Remove the 3-front-channel layout from the list of channel layout
[FFMpeg-mirror/lagarith.git] / libavcodec / lpc.c
blob896db51759dc2e06bd07f690a36f8e36f66b239a
1 /**
2 * LPC utility code
3 * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 #include "libavutil/lls.h"
23 #include "dsputil.h"
25 #define LPC_USE_DOUBLE
26 #include "lpc.h"
29 /**
30 * Quantize LPC coefficients
32 static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
33 int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
35 int i;
36 double cmax, error;
37 int32_t qmax;
38 int sh;
40 /* define maximum levels */
41 qmax = (1 << (precision - 1)) - 1;
43 /* find maximum coefficient value */
44 cmax = 0.0;
45 for(i=0; i<order; i++) {
46 cmax= FFMAX(cmax, fabs(lpc_in[i]));
49 /* if maximum value quantizes to zero, return all zeros */
50 if(cmax * (1 << max_shift) < 1.0) {
51 *shift = zero_shift;
52 memset(lpc_out, 0, sizeof(int32_t) * order);
53 return;
56 /* calculate level shift which scales max coeff to available bits */
57 sh = max_shift;
58 while((cmax * (1 << sh) > qmax) && (sh > 0)) {
59 sh--;
62 /* since negative shift values are unsupported in decoder, scale down
63 coefficients instead */
64 if(sh == 0 && cmax > qmax) {
65 double scale = ((double)qmax) / cmax;
66 for(i=0; i<order; i++) {
67 lpc_in[i] *= scale;
71 /* output quantized coefficients and level shift */
72 error=0;
73 for(i=0; i<order; i++) {
74 error -= lpc_in[i] * (1 << sh);
75 lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
76 error -= lpc_out[i];
78 *shift = sh;
81 static int estimate_best_order(double *ref, int min_order, int max_order)
83 int i, est;
85 est = min_order;
86 for(i=max_order-1; i>=min_order-1; i--) {
87 if(ref[i] > 0.10) {
88 est = i+1;
89 break;
92 return est;
95 /**
96 * Calculate LPC coefficients for multiple orders
98 * @param use_lpc LPC method for determining coefficients
99 * 0 = LPC with fixed pre-defined coeffs
100 * 1 = LPC with coeffs determined by Levinson-Durbin recursion
101 * 2+ = LPC with coeffs determined by Cholesky factorization using (use_lpc-1) passes.
103 int ff_lpc_calc_coefs(DSPContext *s,
104 const int32_t *samples, int blocksize, int min_order,
105 int max_order, int precision,
106 int32_t coefs[][MAX_LPC_ORDER], int *shift, int use_lpc,
107 int omethod, int max_shift, int zero_shift)
109 double autoc[MAX_LPC_ORDER+1];
110 double ref[MAX_LPC_ORDER];
111 double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
112 int i, j, pass;
113 int opt_order;
115 assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER && use_lpc > 0);
117 if(use_lpc == 1){
118 s->flac_compute_autocorr(samples, blocksize, max_order, autoc);
120 compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
122 for(i=0; i<max_order; i++)
123 ref[i] = fabs(lpc[i][i]);
124 }else{
125 LLSModel m[2];
126 double var[MAX_LPC_ORDER+1], av_uninit(weight);
128 for(pass=0; pass<use_lpc-1; pass++){
129 av_init_lls(&m[pass&1], max_order);
131 weight=0;
132 for(i=max_order; i<blocksize; i++){
133 for(j=0; j<=max_order; j++)
134 var[j]= samples[i-j];
136 if(pass){
137 double eval, inv, rinv;
138 eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
139 eval= (512>>pass) + fabs(eval - var[0]);
140 inv = 1/eval;
141 rinv = sqrt(inv);
142 for(j=0; j<=max_order; j++)
143 var[j] *= rinv;
144 weight += inv;
145 }else
146 weight++;
148 av_update_lls(&m[pass&1], var, 1.0);
150 av_solve_lls(&m[pass&1], 0.001, 0);
153 for(i=0; i<max_order; i++){
154 for(j=0; j<max_order; j++)
155 lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
156 ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
158 for(i=max_order-1; i>0; i--)
159 ref[i] = ref[i-1] - ref[i];
161 opt_order = max_order;
163 if(omethod == ORDER_METHOD_EST) {
164 opt_order = estimate_best_order(ref, min_order, max_order);
165 i = opt_order-1;
166 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
167 } else {
168 for(i=min_order-1; i<max_order; i++) {
169 quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
173 return opt_order;