10l: don't check against current layout until after validating ch_mode.
[FFMpeg-mirror/lagarith.git] / libavcodec / adpcm.c
blob994c0c68650a7d65e1c968d165a00c7713b3920f
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "avcodec.h"
22 #include "bitstream.h"
23 #include "bytestream.h"
25 /**
26 * @file libavcodec/adpcm.c
27 * ADPCM codecs.
28 * First version by Francois Revol (revol@free.fr)
29 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30 * by Mike Melanson (melanson@pcisys.net)
31 * CD-ROM XA ADPCM codec by BERO
32 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
34 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
35 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
36 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
37 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
38 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40 * Features and limitations:
42 * Reference documents:
43 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
44 * http://www.geocities.com/SiliconValley/8682/aud3.txt
45 * http://openquicktime.sourceforge.net/plugins.htm
46 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
47 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
48 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
50 * CD-ROM XA:
51 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
52 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
53 * readstr http://www.geocities.co.jp/Playtown/2004/
56 #define BLKSIZE 1024
58 /* step_table[] and index_table[] are from the ADPCM reference source */
59 /* This is the index table: */
60 static const int index_table[16] = {
61 -1, -1, -1, -1, 2, 4, 6, 8,
62 -1, -1, -1, -1, 2, 4, 6, 8,
65 /**
66 * This is the step table. Note that many programs use slight deviations from
67 * this table, but such deviations are negligible:
69 static const int step_table[89] = {
70 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
71 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
72 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
73 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
74 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
75 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
76 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
77 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
78 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
81 /* These are for MS-ADPCM */
82 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
83 static const int AdaptationTable[] = {
84 230, 230, 230, 230, 307, 409, 512, 614,
85 768, 614, 512, 409, 307, 230, 230, 230
88 static const uint8_t AdaptCoeff1[] = {
89 64, 128, 0, 48, 60, 115, 98
92 static const int8_t AdaptCoeff2[] = {
93 0, -64, 0, 16, 0, -52, -58
96 /* These are for CD-ROM XA ADPCM */
97 static const int xa_adpcm_table[5][2] = {
98 { 0, 0 },
99 { 60, 0 },
100 { 115, -52 },
101 { 98, -55 },
102 { 122, -60 }
105 static const int ea_adpcm_table[] = {
106 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
107 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
110 // padded to zero where table size is less then 16
111 static const int swf_index_tables[4][16] = {
112 /*2*/ { -1, 2 },
113 /*3*/ { -1, -1, 2, 4 },
114 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
115 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
118 static const int yamaha_indexscale[] = {
119 230, 230, 230, 230, 307, 409, 512, 614,
120 230, 230, 230, 230, 307, 409, 512, 614
123 static const int yamaha_difflookup[] = {
124 1, 3, 5, 7, 9, 11, 13, 15,
125 -1, -3, -5, -7, -9, -11, -13, -15
128 /* end of tables */
130 typedef struct ADPCMChannelStatus {
131 int predictor;
132 short int step_index;
133 int step;
134 /* for encoding */
135 int prev_sample;
137 /* MS version */
138 short sample1;
139 short sample2;
140 int coeff1;
141 int coeff2;
142 int idelta;
143 } ADPCMChannelStatus;
145 typedef struct ADPCMContext {
