Hardcode AC-3 critical band tables when CONFIG_HARDCODED_TABLES is set.
[FFMpeg-mirror/lagarith.git] / libavcodec / mdct.c
bloba2b9e8b423471a2c8dcc41b4feae0f431c81de5a
1 /*
2 * MDCT/IMDCT transforms
3 * Copyright (c) 2002 Fabrice Bellard
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "dsputil.h"
23 /**
24 * @file libavcodec/mdct.c
25 * MDCT/IMDCT transforms.
28 // Generate a Kaiser-Bessel Derived Window.
29 #define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
30 av_cold void ff_kbd_window_init(float *window, float alpha, int n)
32 int i, j;
33 double sum = 0.0, bessel, tmp;
34 double local_window[n];
35 double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
37 for (i = 0; i < n; i++) {
38 tmp = i * (n - i) * alpha2;
39 bessel = 1.0;
40 for (j = BESSEL_I0_ITER; j > 0; j--)
41 bessel = bessel * tmp / (j * j) + 1;
42 sum += bessel;
43 local_window[i] = sum;
46 sum++;
47 for (i = 0; i < n; i++)
48 window[i] = sqrt(local_window[i] / sum);
51 DECLARE_ALIGNED(16, float, ff_sine_32 [ 32]);
52 DECLARE_ALIGNED(16, float, ff_sine_64 [ 64]);
53 DECLARE_ALIGNED(16, float, ff_sine_128 [ 128]);
54 DECLARE_ALIGNED(16, float, ff_sine_256 [ 256]);
55 DECLARE_ALIGNED(16, float, ff_sine_512 [ 512]);
56 DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
57 DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
58 DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
59 float * const ff_sine_windows[] = {
60 NULL, NULL, NULL, NULL, NULL, // unused
61 ff_sine_32 , ff_sine_64 ,
62 ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024, ff_sine_2048, ff_sine_4096
65 // Generate a sine window.
66 av_cold void ff_sine_window_init(float *window, int n) {
67 int i;
68 for(i = 0; i < n; i++)
69 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
72 /**
73 * init MDCT or IMDCT computation.
75 av_cold int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale)
77 int n, n4, i;
78 double alpha, theta;
79 int tstep;
81 memset(s, 0, sizeof(*s));
82 n = 1 << nbits;
83 s->mdct_bits = nbits;
84 s->mdct_size = n;
85 n4 = n >> 2;
86 s->permutation = FF_MDCT_PERM_NONE;
88 if (ff_fft_init(s, s->mdct_bits - 2, inverse) < 0)
89 goto fail;
91 s->tcos = av_malloc(n/2 * sizeof(FFTSample));
92 if (!s->tcos)
93 goto fail;
95 switch (s->permutation) {
96 case FF_MDCT_PERM_NONE:
97 s->tsin = s->tcos + n4;
98 tstep = 1;
99 break;
100 case FF_MDCT_PERM_INTERLEAVE:
101 s->tsin = s->tcos + 1;
102 tstep = 2;
103 break;
104 default:
105 goto fail;
108 theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
109 scale = sqrt(fabs(scale));
110 for(i=0;i<n4;i++) {
111 alpha = 2 * M_PI * (i + theta) / n;
112 s->tcos[i*tstep] = -cos(alpha) * scale;
113 s->tsin[i*tstep] = -sin(alpha) * scale;
115 return 0;
116 fail:
117 ff_mdct_end(s);
118 return -1;
121 /* complex multiplication: p = a * b */
122 #define CMUL(pre, pim, are, aim, bre, bim) \
124 FFTSample _are = (are);\
125 FFTSample _aim = (aim);\
126 FFTSample _bre = (bre);\
127 FFTSample _bim = (bim);\
128 (pre) = _are * _bre - _aim * _bim;\
129 (pim) = _are * _bim + _aim * _bre;\
133 * Compute the middle half of the inverse MDCT of size N = 2^nbits,
134 * thus excluding the parts that can be derived by symmetry
135 * @param output N/2 samples
136 * @param input N/2 samples
138 void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input)
140 int k, n8, n4, n2, n, j;
141 const uint16_t *revtab = s->revtab;
142 const FFTSample *tcos = s->tcos;
143 const FFTSample *tsin = s->tsin;
144 const FFTSample *in1, *in2;
145 FFTComplex *z = (FFTComplex *)output;
147 n = 1 << s->mdct_bits;
148 n2 = n >> 1;
149 n4 = n >> 2;
150 n8 = n >> 3;
152 /* pre rotation */
153 in1 = input;
154 in2 = input + n2 - 1;
155 for(k = 0; k < n4; k++) {
156 j=revtab[k];
157 CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
158 in1 += 2;
159 in2 -= 2;
161 ff_fft_calc(s, z);
163 /* post rotation + reordering */
164 for(k = 0; k < n8; k++) {
165 FFTSample r0, i0, r1, i1;
166 CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
167 CMUL(r1, i0, z[n8+k ].im, z[n8+k ].re, tsin[n8+k ], tcos[n8+k ]);
168 z[n8-k-1].re = r0;
169 z[n8-k-1].im = i0;
170 z[n8+k ].re = r1;
171 z[n8+k ].im = i1;
176 * Compute inverse MDCT of size N = 2^nbits
177 * @param output N samples
178 * @param input N/2 samples
180 void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input)
182 int k;
183 int n = 1 << s->mdct_bits;
184 int n2 = n >> 1;
185 int n4 = n >> 2;
187 ff_imdct_half_c(s, output+n4, input);
189 for(k = 0; k < n4; k++) {
190 output[k] = -output[n2-k-1];
191 output[n-k-1] = output[n2+k];
196 * Compute MDCT of size N = 2^nbits
197 * @param input N samples
198 * @param out N/2 samples
200 void ff_mdct_calc_c(FFTContext *s, FFTSample *out, const FFTSample *input)
202 int i, j, n, n8, n4, n2, n3;
203 FFTSample re, im;
204 const uint16_t *revtab = s->revtab;
205 const FFTSample *tcos = s->tcos;
206 const FFTSample *tsin = s->tsin;
207 FFTComplex *x = (FFTComplex *)out;
209 n = 1 << s->mdct_bits;
210 n2 = n >> 1;
211 n4 = n >> 2;
212 n8 = n >> 3;
213 n3 = 3 * n4;
215 /* pre rotation */
216 for(i=0;i<n8;i++) {
217 re = -input[2*i+3*n4] - input[n3-1-2*i];
218 im = -input[n4+2*i] + input[n4-1-2*i];
219 j = revtab[i];
220 CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
222 re = input[2*i] - input[n2-1-2*i];
223 im = -(input[n2+2*i] + input[n-1-2*i]);
224 j = revtab[n8 + i];
225 CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
228 ff_fft_calc(s, x);
230 /* post rotation */
231 for(i=0;i<n8;i++) {
232 FFTSample r0, i0, r1, i1;
233 CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
234 CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]);
235 x[n8-i-1].re = r0;
236 x[n8-i-1].im = i0;
237 x[n8+i ].re = r1;
238 x[n8+i ].im = i1;
242 av_cold void ff_mdct_end(FFTContext *s)
244 av_freep(&s->tcos);
245 ff_fft_end(s);