Remove the 3-front-channel layout from the list of channel layout
[FFMpeg-mirror/lagarith.git] / libavcodec / adpcm.c
blob8184378a16570ec21382ef520975c168a0c148d5
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "avcodec.h"
22 #include "get_bits.h"
23 #include "put_bits.h"
24 #include "bytestream.h"
26 /**
27 * @file libavcodec/adpcm.c
28 * ADPCM codecs.
29 * First version by Francois Revol (revol@free.fr)
30 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31 * by Mike Melanson (melanson@pcisys.net)
32 * CD-ROM XA ADPCM codec by BERO
33 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
41 * Features and limitations:
43 * Reference documents:
44 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46 * http://openquicktime.sourceforge.net/plugins.htm
47 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
51 * CD-ROM XA:
52 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54 * readstr http://www.geocities.co.jp/Playtown/2004/
57 #define BLKSIZE 1024
59 /* step_table[] and index_table[] are from the ADPCM reference source */
60 /* This is the index table: */
61 static const int index_table[16] = {
62 -1, -1, -1, -1, 2, 4, 6, 8,
63 -1, -1, -1, -1, 2, 4, 6, 8,
66 /**
67 * This is the step table. Note that many programs use slight deviations from
68 * this table, but such deviations are negligible:
70 static const int step_table[89] = {
71 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
82 /* These are for MS-ADPCM */
83 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84 static const int AdaptationTable[] = {
85 230, 230, 230, 230, 307, 409, 512, 614,
86 768, 614, 512, 409, 307, 230, 230, 230
89 static const uint8_t AdaptCoeff1[] = {
90 64, 128, 0, 48, 60, 115, 98
93 static const int8_t AdaptCoeff2[] = {
94 0, -64, 0, 16, 0, -52, -58
97 /* These are for CD-ROM XA ADPCM */
98 static const int xa_adpcm_table[5][2] = {
99 { 0, 0 },
100 { 60, 0 },
101 { 115, -52 },
102 { 98, -55 },
103 { 122, -60 }
106 static const int ea_adpcm_table[] = {
107 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
108 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
111 // padded to zero where table size is less then 16
112 static const int swf_index_tables[4][16] = {
113 /*2*/ { -1, 2 },
114 /*3*/ { -1, -1, 2, 4 },
115 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
116 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
119 static const int yamaha_indexscale[] = {
120 230, 230, 230, 230, 307, 409, 512, 614,
121 230, 230, 230, 230, 307, 409, 512, 614
124 static const int yamaha_difflookup[] = {
125 1, 3, 5, 7, 9, 11, 13, 15,
126 -1, -3, -5, -7, -9, -11, -13, -15
129 /* end of tables */
131 typedef struct ADPCMChannelStatus {
132 int predictor;
133 short int step_index;
134 int step;
135 /* for encoding */
136 int prev_sample;
138 /* MS version */
139 short sample1;
140 short sample2;
141 int coeff1;
142 int coeff2;
143 int idelta;
144 } ADPCMChannelStatus;
146 typedef struct ADPCMContext {
147 ADPCMChannelStatus status[6];
148 } ADPCMContext;
150 /* XXX: implement encoding */
152 #if CONFIG_ENCODERS
153 static av_cold int adpcm_encode_init(AVCodecContext *avctx)
155 if (avctx->channels > 2)
156 return -1; /* only stereo or mono =) */
158 if(avctx->trellis && (unsigned)avctx->trellis > 16U){
159 av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
160 return -1;
163 switch(avctx->codec->id) {
164 case CODEC_ID_ADPCM_IMA_WAV:
165 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
166 /* and we have 4 bytes per channel overhead */
167 avctx->block_align = BLKSIZE;
168 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
169 break;
170 case CODEC_ID_ADPCM_IMA_QT:
171 avctx->frame_size = 64;
172 avctx->block_align = 34 * avctx->channels;
173 break;
174 case CODEC_ID_ADPCM_MS:
175 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
176 /* and we have 7 bytes per channel overhead */
177 avctx->block_align = BLKSIZE;
178 break;
179 case CODEC_ID_ADPCM_YAMAHA:
180 avctx->frame_size = BLKSIZE * avctx->channels;
181 avctx->block_align = BLKSIZE;
182 break;
183 case CODEC_ID_ADPCM_SWF:
184 if (avctx->sample_rate != 11025 &&
185 avctx->sample_rate != 22050 &&
186 avctx->sample_rate != 44100) {
187 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
188 return -1;
190 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
191 break;
192 default:
193 return -1;
194 break;
197 avctx->coded_frame= avcodec_alloc_frame();
198 avctx->coded_frame->key_frame= 1;
200 return 0;
203 static av_cold int adpcm_encode_close(AVCodecContext *avctx)
205 av_freep(&avctx->coded_frame);
207 return 0;
211 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
213 int delta = sample - c->prev_sample;
214 int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
215 c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
216 c->prev_sample = av_clip_int16(c->prev_sample);
217 c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
218 return nibble;
221 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
223 int predictor, nibble, bias;
225 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
227 nibble= sample - predictor;
228 if(nibble>=0) bias= c->idelta/2;
229 else bias=-c->idelta/2;
231 nibble= (nibble + bias) / c->idelta;
232 nibble= av_clip(nibble, -8, 7)&0x0F;
234 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
236 c->sample2 = c->sample1;
237 c->sample1 = av_clip_int16(predictor);