146 ADPCMChannelStatus status[6];
147 } ADPCMContext;
149 /* XXX: implement encoding */
151 #if CONFIG_ENCODERS
152 static av_cold int adpcm_encode_init(AVCodecContext *avctx)
154 if (avctx->channels > 2)
155 return -1; /* only stereo or mono =) */
157 if(avctx->trellis && (unsigned)avctx->trellis > 16U){
158 av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
159 return -1;
162 switch(avctx->codec->id) {
163 case CODEC_ID_ADPCM_IMA_WAV:
164 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
165 /* and we have 4 bytes per channel overhead */
166 avctx->block_align = BLKSIZE;
167 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
168 break;
169 case CODEC_ID_ADPCM_IMA_QT:
170 avctx->frame_size = 64;
171 avctx->block_align = 34 * avctx->channels;
172 break;
173 case CODEC_ID_ADPCM_MS:
174 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
175 /* and we have 7 bytes per channel overhead */
176 avctx->block_align = BLKSIZE;
177 break;
178 case CODEC_ID_ADPCM_YAMAHA:
179 avctx->frame_size = BLKSIZE * avctx->channels;
180 avctx->block_align = BLKSIZE;
181 break;
182 case CODEC_ID_ADPCM_SWF:
183 if (avctx->sample_rate != 11025 &&
184 avctx->sample_rate != 22050 &&
185 avctx->sample_rate != 44100) {
186 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
187 return -1;
189 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
190 break;
191 default:
192 return -1;
193 break;
196 avctx->coded_frame= avcodec_alloc_frame();
197 avctx->coded_frame->key_frame= 1;
199 return 0;
202 static av_cold int adpcm_encode_close(AVCodecContext *avctx)
204 av_freep(&avctx->coded_frame);
206 return 0;
210 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
212 int delta = sample - c->prev_sample;
213 int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
214 c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
215 c->prev_sample = av_clip_int16(c->prev_sample);
216 c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
217 return nibble;
220 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
222 int predictor, nibble, bias;
224 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
226 nibble= sample - predictor;
227 if(nibble>=0) bias= c->idelta/2;
228 else bias=-c->idelta/2;
230 nibble= (nibble + bias) / c->idelta;
231 nibble= av_clip(nibble, -8, 7)&0x0F;
233 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
235 c->sample2 = c->sample1;
236 c->sample1 = av_clip_int16(predictor);
238 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
239 if (c->idelta < 16) c->idelta = 16;
241 return nibble;
244 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
246 int nibble, delta;
248 if(!c->step) {
249 c->predictor = 0;
250 c->step = 127;
253 delta = sample - c->predictor;
255 nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
257 c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
258 c->predictor = av_clip_int16(c->predictor);
259 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
260 c->step = av_clip(c->step, 127, 24567);
262 return nibble;
265 typedef struct TrellisPath {
266 int nibble;
267 int prev;
268 } TrellisPath;
270 typedef struct TrellisNode {
271 uint32_t ssd;
272 int path;
273 int sample1;
274 int sample2;
275 int step;
276 } TrellisNode;
278 static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
279 uint8_t *dst, ADPCMChannelStatus *c, int n)
281 #define FREEZE_INTERVAL 128
282 //FIXME 6% faster if frontier is a compile-time constant
283 const int frontier = 1 << avctx->trellis;
284 const int stride = avctx->channels;
285 const int version = avctx->codec->id;
286 const int max_paths = frontier*FREEZE_INTERVAL;
287 TrellisPath paths[max_paths], *p;
288 TrellisNode node_buf[2][frontier];
289 TrellisNode *nodep_buf[2][frontier];
290 TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
291 TrellisNode **nodes_next = nodep_buf[1];
292 int pathn = 0, froze = -1, i, j, k;
294 assert(!(max_paths&(max_paths-1)));
296 memset(nodep_buf, 0, sizeof(nodep_buf));
