_gain, float *out)
708 int ir_filter_nr;
710 if (p->pitch_gain[4] < 0.6) {
711 ir_filter_nr = 0; // strong filtering
712 } else if (p->pitch_gain[4] < 0.9) {
713 ir_filter_nr = 1; // medium filtering
714 } else
715 ir_filter_nr = 2; // no filtering
717 // detect 'onset'
718 if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
719 p->ir_filter_onset = 2;
720 } else if (p->ir_filter_onset)
721 p->ir_filter_onset--;
723 if (!p->ir_filter_onset) {
724 int i, count = 0;
726 for (i = 0; i < 5; i++)
727 if (p->pitch_gain[i] < 0.6)
728 count++;
729 if (count > 2)
730 ir_filter_nr = 0;
732 if (ir_filter_nr > p->prev_ir_filter_nr + 1)
733 ir_filter_nr--;
734 } else if (ir_filter_nr < 2)
735 ir_filter_nr++;
737 // Disable filtering for very low level of fixed_gain.
738 // Note this step is not specified in the technical description but is in
739 // the reference source in the function Ph_disp.
740 if (fixed_gain < 5.0)
741 ir_filter_nr = 2;
743 if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
744 && ir_filter_nr < 2) {
745 apply_ir_filter(out, fixed_sparse,
746 (p->cur_frame_mode == MODE_7k95 ?
747 ir_filters_lookup_MODE_7k95 :
748 ir_filters_lookup)[ir_filter_nr]);
749 fixed_vector = out;
752 // update ir filter strength history
753 p->prev_ir_filter_nr = ir_filter_nr;
754 p->prev_sparse_fixed_gain = fixed_gain;
756 return fixed_vector;
759 /// @}
762 /// @name AMR synthesis functions
763 /// @{
766 * Conduct 10th order linear predictive coding synthesis.
768 * @param p pointer to the AMRContext
769 * @param lpc pointer to the LPC coefficients
770 * @param fixed_gain fixed codebook gain for synthesis
771 * @param fixed_vector algebraic codebook vector
772 * @param samples pointer to the output speech samples
773 * @param overflow 16-bit overflow flag
775 static int synthesis(AMRContext *p, float *lpc,
776 float fixed_gain, const float *fixed_vector,
777 float *samples, uint8_t overflow)
779 int i;
780 float excitation[AMR_SUBFRAME_SIZE];
782 // if an overflow has been detected, the pitch vector is scaled down by a
783 // factor of 4
784 if (overflow)
785 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
786 p->pitch_vector[i] *= 0.25;
788 ff_weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
789 p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
791 // emphasize pitch vector contribution
792 if (p->pitch_gain[4] > 0.5 && !overflow) {
793 float energy = avpriv_scalarproduct_float_c(excitation, excitation,
794 AMR_SUBFRAME_SIZE);
795 float pitch_factor =
796 p->pitch_gain[4] *
797 (p->cur_frame_mode == MODE_12k2 ?
798 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
799 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
801 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
802 excitation[i] += pitch_factor * p->pitch_vector[i];
804 ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
805 AMR_SUBFRAME_SIZE);
808 ff_celp_lp_synthesis_filterf(samples, lpc, excitation, AMR_SUBFRAME_SIZE,
809 LP_FILTER_ORDER);
811 // detect overflow
812 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
813 if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
814 return 1;
817 return 0;
820 /// @}
823 /// @name AMR update functions
824 /// @{
827 * Update buffers and history at the end of decoding a subframe.
829 * @param p pointer to the AMRContext
831 static void update_state(AMRContext *p)
833 memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
835 memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
836 (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
838 memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
839 memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
841 memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
842 LP_FILTER_ORDER * sizeof(float));
845 /// @}
848 /// @name AMR Postprocessing functions
849 /// @{
852 * Get the tilt factor of a formant filter from its transfer function
854 * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
855 * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
857 static float tilt_factor(float *lpc_n, float *lpc_d)
859 float rh0, rh1; // autocorrelation at lag 0 and 1
861 // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
862 float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
863 float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
865 hf[0] = 1.0;
866 memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
867 ff_celp_lp_synthesis_filterf(hf, lpc_d, hf, AMR_TILT_RESPONSE,
868 LP_FILTER_ORDER);
870 rh0 = avpriv_scalarproduct_float_c(hf, hf, AMR_TILT_RESPONSE);
871 rh1 = avpriv_scalarproduct_float_c(hf, hf + 1, AMR_TILT_RESPONSE - 1);
873 // The spec only specifies this check for 12.2 and 10.2 kbit/s
874 // modes. But in the ref source the tilt is always non-negative.
875 return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
879 * Perform adaptive post-filtering to enhance the quality of the speech.
880 * See section 6.2.1.