239 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
240 if (c->idelta < 16) c->idelta = 16;
242 return nibble;
245 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
247 int nibble, delta;
249 if(!c->step) {
250 c->predictor = 0;
251 c->step = 127;
254 delta = sample - c->predictor;
256 nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
258 c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
259 c->predictor = av_clip_int16(c->predictor);
260 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
261 c->step = av_clip(c->step, 127, 24567);
263 return nibble;
266 typedef struct TrellisPath {
267 int nibble;
268 int prev;
269 } TrellisPath;
271 typedef struct TrellisNode {
272 uint32_t ssd;
273 int path;
274 int sample1;
275 int sample2;
276 int step;
277 } TrellisNode;
279 static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
280 uint8_t *dst, ADPCMChannelStatus *c, int n)
282 #define FREEZE_INTERVAL 128
283 //FIXME 6% faster if frontier is a compile-time constant
284 const int frontier = 1 << avctx->trellis;
285 const int stride = avctx->channels;
286 const int version = avctx->codec->id;
287 const int max_paths = frontier*FREEZE_INTERVAL;
288 TrellisPath paths[max_paths], *p;
289 TrellisNode node_buf[2][frontier];
290 TrellisNode *nodep_buf[2][frontier];
291 TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
292 TrellisNode **nodes_next = nodep_buf[1];
293 int pathn = 0, froze = -1, i, j, k;
295 assert(!(max_paths&(max_paths-1)));
297 memset(nodep_buf, 0, sizeof(nodep_buf));
298 nodes[0] = &node_buf[1][0];
299 nodes[0]->ssd = 0;
300 nodes[0]->path = 0;
301 nodes[0]->step = c->step_index;
302 nodes[0]->sample1 = c->sample1;
303 nodes[0]->sample2 = c->sample2;
304 if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
305 nodes[0]->sample1 = c->prev_sample;
306 if(version == CODEC_ID_ADPCM_MS)
307 nodes[0]->step = c->idelta;
308 if(version == CODEC_ID_ADPCM_YAMAHA) {
309 if(c->step == 0) {
310 nodes[0]->step = 127;
311 nodes[0]->sample1 = 0;
312 } else {
313 nodes[0]->step = c->step;
314 nodes[0]->sample1 = c->predictor;
318 for(i=0; i<n; i++) {
319 TrellisNode *t = node_buf[i&1];
320 TrellisNode **u;
321 int sample = samples[i*stride];
322 memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
323 for(j=0; j<frontier && nodes[j]; j++) {
324 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
325 const int range = (j < frontier/2) ? 1 : 0;
326 const int step = nodes[j]->step;
327 int nidx;
328 if(version == CODEC_ID_ADPCM_MS) {
329 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
330 const int div = (sample - predictor) / step;
331 const int nmin = av_clip(div-range, -8, 6);
332 const int nmax = av_clip(div+range, -7, 7);
333 for(nidx=nmin; nidx<=nmax; nidx++) {
334 const int nibble = nidx & 0xf;
335 int dec_sample = predictor + nidx * step;
336 #define STORE_NODE(NAME, STEP_INDEX)\
337 int d;\
338 uint32_t ssd;\
339 dec_sample = av_clip_int16(dec_sample);\
340 d = sample - dec_sample;\
341 ssd = nodes[j]->ssd + d*d;\
342 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
343 continue;\
344 /* Collapse any two states with the same previous sample value. \
345 * One could also distinguish states by step and by 2nd to last
346 * sample, but the effects of that are negligible. */\
347 for(k=0; k<frontier && nodes_next[k]; k++) {\
348 if(dec_sample == nodes_next[k]->sample1) {\
349 assert(ssd >= nodes_next[k]->ssd);\
350 goto next_##NAME;\
353 for(k=0; k<frontier; k++) {\
354 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
355 TrellisNode *u = nodes_next[frontier-1];\
356 if(!u) {\
357 assert(pathn < max_paths);\
358 u = t++;\
359 u->path = pathn++;\
361 u->ssd = ssd;\
362 u->step = STEP_INDEX;\
363 u->sample2 = nodes[j]->sample1;\
364 u->sample1 = dec_sample;\
365 paths[u->path].nibble = nibble;\
366 paths[u->path].prev = nodes[j]->path;\
367 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
368 nodes_next[k] = u;\
369 break;\
372 next_##NAME:;
373 STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
375 } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
376 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
377 const int predictor = nodes[j]->sample1;\
378 const int div = (sample - predictor) * 4 / STEP_TABLE;\
379 int nmin = av_clip(div-range, -7, 6);\
380 int nmax = av_clip(div+range, -6, 7);\
381 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
382 if(nmax<0) nmax--;\
383 for(nidx=nmin; nidx<=nmax; nidx++) {\
384 const int nibble = nidx<0 ? 7-nidx : nidx;\
385 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
386 STORE_NODE(NAME, STEP_INDEX);\
388 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
389 } else { //CODEC_ID_ADPCM_YAMAHA
390 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
391 #undef LOOP_NODES
392 #undef STORE_NODE
396 u = nodes;
397 nodes = nodes_next;
398 nodes_next = u;
400 // prevent overflow
401 if(nodes[0]->ssd > (1<<28)) {
402 for(j=1; j<frontier && nodes[j]; j++)
403 nodes[j]->ssd -= nodes[0]->ssd;
404 nodes[0]->ssd = 0;
407 // merge old paths to save memory
408 if(i == froze + FREEZE_INTERVAL) {
409 p = &paths[nodes[0]->path];
410 for(k=i; k>froze; k--) {
411 dst[k] = p->nibble;
412 p = &paths[p->prev];
414 froze = i;
415 pathn = 0;
416 // other nodes might use paths that don't coincide with the frozen one.
417 // checking which nodes do so is too slow, so just kill them all.
418 // this also slightly improves quality, but I don't know why.