297 nodes[0] = &node_buf[1][0];
298 nodes[0]->ssd = 0;
299 nodes[0]->path = 0;
300 nodes[0]->step = c->step_index;
301 nodes[0]->sample1 = c->sample1;
302 nodes[0]->sample2 = c->sample2;
303 if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
304 nodes[0]->sample1 = c->prev_sample;
305 if(version == CODEC_ID_ADPCM_MS)
306 nodes[0]->step = c->idelta;
307 if(version == CODEC_ID_ADPCM_YAMAHA) {
308 if(c->step == 0) {
309 nodes[0]->step = 127;
310 nodes[0]->sample1 = 0;
311 } else {
312 nodes[0]->step = c->step;
313 nodes[0]->sample1 = c->predictor;
317 for(i=0; i<n; i++) {
318 TrellisNode *t = node_buf[i&1];
319 TrellisNode **u;
320 int sample = samples[i*stride];
321 memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
322 for(j=0; j<frontier && nodes[j]; j++) {
323 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
324 const int range = (j < frontier/2) ? 1 : 0;
325 const int step = nodes[j]->step;
326 int nidx;
327 if(version == CODEC_ID_ADPCM_MS) {
328 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
329 const int div = (sample - predictor) / step;
330 const int nmin = av_clip(div-range, -8, 6);
331 const int nmax = av_clip(div+range, -7, 7);
332 for(nidx=nmin; nidx<=nmax; nidx++) {
333 const int nibble = nidx & 0xf;
334 int dec_sample = predictor + nidx * step;
335 #define STORE_NODE(NAME, STEP_INDEX)\
336 int d;\
337 uint32_t ssd;\
338 dec_sample = av_clip_int16(dec_sample);\
339 d = sample - dec_sample;\
340 ssd = nodes[j]->ssd + d*d;\
341 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
342 continue;\
343 /* Collapse any two states with the same previous sample value. \
344 * One could also distinguish states by step and by 2nd to last
345 * sample, but the effects of that are negligible. */\
346 for(k=0; k<frontier && nodes_next[k]; k++) {\
347 if(dec_sample == nodes_next[k]->sample1) {\
348 assert(ssd >= nodes_next[k]->ssd);\
349 goto next_##NAME;\
352 for(k=0; k<frontier; k++) {\
353 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
354 TrellisNode *u = nodes_next[frontier-1];\
355 if(!u) {\
356 assert(pathn < max_paths);\
357 u = t++;\
358 u->path = pathn++;\
360 u->ssd = ssd;\
361 u->step = STEP_INDEX;\
362 u->sample2 = nodes[j]->sample1;\
363 u->sample1 = dec_sample;\
364 paths[u->path].nibble = nibble;\
365 paths[u->path].prev = nodes[j]->path;\
366 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
367 nodes_next[k] = u;\
368 break;\
371 next_##NAME:;
372 STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
374 } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
375 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
376 const int predictor = nodes[j]->sample1;\
377 const int div = (sample - predictor) * 4 / STEP_TABLE;\
378 int nmin = av_clip(div-range, -7, 6);\
379 int nmax = av_clip(div+range, -6, 7);\
380 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
381 if(nmax<0) nmax--;\
382 for(nidx=nmin; nidx<=nmax; nidx++) {\
383 const int nibble = nidx<0 ? 7-nidx : nidx;\
384 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
385 STORE_NODE(NAME, STEP_INDEX);\
387 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
388 } else { //CODEC_ID_ADPCM_YAMAHA
389 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
390 #undef LOOP_NODES
391 #undef STORE_NODE
395 u = nodes;
396 nodes = nodes_next;
397 nodes_next = u;
399 // prevent overflow
400 if(nodes[0]->ssd > (1<<28)) {
401 for(j=1; j<frontier && nodes[j]; j++)
402 nodes[j]->ssd -= nodes[0]->ssd;
403 nodes[0]->ssd = 0;
406 // merge old paths to save memory
407 if(i == froze + FREEZE_INTERVAL) {
408 p = &paths[nodes[0]->path];
409 for(k=i; k>froze; k--) {
410 dst[k] = p->nibble;
411 p = &paths[p->prev];
413 froze = i;
414 pathn = 0;
415 // other nodes might use paths that don't coincide with the frozen one.
416 // checking which nodes do so is too slow, so just kill them all.
417 // this also slightly improves quality, but I don't know why.