882 * @param p pointer to the AMRContext
883 * @param lpc interpolated LP coefficients for this subframe
884 * @param buf_out output of the filter
886 static void postfilter(AMRContext *p, float *lpc, float *buf_out)
888 int i;
889 float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input
891 float speech_gain = avpriv_scalarproduct_float_c(samples, samples,
892 AMR_SUBFRAME_SIZE);
894 float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filter
895 const float *gamma_n, *gamma_d; // Formant filter factor table
896 float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
898 if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
899 gamma_n = ff_pow_0_7;
900 gamma_d = ff_pow_0_75;
901 } else {
902 gamma_n = ff_pow_0_55;
903 gamma_d = ff_pow_0_7;
906 for (i = 0; i < LP_FILTER_ORDER; i++) {
907 lpc_n[i] = lpc[i] * gamma_n[i];
908 lpc_d[i] = lpc[i] * gamma_d[i];
911 memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
912 ff_celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
913 AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
914 memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
915 sizeof(float) * LP_FILTER_ORDER);
917 ff_celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
918 pole_out + LP_FILTER_ORDER,
919 AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
921 ff_tilt_compensation(&p->tilt_mem, tilt_factor(lpc_n, lpc_d), buf_out,
922 AMR_SUBFRAME_SIZE);
924 ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
925 AMR_AGC_ALPHA, &p->postfilter_agc);
928 /// @}
930 static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
931 int *got_frame_ptr, AVPacket *avpkt)
934 AMRContext *p = avctx->priv_data; // pointer to private data
935 AVFrame *frame = data;
936 const uint8_t *buf = avpkt->data;
937 int buf_size = avpkt->size;
938 float *buf_out; // pointer to the output data buffer
939 int i, subframe, ret;
940 float fixed_gain_factor;
941 AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparseness processing
942 float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result from anti-sparseness processing
943 float synth_fixed_gain; // the fixed gain that synthesis should use
944 const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
946 /* get output buffer */
947 frame->nb_samples = AMR_BLOCK_SIZE;
948 if ((ret = ff_get_buffer(avctx, frame)) < 0) {
949 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
950 return ret;
952 buf_out = (float *)frame->data[0];
954 p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
955 if (p->cur_frame_mode == NO_DATA) {
956 av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
957 return AVERROR_INVALIDDATA;
959 if (p->cur_frame_mode == MODE_DTX) {
960 av_log_missing_feature(avctx, "dtx mode", 1);
961 return AVERROR_PATCHWELCOME;
964 if (p->cur_frame_mode == MODE_12k2) {
965 lsf2lsp_5(p);
966 } else
967 lsf2lsp_3(p);
969 for (i = 0; i < 4; i++)
970 ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
972 for (subframe = 0; subframe < 4; subframe++) {
973 const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
975 decode_pitch_vector(p, amr_subframe, subframe);
977 decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
978 p->cur_frame_mode, subframe);
980 // The fixed gain (section 6.1.3) depends on the fixed vector
981 // (section 6.1.2), but the fixed vector calculation uses
982 // pitch sharpening based on the on the pitch gain (section 6.1.3).
983 // So the correct order is: pitch gain, pitch sharpening, fixed gain.
984 decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
985 &fixed_gain_factor);
987 pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
989 if (fixed_sparse.pitch_lag == 0) {
990 av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
991 return AVERROR_INVALIDDATA;
993 ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
994 AMR_SUBFRAME_SIZE);
996 p->fixed_gain[4] =
997 ff_amr_set_fixed_gain(fixed_gain_factor,
998 avpriv_scalarproduct_float_c(p->fixed_vector,
999 p->fixed_vector,
1000 AMR_SUBFRAME_SIZE) /
1001 AMR_SUBFRAME_SIZE,
1002 p->prediction_error,
1003 energy_mean[p->cur_frame_mode], energy_pred_fac);
1005 // The excitation feedback is calculated without any processing such
1006 // as fixed gain smoothing. This isn't mentioned in the specification.
1007 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
1008 p->excitation[i] *= p->pitch_gain[4];
1009 ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
1010 AMR_SUBFRAME_SIZE);
1012 // In the ref decoder, excitation is stored with no fractional bits.
1013 // This step prevents buzz in silent periods. The ref encoder can
1014 // emit long sequences with pitch factor greater than one. This
1015 // creates unwanted feedback if the excitation vector is nonzero.
1016 // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
1017 for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
1018 p->excitation[i] = truncf(p->excitation[i]);
1020 // Smooth fixed gain.
1021 // The specification is ambiguous, but in the reference source, the
1022 // smoothed value is NOT fed back into later fixed gain smoothing.
1023 synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
1024 p->lsf_avg, p->cur_frame_mode);
1026 synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
1027 synth_fixed_gain, spare_vector);
1029 if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
1030 synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
1031 // overflow detected -> rerun synthesis scaling pitch vector down
1032 // by a factor of 4, skipping pitch vector contribution emphasis
1033 // and adaptive gain control
1034 synthesis(p, p->lpc[subframe], synth_fixed_gain,
1035 synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
1037 postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
1039 // update buffers and history
1040 ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
1041 update_state(p);
1044 ff_acelp_apply_order_2_transfer_function(buf_out, buf_out, highpass_zeros,
1045 highpass_poles,
1046 highpass_gain * AMR_SAMPLE_SCALE,
1047 p->high_pass_mem, AMR_BLOCK_SIZE);
1049 /* Update averaged lsf vector (used for fixed gain smoothing).
1051 * Note that lsf_avg should not incorporate the current frame's LSFs
1052 * for fixed_gain_smooth.
1053 * The specification has an incorrect formula: the reference decoder uses
1054 * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
1055 ff_weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
1056 0.84, 0.16, LP_FILTER_ORDER);
1058 *got_frame_ptr = 1;
1060 /* return the amount of bytes consumed if everything was OK */
1061 return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
1065 AVCodec ff_amrnb_decoder = {
1066 .name = "amrnb",
1067 .type = AVMEDIA_TYPE_AUDIO,
1068 .id = AV_CODEC_ID_AMR_NB,
1069 .priv_data_size = sizeof(AMRContext),
1070 .init = amrnb_decode_init,
1071 .decode = amrnb_decode_frame,
1072 .capabilities = CODEC_CAP_DR1,
1073 .long_name = NULL_IF_CONFIG_SMALL("AMR-NB (Adaptive Multi-Rate NarrowBand)"),
1074 .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
1075 AV_SAMPLE_FMT_NONE },