419 memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
423 p = &paths[nodes[0]->path];
424 for(i=n-1; i>froze; i--) {
425 dst[i] = p->nibble;
426 p = &paths[p->prev];
429 c->predictor = nodes[0]->sample1;
430 c->sample1 = nodes[0]->sample1;
431 c->sample2 = nodes[0]->sample2;
432 c->step_index = nodes[0]->step;
433 c->step = nodes[0]->step;
434 c->idelta = nodes[0]->step;
437 static int adpcm_encode_frame(AVCodecContext *avctx,
438 unsigned char *frame, int buf_size, void *data)
440 int n, i, st;
441 short *samples;
442 unsigned char *dst;
443 ADPCMContext *c = avctx->priv_data;
445 dst = frame;
446 samples = (short *)data;
447 st= avctx->channels == 2;
448 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
450 switch(avctx->codec->id) {
451 case CODEC_ID_ADPCM_IMA_WAV:
452 n = avctx->frame_size / 8;
453 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
454 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
455 bytestream_put_le16(&dst, c->status[0].prev_sample);
456 *dst++ = (unsigned char)c->status[0].step_index;
457 *dst++ = 0; /* unknown */
458 samples++;
459 if (avctx->channels == 2) {
460 c->status[1].prev_sample = (signed short)samples[0];
461 /* c->status[1].step_index = 0; */
462 bytestream_put_le16(&dst, c->status[1].prev_sample);
463 *dst++ = (unsigned char)c->status[1].step_index;
464 *dst++ = 0;
465 samples++;
468 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
469 if(avctx->trellis > 0) {
470 uint8_t buf[2][n*8];
471 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
472 if(avctx->channels == 2)
473 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
474 for(i=0; i<n; i++) {
475 *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
476 *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
477 *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
478 *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
479 if (avctx->channels == 2) {
480 *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
481 *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
482 *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
483 *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
486 } else
487 for (; n>0; n--) {
488 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
489 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
490 dst++;
491 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
492 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
493 dst++;
494 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
495 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
496 dst++;
497 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
498 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
499 dst++;
500 /* right channel */
501 if (avctx->channels == 2) {
502 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
503 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
504 dst++;
505 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
506 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
507 dst++;
508 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
509 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
510 dst++;
511 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
512 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
513 dst++;
515 samples += 8 * avctx->channels;
517 break;
518 case CODEC_ID_ADPCM_IMA_QT:
520 int ch, i;
521 PutBitContext pb;
522 init_put_bits(&pb, dst, buf_size*8);
524 for(ch=0; ch<avctx->channels; ch++){
525 put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
526 put_bits(&pb, 7, c->status[ch].step_index);
527 if(avctx->trellis > 0) {
528 uint8_t buf[64];
529 adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
530 for(i=0; i<64; i++)
531 put_bits(&pb, 4, buf[i^1]);
532 c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
533 } else {
534 for (i=0; i<64; i+=2){
535 int t1, t2;
536 t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
537 t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
538 put_bits(&pb, 4, t2);
539 put_bits(&pb, 4, t1);
541 c->status[ch].prev_sample &= ~0x7F;
545 dst += put_bits_count(&pb)>>3;
546 break;
548 case CODEC_ID_ADPCM_SWF:
550 int i;
551 PutBitContext pb;
552 init_put_bits(&pb, dst, buf_size*8);
554 n = avctx->frame_size-1;
556 //Store AdpcmCodeSize
557 put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
559 //Init the encoder state
560 for(i=0; i<avctx->channels; i++){
561 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
562 put_sbits(&pb, 16, samples[i]);
563 put_bits(&pb, 6, c->status[i].step_index);
564 c->status[i].prev_sample = (signed short)samples[i];
567 if(avctx->trellis > 0) {
568 uint8_t buf[2][n];
569 adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
570 if (avctx->channels == 2)
571 adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
572 for(i=0; i<n; i++) {
573 put_bits(&pb, 4, buf[0][i]);
574 if (avctx->channels == 2)
575 put_bits(&pb, 4, buf[1][i]);
577 } else {
578 for (i=1; i<avctx->frame_size; i++) {
579 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
580 if (avctx->channels == 2)
581 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
584 flush_put_bits(&pb);
585 dst += put_bits_count(&pb)>>3;
586 break;
588 case CODEC_ID_ADPCM_MS:
589 for(i=0; i<avctx->channels; i++){
590 int predictor=0;
592 *dst++ = predictor;
593 c->status[i].coeff1 = AdaptCoeff1[predictor];
594 c->status[i].coeff2 = AdaptCoeff2[predictor];
596 for(i=0; i<avctx->channels; i++){
597 if (c->status[i].idelta < 16)
598 c->status[i].idelta = 16;
600 bytestream_put_le16(&dst, c->status[i].idelta);
602 for(i=0; i<avctx->channels; i++){
603 c->status[i].sample2= *samples++;
605 for(i=0; i<avctx->channels; i++){
606 c->status[i].sample1= *samples++;
608 bytestream_put_le16(&dst, c->status[i].sample1);
610 for(i=0; i<avctx->channels; i++)
611 bytestream_put_le16(&dst, c->status[i].sample2);
613 if(avctx->trellis > 0) {
614 int n = avctx->block_align - 7*avctx->channels;
615 uint8_t buf[2][n];
616 if(avctx->channels == 1) {
617 n *= 2;
618 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
619 for(i=0; i<n; i+=2)
620 *dst++ = (buf[0][i] << 4) | buf[0][i+1];
621 } else {
622 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
623 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