418 memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
422 p = &paths[nodes[0]->path];
423 for(i=n-1; i>froze; i--) {
424 dst[i] = p->nibble;
425 p = &paths[p->prev];
428 c->predictor = nodes[0]->sample1;
429 c->sample1 = nodes[0]->sample1;
430 c->sample2 = nodes[0]->sample2;
431 c->step_index = nodes[0]->step;
432 c->step = nodes[0]->step;
433 c->idelta = nodes[0]->step;
436 static int adpcm_encode_frame(AVCodecContext *avctx,
437 unsigned char *frame, int buf_size, void *data)
439 int n, i, st;
440 short *samples;
441 unsigned char *dst;
442 ADPCMContext *c = avctx->priv_data;
444 dst = frame;
445 samples = (short *)data;
446 st= avctx->channels == 2;
447 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
449 switch(avctx->codec->id) {
450 case CODEC_ID_ADPCM_IMA_WAV:
451 n = avctx->frame_size / 8;
452 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
453 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
454 bytestream_put_le16(&dst, c->status[0].prev_sample);
455 *dst++ = (unsigned char)c->status[0].step_index;
456 *dst++ = 0; /* unknown */
457 samples++;
458 if (avctx->channels == 2) {
459 c->status[1].prev_sample = (signed short)samples[0];
460 /* c->status[1].step_index = 0; */
461 bytestream_put_le16(&dst, c->status[1].prev_sample);
462 *dst++ = (unsigned char)c->status[1].step_index;
463 *dst++ = 0;
464 samples++;
467 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
468 if(avctx->trellis > 0) {
469 uint8_t buf[2][n*8];
470 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
471 if(avctx->channels == 2)
472 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
473 for(i=0; i<n; i++) {
474 *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
475 *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
476 *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
477 *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
478 if (avctx->channels == 2) {
479 *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
480 *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
481 *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
482 *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
485 } else
486 for (; n>0; n--) {
487 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
488 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
489 dst++;
490 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
491 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
492 dst++;
493 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
494 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
495 dst++;
496 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
497 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
498 dst++;
499 /* right channel */
500 if (avctx->channels == 2) {
501 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
502 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
503 dst++;
504 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
505 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
506 dst++;
507 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
508 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
509 dst++;
510 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
511 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
512 dst++;
514 samples += 8 * avctx->channels;
516 break;
517 case CODEC_ID_ADPCM_IMA_QT:
519 int ch, i;
520 PutBitContext pb;
521 init_put_bits(&pb, dst, buf_size*8);
523 for(ch=0; ch<avctx->channels; ch++){
524 put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
525 put_bits(&pb, 7, c->status[ch].step_index);
526 if(avctx->trellis > 0) {
527 uint8_t buf[64];
528 adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
529 for(i=0; i<64; i++)
530 put_bits(&pb, 4, buf[i^1]);
531 c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
532 } else {
533 for (i=0; i<64; i+=2){
534 int t1, t2;
535 t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
536 t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
537 put_bits(&pb, 4, t2);
538 put_bits(&pb, 4, t1);
540 c->status[ch].prev_sample &= ~0x7F;
544 dst += put_bits_count(&pb)>>3;
545 break;
547 case CODEC_ID_ADPCM_SWF:
549 int i;
550 PutBitContext pb;
551 init_put_bits(&pb, dst, buf_size*8);
553 n = avctx->frame_size-1;
555 //Store AdpcmCodeSize
556 put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
558 //Init the encoder state
559 for(i=0; i<avctx->channels; i++){
560 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
561 put_sbits(&pb, 16, samples[i]);
562 put_bits(&pb, 6, c->status[i].step_index);
563 c->status[i].prev_sample = (signed short)samples[i];
566 if(avctx->trellis > 0) {
567 uint8_t buf[2][n];
568 adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
569 if (avctx->channels == 2)
570 adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
571 for(i=0; i<n; i++) {
572 put_bits(&pb, 4, buf[0][i]);
573 if (avctx->channels == 2)
574 put_bits(&pb, 4, buf[1][i]);
576 } else {
577 for (i=1; i<avctx->frame_size; i++) {
578 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
579 if (avctx->channels == 2)
580 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
583 flush_put_bits(&pb);
584 dst += put_bits_count(&pb)>>3;
585 break;
587 case CODEC_ID_ADPCM_MS:
588 for(i=0; i<avctx->channels; i++){
589 int predictor=0;
591 *dst++ = predictor;
592 c->status[i].coeff1 = AdaptCoeff1[predictor];
