lavfi: use const for AVFilterPad declarations in all filters.
[FFMpeg-mirror/mplayer-patches.git] / libavcodec / fft-test.c
blob1e4675019ca5c3785a03cb3d50197f2d4e371adb
1 /*
2 * (c) 2002 Fabrice Bellard
4 * This file is part of Libav.
6 * Libav is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * Libav is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with Libav; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 /**
22 * @file
23 * FFT and MDCT tests.
26 #include "libavutil/cpu.h"
27 #include "libavutil/mathematics.h"
28 #include "libavutil/lfg.h"
29 #include "libavutil/log.h"
30 #include "libavutil/time.h"
31 #include "fft.h"
32 #if CONFIG_FFT_FLOAT
33 #include "dct.h"
34 #include "rdft.h"
35 #endif
36 #include <math.h>
37 #if HAVE_UNISTD_H
38 #include <unistd.h>
39 #endif
40 #include <stdlib.h>
41 #include <string.h>
43 /* reference fft */
45 #define MUL16(a,b) ((a) * (b))
47 #define CMAC(pre, pim, are, aim, bre, bim) \
49 pre += (MUL16(are, bre) - MUL16(aim, bim));\
50 pim += (MUL16(are, bim) + MUL16(bre, aim));\
53 #if CONFIG_FFT_FLOAT
54 # define RANGE 1.0
55 # define REF_SCALE(x, bits) (x)
56 # define FMT "%10.6f"
57 #else
58 # define RANGE 16384
59 # define REF_SCALE(x, bits) ((x) / (1<<(bits)))
60 # define FMT "%6d"
61 #endif
63 struct {
64 float re, im;
65 } *exptab;
67 static void fft_ref_init(int nbits, int inverse)
69 int n, i;
70 double c1, s1, alpha;
72 n = 1 << nbits;
73 exptab = av_malloc((n / 2) * sizeof(*exptab));
75 for (i = 0; i < (n/2); i++) {
76 alpha = 2 * M_PI * (float)i / (float)n;
77 c1 = cos(alpha);
78 s1 = sin(alpha);
79 if (!inverse)
80 s1 = -s1;
81 exptab[i].re = c1;
82 exptab[i].im = s1;
86 static void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
88 int n, i, j, k, n2;
89 double tmp_re, tmp_im, s, c;
90 FFTComplex *q;
92 n = 1 << nbits;
93 n2 = n >> 1;
94 for (i = 0; i < n; i++) {
95 tmp_re = 0;
96 tmp_im = 0;
97 q = tab;
98 for (j = 0; j < n; j++) {
99 k = (i * j) & (n - 1);
100 if (k >= n2) {
101 c = -exptab[k - n2].re;
102 s = -exptab[k - n2].im;
103 } else {
104 c = exptab[k].re;
105 s = exptab[k].im;
107 CMAC(tmp_re, tmp_im, c, s, q->re, q->im);
108 q++;
110 tabr[i].re = REF_SCALE(tmp_re, nbits);
111 tabr[i].im = REF_SCALE(tmp_im, nbits);
115 static void imdct_ref(FFTSample *out, FFTSample *in, int nbits)
117 int n = 1<<nbits;
118 int k, i, a;
119 double sum, f;
121 for (i = 0; i < n; i++) {
122 sum = 0;
123 for (k = 0; k < n/2; k++) {
124 a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
125 f = cos(M_PI * a / (double)(2 * n));
126 sum += f * in[k];
128 out[i] = REF_SCALE(-sum, nbits - 2);
132 /* NOTE: no normalisation by 1 / N is done */
133 static void mdct_ref(FFTSample *output, FFTSample *input, int nbits)
135 int n = 1<<nbits;
136 int k, i;
137 double a, s;
139 /* do it by hand */
140 for (k = 0; k < n/2; k++) {
141 s = 0;
142 for (i = 0; i < n; i++) {
143 a = (2*M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n));
144 s += input[i] * cos(a);
146 output[k] = REF_SCALE(s, nbits - 1);
150 #if CONFIG_FFT_FLOAT
151 static void idct_ref(float *output, float *input, int nbits)
153 int n = 1<<nbits;
154 int k, i;
155 double a, s;
157 /* do it by hand */
158 for (i = 0; i < n; i++) {
159 s = 0.5 * input[0];
160 for (k = 1; k < n; k++) {
161 a = M_PI*k*(i+0.5) / n;
162 s += input[k] * cos(a);
164 output[i] = 2 * s / n;
167 static void dct_ref(float *output, float *input, int nbits)
169 int n = 1<<nbits;
170 int k, i;
171 double a, s;
173 /* do it by hand */
174 for (k = 0; k < n; k++) {
175 s = 0;
176 for (i = 0; i < n; i++) {
177 a = M_PI*k*(i+0.5) / n;
178 s += input[i] * cos(a);
180 output[k] = s;
183 #endif
186 static FFTSample frandom(AVLFG *prng)