624 for(i=0; i<n; i++)
625 *dst++ = (buf[0][i] << 4) | buf[1][i];
627 } else
628 for(i=7*avctx->channels; i<avctx->block_align; i++) {
629 int nibble;
630 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
631 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
632 *dst++ = nibble;
634 break;
635 case CODEC_ID_ADPCM_YAMAHA:
636 n = avctx->frame_size / 2;
637 if(avctx->trellis > 0) {
638 uint8_t buf[2][n*2];
639 n *= 2;
640 if(avctx->channels == 1) {
641 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
642 for(i=0; i<n; i+=2)
643 *dst++ = buf[0][i] | (buf[0][i+1] << 4);
644 } else {
645 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
646 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
647 for(i=0; i<n; i++)
648 *dst++ = buf[0][i] | (buf[1][i] << 4);
650 } else
651 for (; n>0; n--) {
652 for(i = 0; i < avctx->channels; i++) {
653 int nibble;
654 nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
655 nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
656 *dst++ = nibble;
658 samples += 2 * avctx->channels;
660 break;
661 default:
662 return -1;
664 return dst - frame;
666 #endif //CONFIG_ENCODERS
668 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
670 ADPCMContext *c = avctx->priv_data;
671 unsigned int max_channels = 2;
673 switch(avctx->codec->id) {
674 case CODEC_ID_ADPCM_EA_R1:
675 case CODEC_ID_ADPCM_EA_R2:
676 case CODEC_ID_ADPCM_EA_R3:
677 max_channels = 6;
678 break;
680 if(avctx->channels > max_channels){
681 return -1;
684 switch(avctx->codec->id) {
685 case CODEC_ID_ADPCM_CT:
686 c->status[0].step = c->status[1].step = 511;
687 break;
688 case CODEC_ID_ADPCM_IMA_WS:
689 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
690 c->status[0].predictor = AV_RL32(avctx->extradata);
691 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
693 break;
694 default:
695 break;
697 avctx->sample_fmt = SAMPLE_FMT_S16;
698 return 0;
701 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
703 int step_index;
704 int predictor;
705 int sign, delta, diff, step;
707 step = step_table[c->step_index];
708 step_index = c->step_index + index_table[(unsigned)nibble];
709 if (step_index < 0) step_index = 0;
710 else if (step_index > 88) step_index = 88;
712 sign = nibble & 8;
713 delta = nibble & 7;
714 /* perform direct multiplication instead of series of jumps proposed by
715 * the reference ADPCM implementation since modern CPUs can do the mults
716 * quickly enough */
717 diff = ((2 * delta + 1) * step) >> shift;
718 predictor = c->predictor;
719 if (sign) predictor -= diff;
720 else predictor += diff;
722 c->predictor = av_clip_int16(predictor);
723 c->step_index = step_index;
725 return (short)c->predictor;
728 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
730 int predictor;
732 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
733 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
735 c->sample2 = c->sample1;
736 c->sample1 = av_clip_int16(predictor);
737 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
738 if (c->idelta < 16) c->idelta = 16;
740 return c->sample1;
743 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
745 int sign, delta, diff;
746 int new_step;
748 sign = nibble & 8;
749 delta = nibble & 7;
750 /* perform direct multiplication instead of series of jumps proposed by
751 * the reference ADPCM implementation since modern CPUs can do the mults
752 * quickly enough */
753 diff = ((2 * delta + 1) * c->step) >> 3;
754 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
755 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
756 c->predictor = av_clip_int16(c->predictor);
757 /* calculate new step and clamp it to range 511..32767 */
758 new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
759 c->step = av_clip(new_step, 511, 32767);
761 return (short)c->predictor;
764 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
766 int sign, delta, diff;
768 sign = nibble & (1<<(size-1));
769 delta = nibble & ((1<<(size-1))-1);
770 diff = delta << (7 + c->step + shift);
772 /* clamp result */
773 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
775 /* calculate new step */
776 if (delta >= (2*size - 3) && c->step < 3)
777 c->step++;
778 else if (delta == 0 && c->step > 0)
779 c->step--;
781 return (short) c->predictor;
784 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
786 if(!c->step) {
787 c->predictor = 0;
788 c->step = 127;
791 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
792 c->predictor = av_clip_int16(c->predictor);
793 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
794 c->step = av_clip(c->step, 127, 24567);
795 return c->predictor;
798 static void xa_decode(short *out, const unsigned char *in,
799 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
801 int i, j;
802 int shift,filter,f0,f1;
803 int s_1,s_2;
804 int d,s,t;
806 for(i=0;i<4;i++) {
808 shift = 12 - (in[4+i*2] & 15);
809 filter = in[4+i*2] >> 4;
810 f0 = xa_adpcm_table[filter][0];
811 f1 = xa_adpcm_table[filter][1];
813 s_1 = left->sample1;
814 s_2 = left->sample2;
816 for(j=0;j<28;j++) {
817 d = in[16+i+j*4];
819 t = (signed char)(d<<4)>>4;
820 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
821 s_2 = s_1;
822 s_1 = av_clip_int16(s);
823 *out = s_1;
824 out += inc;
827 if (inc==2) { /* stereo */
828 left->sample1 = s_1;
829 left->sample2 = s_2;
830 s_1 = right->sample1;
831 s_2 = right->sample2;
832 out = out + 1 - 28*2;
835 shift = 12 - (in[5+i*2] & 15);
836 filter = in[5+i*2] >> 4;
838 f0 = xa_adpcm_table[filter][0];
839 f1 = xa_adpcm_table[filter][1];
841 for(j=0;j<28;j++) {
842 d = in[16+i+j*4];
844 t = (signed char)d >> 4;
845 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
846 s_2 = s_1;
847 s_1 = av_clip_int16(s);
848 *out = s_1;
849 out += inc;
852 if (inc==2) { /* stereo */
853 right->sample1 = s_1;
854 right->sample2 = s_2;
855 out -= 1;
856 } else {
857 left->sample1 = s_1;
858 left->sample2 = s_2;
864 /* DK3 ADPCM support macro */
865 #define DK3_GET_NEXT_NIBBLE() \
866 if (decode_top_nibble_next) \
868 nibble = last_byte >> 4; \
869 decode_top_nibble_next = 0; \
871 else \
873 last_byte = *src++; \
874 if (src >= buf + buf_size) break; \
875 nibble = last_byte & 0x0F; \
876 decode_top_nibble_next = 1; \
879 static int adpcm_decode_frame(AVCodecContext *avctx,
880 void *data, int *data_size,
881 AVPacket *avpkt)
883 const uint8_t *buf = avpkt->data;
884 int buf_size = avpkt->size;
885 ADPCMContext *c = avctx->priv_data;
886 ADPCMChannelStatus *cs;
887 int n, m, channel, i;
888 int block_predictor[2];
889 short *samples;
890 short *samples_end;
891 const uint8_t *src;
892 int st; /* stereo */
894 /* DK3 ADPCM accounting variables */
895 unsigned char last_byte = 0;
896 unsigned char nibble;
897 int decode_top_nibble_next = 0;
898 int diff_channel;
900 /* EA ADPCM state variables */
901 uint32_t samples_in_chunk;
902 int32_t previous_left_sample, previous_right_sample;
903 int32_t current_left_sample, current_right_sample;
904 int32_t next_left_sample, next_right_sample;
905 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
906 uint8_t shift_left, shift_right;
907 int count1, count2;
908 int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
910 if (!buf_size)
911 return 0;
913 //should protect all 4bit ADPCM variants
914 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
916 if(*data_size/4 < buf_size + 8)
917 return -1;
919 samples = data;
920 samples_end= samples + *data_size/2;
921 *data_size= 0;
922 src = buf;
924 st = avctx->channels == 2 ? 1 : 0;
926 switch(avctx->codec->id) {
927 case CODEC_ID_ADPCM_IMA_QT:
928 n = buf_size - 2*avctx->channels;
929 for (channel = 0; channel < avctx->channels; channel++) {
930 cs = &(c->status[channel]);
931 /* (pppppp) (piiiiiii) */
933 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
934 cs->predictor = (*src++) << 8;
935 cs->predictor |= (*src & 0x80);
936 cs->predictor &= 0xFF80;
938 /* sign extension */
939 if(cs->predictor & 0x8000)
940 cs->predictor -= 0x10000;
942 cs->predictor = av_clip_int16(cs->predictor);
944 cs->step_index = (*src++) & 0x7F;
946 if (cs->step_index > 88){
947 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
948 cs->step_index = 88;
951 cs->step = step_table[cs->step_index];
953 samples = (short*)data + channel;
955 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
956 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
957 samples += avctx->channels;
958 *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3);
959 samples += avctx->channels;
960 src ++;
963 if (st)
964 samples--;
965 break;
966 case CODEC_ID_ADPCM_IMA_WAV:
967 if (avctx->block_align != 0 && buf_size > avctx->block_align)
968 buf_size = avctx->block_align;
970 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
972 for(i=0; i<avctx->channels; i++){
973 cs = &(c->status[i]);
974 cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
976 cs->step_index = *src++;
977 if (cs->step_index > 88){
978 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
979 cs->step_index = 88;
981 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
984 while(src < buf + buf_size){
985 for(m=0; m<4; m++){
986 for(i=0; i<=st; i++)
987 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
988 for(i=0; i<=st; i++)
989 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
990 src++;
992 src += 4*st;
994 break;
995 case CODEC_ID_ADPCM_4XM:
996 cs = &(c->status[0]);
997 c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
998 if(st){
999 c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
1001 c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1002 if(st){
1003 c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1005 if (cs->step_index < 0) cs->step_index = 0;
1006 if (cs->step_index > 88) cs->step_index = 88;
1008 m= (buf_size - (src - buf))>>st;
1009 for(i=0; i<m; i++) {
1010 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1011 if (st)
1012 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1013 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1014 if (st)
1015 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1018 src += m<<st;
1020 break;
1021 case CODEC_ID_ADPCM_MS:
1022 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1023 buf_size = avctx->block_align;
1024 n = buf_size - 7 * avctx->channels;
1025 if (n < 0)
1026 return -1;
1027 block_predictor[0] = av_clip(*src++, 0, 6);
1028 block_predictor[1] = 0;
1029 if (st)
1030 block_predictor[1] = av_clip(*src++, 0, 6);
1031 c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1032 if (st){
1033 c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1035 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1036 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1037 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1038 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1040 c->status[0].sample1 = bytestream_get_le16(&src);
1041 if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1042 c->status[0].sample2 = bytestream_get_le16(&src);
1043 if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1045 *samples++ = c->status[0].sample2;
1046 if (st) *samples++ = c->status[1].sample2;
1047 *samples++ = c->status[0].sample1;
1048 if (st) *samples++ = c->status[1].sample1;
1049 for(;n>0;n--) {
1050 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
1051 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1052 src ++;
1054 break;
1055 case CODEC_ID_ADPCM_IMA_DK4:
1056 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1057 buf_size = avctx->block_align;
1059 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1060 c->status[0].step_index = *src++;
1061 src++;
1062 *samples++ = c->status[0].predictor;
1063 if (st) {
1064 c->status[1].predictor = (int16_t)bytestream_get_le16(&src);
1065 c->status[1].step_index = *src++;
1066 src++;
1067 *samples++ = c->status[1].predictor;
1069 while (src < buf + buf_size) {
1071 /* take care of the top nibble (always left or mono channel) */
1072 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1073 src[0] >> 4, 3);
1075 /* take care of the bottom nibble, which is right sample for
1076 * stereo, or another mono sample */
1077 if (st)
1078 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1079 src[0] & 0x0F, 3);
1080 else
1081 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1082 src[0] & 0x0F, 3);
1084 src++;
1086 break;
1087 case CODEC_ID_ADPCM_IMA_DK3:
1088 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1089 buf_size = avctx->block_align;