188 return (int16_t)av_lfg_get(prng) / 32768.0 * RANGE;
191 static int check_diff(FFTSample *tab1, FFTSample *tab2, int n, double scale)
193 int i;
194 double max= 0;
195 double error= 0;
196 int err = 0;
198 for (i = 0; i < n; i++) {
199 double e = fabsf(tab1[i] - (tab2[i] / scale)) / RANGE;
200 if (e >= 1e-3) {
201 av_log(NULL, AV_LOG_ERROR, "ERROR %5d: "FMT" "FMT"\n",
202 i, tab1[i], tab2[i]);
203 err = 1;
205 error+= e*e;
206 if(e>max) max= e;
208 av_log(NULL, AV_LOG_INFO, "max:%f e:%g\n", max, sqrt(error)/n);
209 return err;
213 static void help(void)
215 av_log(NULL, AV_LOG_INFO,"usage: fft-test [-h] [-s] [-i] [-n b]\n"
216 "-h print this help\n"
217 "-s speed test\n"
218 "-m (I)MDCT test\n"
219 "-d (I)DCT test\n"
220 "-r (I)RDFT test\n"
221 "-i inverse transform test\n"
222 "-n b set the transform size to 2^b\n"
223 "-f x set scale factor for output data of (I)MDCT to x\n"
227 enum tf_transform {
228 TRANSFORM_FFT,
229 TRANSFORM_MDCT,
230 TRANSFORM_RDFT,
231 TRANSFORM_DCT,
234 #if !HAVE_GETOPT
235 #include "compat/getopt.c"
236 #endif
238 int main(int argc, char **argv)
240 FFTComplex *tab, *tab1, *tab_ref;
241 FFTSample *tab2;
242 int it, i, c;
243 int cpuflags;
244 int do_speed = 0;
245 int err = 1;
246 enum tf_transform transform = TRANSFORM_FFT;
247 int do_inverse = 0;
248 FFTContext s1, *s = &s1;
249 FFTContext m1, *m = &m1;
250 #if CONFIG_FFT_FLOAT
251 RDFTContext r1, *r = &r1;
252 DCTContext d1, *d = &d1;
253 int fft_size_2;
254 #endif
255 int fft_nbits, fft_size;
256 double scale = 1.0;
257 AVLFG prng;
258 av_lfg_init(&prng, 1);
260 fft_nbits = 9;
261 for(;;) {
262 c = getopt(argc, argv, "hsimrdn:f:c:");
263 if (c == -1)
264 break;
265 switch(c) {
266 case 'h':
267 help();
268 return 1;
269 case 's':
270 do_speed = 1;
271 break;
272 case 'i':
273 do_inverse = 1;
274 break;
275 case 'm':
276 transform = TRANSFORM_MDCT;
277 break;
278 case 'r':
279 transform = TRANSFORM_RDFT;
280 break;
281 case 'd':
282 transform = TRANSFORM_DCT;
283 break;
284 case 'n':
285 fft_nbits = atoi(optarg);
286 break;
287 case 'f':
288 scale = atof(optarg);
289 break;
290 case 'c':
291 cpuflags = av_parse_cpu_flags(optarg);
292 if (cpuflags < 0)
293 return 1;
294 av_set_cpu_flags_mask(cpuflags);
295 break;
299 fft_size = 1 << fft_nbits;
300 tab = av_malloc(fft_size * sizeof(FFTComplex));
301 tab1 = av_malloc(fft_size * sizeof(FFTComplex));
302 tab_ref = av_malloc(fft_size * sizeof(FFTComplex));
303 tab2 = av_malloc(fft_size * sizeof(FFTSample));
305 switch (transform) {
306 case TRANSFORM_MDCT:
307 av_log(NULL, AV_LOG_INFO,"Scale factor is set to %f\n", scale);
308 if (do_inverse)
309 av_log(NULL, AV_LOG_INFO,"IMDCT");
310 else
311 av_log(NULL, AV_LOG_INFO,"MDCT");
312 ff_mdct_init(m, fft_nbits, do_inverse, scale);
313 break;
314 case TRANSFORM_FFT:
315 if (do_inverse)
316 av_log(NULL, AV_LOG_INFO,"IFFT");
317 else
318 av_log(NULL, AV_LOG_INFO,"FFT");
319 ff_fft_init(s, fft_nbits, do_inverse);
320 fft_ref_init(fft_nbits, do_inverse);
321 break;
322 #if CONFIG_FFT_FLOAT
323 case TRANSFORM_RDFT:
324 if (do_inverse)
325 av_log(NULL, AV_LOG_INFO,"IDFT_C2R");
326 else
327 av_log(NULL, AV_LOG_INFO,"DFT_R2C");
328 ff_rdft_init(r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C);
329 fft_ref_init(fft_nbits, do_inverse);
330 break;
331 case TRANSFORM_DCT:
332 if (do_inverse)
333 av_log(NULL, AV_LOG_INFO,"DCT_III");
334 else
335 av_log(NULL, AV_LOG_INFO,"DCT_II");
336 ff_dct_init(d, fft_nbits, do_inverse ? DCT_III : DCT_II);
337 break;
338 #endif
339 default:
340 av_log(NULL, AV_LOG_ERROR, "Requested transform not supported\n");
341 return 1;
343 av_log(NULL, AV_LOG_INFO," %d test\n", fft_size);
345 /* generate random data */