1091 if(buf_size + 16 > (samples_end - samples)*3/8)
1092 return -1;
1094 c->status[0].predictor = (int16_t)AV_RL16(src + 10);
1095 c->status[1].predictor = (int16_t)AV_RL16(src + 12);
1096 c->status[0].step_index = src[14];
1097 c->status[1].step_index = src[15];
1098 /* sign extend the predictors */
1099 src += 16;
1100 diff_channel = c->status[1].predictor;
1102 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1103 * the buffer is consumed */
1104 while (1) {
1106 /* for this algorithm, c->status[0] is the sum channel and
1107 * c->status[1] is the diff channel */
1109 /* process the first predictor of the sum channel */
1110 DK3_GET_NEXT_NIBBLE();
1111 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1113 /* process the diff channel predictor */
1114 DK3_GET_NEXT_NIBBLE();
1115 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1117 /* process the first pair of stereo PCM samples */
1118 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1119 *samples++ = c->status[0].predictor + c->status[1].predictor;
1120 *samples++ = c->status[0].predictor - c->status[1].predictor;
1122 /* process the second predictor of the sum channel */
1123 DK3_GET_NEXT_NIBBLE();
1124 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1126 /* process the second pair of stereo PCM samples */
1127 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1128 *samples++ = c->status[0].predictor + c->status[1].predictor;
1129 *samples++ = c->status[0].predictor - c->status[1].predictor;
1131 break;
1132 case CODEC_ID_ADPCM_IMA_ISS:
1133 c->status[0].predictor = (int16_t)AV_RL16(src + 0);
1134 c->status[0].step_index = src[2];
1135 src += 4;
1136 if(st) {
1137 c->status[1].predictor = (int16_t)AV_RL16(src + 0);
1138 c->status[1].step_index = src[2];
1139 src += 4;
1142 while (src < buf + buf_size) {
1144 if (st) {
1145 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1146 src[0] >> 4 , 3);
1147 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1148 src[0] & 0x0F, 3);
1149 } else {
1150 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1151 src[0] & 0x0F, 3);
1152 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1153 src[0] >> 4 , 3);
1156 src++;
1158 break;
1159 case CODEC_ID_ADPCM_IMA_WS:
1160 /* no per-block initialization; just start decoding the data */
1161 while (src < buf + buf_size) {
1163 if (st) {
1164 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1165 src[0] >> 4 , 3);
1166 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1167 src[0] & 0x0F, 3);
1168 } else {
1169 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1170 src[0] >> 4 , 3);
1171 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1172 src[0] & 0x0F, 3);
1175 src++;
1177 break;
1178 case CODEC_ID_ADPCM_XA:
1179 while (buf_size >= 128) {
1180 xa_decode(samples, src, &c->status[0], &c->status[1],
1181 avctx->channels);
1182 src += 128;
1183 samples += 28 * 8;
1184 buf_size -= 128;
1186 break;
1187 case CODEC_ID_ADPCM_IMA_EA_EACS:
1188 samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1190 if (samples_in_chunk > buf_size-4-(8<<st)) {
1191 src += buf_size - 4;
1192 break;
1195 for (i=0; i<=st; i++)
1196 c->status[i].step_index = bytestream_get_le32(&src);
1197 for (i=0; i<=st; i++)
1198 c->status[i].predictor = bytestream_get_le32(&src);
1200 for (; samples_in_chunk; samples_in_chunk--, src++) {
1201 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
1202 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1204 break;
1205 case CODEC_ID_ADPCM_IMA_EA_SEAD:
1206 for (; src < buf+buf_size; src++) {
1207 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1208 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1210 break;
1211 case CODEC_ID_ADPCM_EA:
1212 if (buf_size < 4 || AV_RL32(src) >= ((buf_size - 12) * 2)) {
1213 src += buf_size;
1214 break;
1216 samples_in_chunk = AV_RL32(src);
1217 src += 4;
1218 current_left_sample = (int16_t)bytestream_get_le16(&src);
1219 previous_left_sample = (int16_t)bytestream_get_le16(&src);
1220 current_right_sample = (int16_t)bytestream_get_le16(&src);
1221 previous_right_sample = (int16_t)bytestream_get_le16(&src);
1223 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1224 coeff1l = ea_adpcm_table[ *src >> 4 ];
1225 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
1226 coeff1r = ea_adpcm_table[*src & 0x0F];
1227 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1228 src++;
1230 shift_left = (*src >> 4 ) + 8;
1231 shift_right = (*src & 0x0F) + 8;
1232 src++;
1234 for (count2 = 0; count2 < 28; count2++) {
1235 next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1236 next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1237 src++;
1239 next_left_sample = (next_left_sample +
1240 (current_left_sample * coeff1l) +
1241 (previous_left_sample * coeff2l) + 0x80) >> 8;
1242 next_right_sample = (next_right_sample +
1243 (current_right_sample * coeff1r) +
1244 (previous_right_sample * coeff2r) + 0x80) >> 8;
1246 previous_left_sample = current_left_sample;
1247 current_left_sample = av_clip_int16(next_left_sample);
1248 previous_right_sample = current_right_sample;
1249 current_right_sample = av_clip_int16(next_right_sample);
1250 *samples++ = (unsigned short)current_left_sample;
1251 *samples++ = (unsigned short)current_right_sample;
1255 if (src - buf == buf_size - 2)
1256 src += 2; // Skip terminating 0x0000
1258 break;
1259 case CODEC_ID_ADPCM_EA_MAXIS_XA:
1260 for(channel = 0; channel < avctx->channels; channel++) {
1261 for (i=0; i<2; i++)
1262 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1263 shift[channel] = (*src & 0x0F) + 8;
1264 src++;
1266 for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1267 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1268 for(channel = 0; channel < avctx->channels; channel++) {
1269 int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1270 sample = (sample +
1271 c->status[channel].sample1 * coeff[channel][0] +
1272 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1273 c->status[channel].sample2 = c->status[channel].sample1;
1274 c->status[channel].sample1 = av_clip_int16(sample);
1275 *samples++ = c->status[channel].sample1;
1278 src+=avctx->channels;
1280 break;
1281 case CODEC_ID_ADPCM_EA_R1:
1282 case CODEC_ID_ADPCM_EA_R2:
1283 case CODEC_ID_ADPCM_EA_R3: {
1284 /* channel numbering
1285 2chan: 0=fl, 1=fr
1286 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1287 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1288 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1289 int32_t previous_sample, current_sample, next_sample;
1290 int32_t coeff1, coeff2;
1291 uint8_t shift;
1292 unsigned int channel;
1293 uint16_t *samplesC;
1294 const uint8_t *srcC;
1295 const uint8_t *src_end = buf + buf_size;
1297 samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1298 : bytestream_get_le32(&src)) / 28;
1299 if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1300 28*samples_in_chunk*avctx->channels > samples_end-samples) {
1301 src += buf_size - 4;
1302 break;
1305 for (channel=0; channel<avctx->channels; channel++) {
1306 int32_t offset = (big_endian ? bytestream_get_be32(&src)
1307 : bytestream_get_le32(&src))
1308 + (avctx->channels-channel-1) * 4;
1310 if ((offset < 0) || (offset >= src_end - src - 4)) break;
1311 srcC = src + offset;
1312 samplesC = samples + channel;
1314 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1315 current_sample = (int16_t)bytestream_get_le16(&srcC);
1316 previous_sample = (int16_t)bytestream_get_le16(&srcC);
1317 } else {
1318 current_sample = c->status[channel].predictor;
1319 previous_sample = c->status[channel].prev_sample;
1322 for (count1=0; count1<samples_in_chunk; count1++) {
1323 if (*srcC == 0xEE) { /* only seen in R2 and R3 */
1324 srcC++;
1325 if (srcC > src_end - 30*2) break;
1326 current_sample = (int16_t)bytestream_get_be16(&srcC);
1327 previous_sample = (int16_t)bytestream_get_be16(&srcC);
1329 for (count2=0; count2<28; count2++) {
1330 *samplesC = (int16_t)bytestream_get_be16(&srcC);
1331 samplesC += avctx->channels;
1333 } else {
1334 coeff1 = ea_adpcm_table[ *srcC>>4 ];
1335 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1336 shift = (*srcC++ & 0x0F) + 8;
1338 if (srcC > src_end - 14) break;
1339 for (count2=0; count2<28; count2++) {
1340 if (count2 & 1)
1341 next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1342 else
1343 next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift;
1345 next_sample += (current_sample * coeff1) +
1346 (previous_sample * coeff2);
1347 next_sample = av_clip_int16(next_sample >> 8);
1349 previous_sample = current_sample;
1350 current_sample = next_sample;
1351 *samplesC = current_sample;
1352 samplesC += avctx->channels;
1357 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1358 c->status[channel].predictor = current_sample;
1359 c->status[channel].prev_sample = previous_sample;
1363 src = src + buf_size - (4 + 4*avctx->channels);
1364 samples += 28 * samples_in_chunk * avctx->channels;
1365 break;
1367 case CODEC_ID_ADPCM_EA_XAS:
1368 if (samples_end-samples < 32*4*avctx->channels
1369 || buf_size < (4+15)*4*avctx->channels) {
1370 src += buf_size;
1371 break;
1373 for (channel=0; channel<avctx->channels; channel++) {
1374 int coeff[2][4], shift[4];
1375 short *s2, *s = &samples[channel];
1376 for (n=0; n<4; n++, s+=32*avctx->channels) {
1377 for (i=0; i<2; i++)
1378 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1379 shift[n] = (src[2]&0x0F) + 8;
1380 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1381 s2[0] = (src[0]&0xF0) + (src[1]<<8);
1384 for (m=2; m<32; m+=2) {
1385 s = &samples[m*avctx->channels + channel];
1386 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1387 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1388 int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1389 int pred = s2[-1*avctx->channels] * coeff[0][n]
1390 + s2[-2*avctx->channels] * coeff[1][n];
1391 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1396 samples += 32*4*avctx->channels;
1397 break;
1398 case CODEC_ID_ADPCM_IMA_AMV:
1399 case CODEC_ID_ADPCM_IMA_SMJPEG:
1400 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1401 c->status[0].step_index = bytestream_get_le16(&src);
1403 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1404 src+=4;
1406 while (src < buf + buf_size) {
1407 char hi, lo;
1408 lo = *src & 0x0F;
1409 hi = *src >> 4;
1411 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1412 FFSWAP(char, hi, lo);
1414 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1415 lo, 3);
1416 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1417 hi, 3);
1418 src++;
1420 break;
1421 case CODEC_ID_ADPCM_CT:
1422 while (src < buf + buf_size) {
1423 if (st) {
1424 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1425 src[0] >> 4);
1426 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1427 src[0] & 0x0F);
1428 } else {
1429 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1430 src[0] >> 4);
1431 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1432 src[0] & 0x0F);
1434 src++;
1436 break;
1437 case CODEC_ID_ADPCM_SBPRO_4:
1438 case CODEC_ID_ADPCM_SBPRO_3:
1439 case CODEC_ID_ADPCM_SBPRO_2:
1440 if (!c->status[0].step_index) {
1441 /* the first byte is a raw sample */
1442 *samples++ = 128 * (*src++ - 0x80);
1443 if (st)
1444 *samples++ = 128 * (*src++ - 0x80);
1445 c->status[0].step_index = 1;
1447 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1448 while (src < buf + buf_size) {
1449 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1450 src[0] >> 4, 4, 0);
1451 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1452 src[0] & 0x0F, 4, 0);
1453 src++;
1455 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1456 while (src < buf + buf_size && samples + 2 < samples_end) {
1457 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1458 src[0] >> 5 , 3, 0);
1459 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1460 (src[0] >> 2) & 0x07, 3, 0);
1461 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1462 src[0] & 0x03, 2, 0);
1463 src++;
1465 } else {
1466 while (src < buf + buf_size && samples + 3 < samples_end) {
1467 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1468 src[0] >> 6 , 2, 2);
1469 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1470 (src[0] >> 4) & 0x03, 2, 2);
1471 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1472 (src[0] >> 2) & 0x03, 2, 2);
1473 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1474 src[0] & 0x03, 2, 2);
1475 src++;
1478 break;
1479 case CODEC_ID_ADPCM_SWF:
1481 GetBitContext gb;
1482 const int *table;
1483 int k0, signmask, nb_bits, count;
1484 int size = buf_size*8;
1486 init_get_bits(&gb, buf, size);
1488 //read bits & initial values
1489 nb_bits = get_bits(&gb, 2)+2;
1490 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1491 table = swf_index_tables[nb_bits-2];
1492 k0 = 1 << (nb_bits-2);
1493 signmask = 1 << (nb_bits-1);
1495 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1496 for (i = 0; i < avctx->channels; i++) {
1497 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1498 c->status[i].step_index = get_bits(&gb, 6);
1501 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1502 int i;
1504 for (i = 0; i < avctx->channels; i++) {
1505 // similar to IMA adpcm
1506 int delta = get_bits(&gb, nb_bits);
1507 int step = step_table[c->status[i].step_index];
1508 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1509 int k = k0;
1511 do {
1512 if (delta & k)
1513 vpdiff += step;
1514 step >>= 1;
1515 k >>= 1;
1516 } while(k);
1517 vpdiff += step;
1519 if (delta & signmask)
1520 c->status[i].predictor -= vpdiff;
1521 else
1522 c->status[i].predictor += vpdiff;
1524 c->status[i].step_index += table[delta & (~signmask)];
1526 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1527 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1529 *samples++ = c->status[i].predictor;
1530 if (samples >= samples_end) {
1531 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1532 return -1;
1537 src += buf_size;
1538 break;
1540 case CODEC_ID_ADPCM_YAMAHA:
1541 while (src < buf + buf_size) {
1542 if (st) {
1543 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1544 src[0] & 0x0F);
1545 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1546 src[0] >> 4 );
1547 } else {
1548 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1549 src[0] & 0x0F);
1550 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1551 src[0] >> 4 );
1553 src++;
1555 break;
1556 case CODEC_ID_ADPCM_THP:
1558 int table[2][16];
1559 unsigned int samplecnt;
1560 int prev[2][2];
1561 int ch;
1563 if (buf_size < 80) {
1564 av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1565 return -1;
1568 src+=4;
1569 samplecnt = bytestream_get_be32(&src);
1571 for (i = 0; i < 32; i++)
1572 table[0][i] = (int16_t)bytestream_get_be16(&src);
1574 /* Initialize the previous sample. */
1575 for (i = 0; i < 4; i++)
1576 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1578 if (samplecnt >= (samples_end - samples) / (st + 1)) {
1579 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1580 return -1;
1583 for (ch = 0; ch <= st; ch++) {
1584 samples = (unsigned short *) data + ch;
1586 /* Read in every sample for this channel. */
1587 for (i = 0; i < samplecnt / 14; i++) {
1588 int index = (*src >> 4) & 7;
1589 unsigned int exp = 28 - (*src++ & 15);
1590 int factor1 = table[ch][index * 2];
1591 int factor2 = table[ch][index * 2 + 1];
1593 /* Decode 14 samples. */
1594 for (n = 0; n < 14; n++) {
1595 int32_t sampledat;
1596 if(n&1) sampledat= *src++ <<28;
1597 else sampledat= (*src&0xF0)<<24;
1599 sampledat = ((prev[ch][0]*factor1
1600 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1601 *samples = av_clip_int16(sampledat);
1602 prev[ch][1] = prev[ch][0];
1603 prev[ch][0] = *samples++;
1605 /* In case of stereo, skip one sample, this sample
1606 is for the other channel. */
1607 samples += st;
1612 /* In the previous loop, in case stereo is used, samples is
1613 increased exactly one time too often. */
1614 samples -= st;
1615 break;
1618 default:
1619 return -1;
1621 *data_size = (uint8_t *)samples - (uint8_t *)data;
1622 return src - buf;
1627 #if CONFIG_ENCODERS
1628 #define ADPCM_ENCODER(id,name,long_name_) \
1629 AVCodec name ## _encoder = { \
1630 #name, \
1631 CODEC_TYPE_AUDIO, \
1632 id, \
1633 sizeof(ADPCMContext), \
1634 adpcm_encode_init, \
1635 adpcm_encode_frame, \
1636 adpcm_encode_close, \
1637 NULL, \
1638 .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1639 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1641 #else
1642 #define ADPCM_ENCODER(id,name,long_name_)
1643 #endif
1645 #if CONFIG_DECODERS
1646 #define ADPCM_DECODER(id,name,long_name_) \
1647 AVCodec name ## _decoder = { \
1648 #name, \
1649 CODEC_TYPE_AUDIO, \
1650 id, \
1651 sizeof(ADPCMContext), \
1652 adpcm_decode_init, \
1653 NULL, \
1654 NULL, \
1655 adpcm_decode_frame, \
1656 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1658 #else
1659 #define ADPCM_DECODER(id,name,long_name_)
1660 #endif
1662 #define ADPCM_CODEC(id,name,long_name_) \
1663 ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1665 /* Note: Do not forget to add new entries to the Makefile as well. */
1666 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1667 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1668 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1669 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1670 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1671 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1672 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1673 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1674 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1675 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1676 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1677 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1678 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1679 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1680 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1681 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1682 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1683 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1684 ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1685 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1686 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1687 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1688 ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1689 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1690 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1691 ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");