347 for (i = 0; i < fft_size; i++) {
348 tab1[i].re = frandom(&prng);
349 tab1[i].im = frandom(&prng);
352 /* checking result */
353 av_log(NULL, AV_LOG_INFO,"Checking...\n");
355 switch (transform) {
356 case TRANSFORM_MDCT:
357 if (do_inverse) {
358 imdct_ref((FFTSample *)tab_ref, (FFTSample *)tab1, fft_nbits);
359 m->imdct_calc(m, tab2, (FFTSample *)tab1);
360 err = check_diff((FFTSample *)tab_ref, tab2, fft_size, scale);
361 } else {
362 mdct_ref((FFTSample *)tab_ref, (FFTSample *)tab1, fft_nbits);
364 m->mdct_calc(m, tab2, (FFTSample *)tab1);
366 err = check_diff((FFTSample *)tab_ref, tab2, fft_size / 2, scale);
368 break;
369 case TRANSFORM_FFT:
370 memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
371 s->fft_permute(s, tab);
372 s->fft_calc(s, tab);
374 fft_ref(tab_ref, tab1, fft_nbits);
375 err = check_diff((FFTSample *)tab_ref, (FFTSample *)tab, fft_size * 2, 1.0);
376 break;
377 #if CONFIG_FFT_FLOAT
378 case TRANSFORM_RDFT:
379 fft_size_2 = fft_size >> 1;
380 if (do_inverse) {
381 tab1[ 0].im = 0;
382 tab1[fft_size_2].im = 0;
383 for (i = 1; i < fft_size_2; i++) {
384 tab1[fft_size_2+i].re = tab1[fft_size_2-i].re;
385 tab1[fft_size_2+i].im = -tab1[fft_size_2-i].im;
388 memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
389 tab2[1] = tab1[fft_size_2].re;
391 r->rdft_calc(r, tab2);
392 fft_ref(tab_ref, tab1, fft_nbits);
393 for (i = 0; i < fft_size; i++) {
394 tab[i].re = tab2[i];
395 tab[i].im = 0;
397 err = check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 0.5);
398 } else {
399 for (i = 0; i < fft_size; i++) {
400 tab2[i] = tab1[i].re;
401 tab1[i].im = 0;
403 r->rdft_calc(r, tab2);
404 fft_ref(tab_ref, tab1, fft_nbits);
405 tab_ref[0].im = tab_ref[fft_size_2].re;
406 err = check_diff((float *)tab_ref, (float *)tab2, fft_size, 1.0);
408 break;
409 case TRANSFORM_DCT:
410 memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
411 d->dct_calc(d, tab);
412 if (do_inverse) {
413 idct_ref(tab_ref, tab1, fft_nbits);
414 } else {
415 dct_ref(tab_ref, tab1, fft_nbits);
417 err = check_diff((float *)tab_ref, (float *)tab, fft_size, 1.0);
418 break;
419 #endif
422 /* do a speed test */
424 if (do_speed) {
425 int64_t time_start, duration;
426 int nb_its;
428 av_log(NULL, AV_LOG_INFO,"Speed test...\n");
429 /* we measure during about 1 seconds */
430 nb_its = 1;
431 for(;;) {
432 time_start = av_gettime();
433 for (it = 0; it < nb_its; it++) {
434 switch (transform) {
435 case TRANSFORM_MDCT:
436 if (do_inverse) {
437 m->imdct_calc(m, (FFTSample *)tab, (FFTSample *)tab1);
438 } else {
439 m->mdct_calc(m, (FFTSample *)tab, (FFTSample *)tab1);
441 break;
442 case TRANSFORM_FFT:
443 memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
444 s->fft_calc(s, tab);
445 break;
446 #if CONFIG_FFT_FLOAT
447 case TRANSFORM_RDFT:
448 memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
449 r->rdft_calc(r, tab2);
450 break;
451 case TRANSFORM_DCT:
452 memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
453 d->dct_calc(d, tab2);
454 break;
455 #endif
458 duration = av_gettime() - time_start;
459 if (duration >= 1000000)
460 break;
461 nb_its *= 2;
463 av_log(NULL, AV_LOG_INFO,"time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
464 (double)duration / nb_its,
465 (double)duration / 1000000.0,
466 nb_its);
469 switch (transform) {
470 case TRANSFORM_MDCT:
471 ff_mdct_end(m);
472 break;
473 case TRANSFORM_FFT:
474 ff_fft_end(s);
475 break;
476 #if CONFIG_FFT_FLOAT
477 case TRANSFORM_RDFT:
478 ff_rdft_end(r);
479 break;
480 case TRANSFORM_DCT:
481 ff_dct_end(d);
482 break;
483 #endif
486 av_free(tab);
487 av_free(tab1);
488 av_free(tab2);
489 av_free(tab_ref);
490 av_free(exptab);
492 return err;