593 c->status[i].coeff2 = AdaptCoeff2[predictor];
595 for(i=0; i<avctx->channels; i++){
596 if (c->status[i].idelta < 16)
597 c->status[i].idelta = 16;
599 bytestream_put_le16(&dst, c->status[i].idelta);
601 for(i=0; i<avctx->channels; i++){
602 c->status[i].sample2= *samples++;
604 for(i=0; i<avctx->channels; i++){
605 c->status[i].sample1= *samples++;
607 bytestream_put_le16(&dst, c->status[i].sample1);
609 for(i=0; i<avctx->channels; i++)
610 bytestream_put_le16(&dst, c->status[i].sample2);
612 if(avctx->trellis > 0) {
613 int n = avctx->block_align - 7*avctx->channels;
614 uint8_t buf[2][n];
615 if(avctx->channels == 1) {
616 n *= 2;
617 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
618 for(i=0; i<n; i+=2)
619 *dst++ = (buf[0][i] << 4) | buf[0][i+1];
620 } else {
621 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
622 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
623 for(i=0; i<n; i++)
624 *dst++ = (buf[0][i] << 4) | buf[1][i];
626 } else
627 for(i=7*avctx->channels; i<avctx->block_align; i++) {
628 int nibble;
629 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
630 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
631 *dst++ = nibble;
633 break;
634 case CODEC_ID_ADPCM_YAMAHA:
635 n = avctx->frame_size / 2;
636 if(avctx->trellis > 0) {
637 uint8_t buf[2][n*2];
638 n *= 2;
639 if(avctx->channels == 1) {
640 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
641 for(i=0; i<n; i+=2)
642 *dst++ = buf[0][i] | (buf[0][i+1] << 4);
643 } else {
644 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
645 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
646 for(i=0; i<n; i++)
647 *dst++ = buf[0][i] | (buf[1][i] << 4);
649 } else
650 for (; n>0; n--) {
651 for(i = 0; i < avctx->channels; i++) {
652 int nibble;
653 nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
654 nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
655 *dst++ = nibble;
657 samples += 2 * avctx->channels;
659 break;
660 default:
661 return -1;
663 return dst - frame;
665 #endif //CONFIG_ENCODERS
667 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
669 ADPCMContext *c = avctx->priv_data;
670 unsigned int max_channels = 2;
672 switch(avctx->codec->id) {
673 case CODEC_ID_ADPCM_EA_R1:
674 case CODEC_ID_ADPCM_EA_R2:
675 case CODEC_ID_ADPCM_EA_R3:
676 max_channels = 6;
677 break;
679 if(avctx->channels > max_channels){
680 return -1;
683 switch(avctx->codec->id) {
684 case CODEC_ID_ADPCM_CT:
685 c->status[0].step = c->status[1].step = 511;
686 break;
687 case CODEC_ID_ADPCM_IMA_WS:
688 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
689 c->status[0].predictor = AV_RL32(avctx->extradata);
690 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
692 break;
693 default:
694 break;
696 avctx->sample_fmt = SAMPLE_FMT_S16;
697 return 0;
700 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
702 int step_index;
703 int predictor;
704 int sign, delta, diff, step;
706 step = step_table[c->step_index];
707 step_index = c->step_index + index_table[(unsigned)nibble];
708 if (step_index < 0) step_index = 0;
709 else if (step_index > 88) step_index = 88;
711 sign = nibble & 8;
712 delta = nibble & 7;
713 /* perform direct multiplication instead of series of jumps proposed by
714 * the reference ADPCM implementation since modern CPUs can do the mults
715 * quickly enough */
716 diff = ((2 * delta + 1) * step) >> shift;
717 predictor = c->predictor;
718 if (sign) predictor -= diff;
719 else predictor += diff;
721 c->predictor = av_clip_int16(predictor);
722 c->step_index = step_index;
724 return (short)c->predictor;
727 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
729 int predictor;
731 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
732 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
734 c->sample2 = c->sample1;
735 c->sample1 = av_clip_int16(predictor);
736 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
737 if (c->idelta < 16) c->idelta = 16;
739 return c->sample1;
742 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
744 int sign, delta, diff;
745 int new_step;
747 sign = nibble & 8;
748 delta = nibble & 7;
749 /* perform direct multiplication instead of series of jumps proposed by
750 * the reference ADPCM implementation since modern CPUs can do the mults
751 * quickly enough */
752 diff = ((2 * delta + 1) * c->step) >> 3;
753 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
754 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
755 c->predictor = av_clip_int16(c->predictor);
756 /* calculate new step and clamp it to range 511..32767 */
757 new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
758 c->step = av_clip(new_step, 511, 32767);
760 return (short)c->predictor;
763 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
765 int sign, delta, diff;
767 sign = nibble & (1<<(size-1));
768 delta = nibble & ((1<<(size-1))-1);
769 diff = delta << (7 + c->step + shift);
771 /* clamp result */
772 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
774 /* calculate new step */
775 if (delta >= (2*size - 3) && c->step < 3)
776 c->step++;
777 else if (delta == 0 && c->step > 0)
778 c->step--;
780 return (short) c->predictor;
783 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
785 if(!c->step) {
786 c->predictor = 0;
787 c->step = 127;
790 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
791 c->predictor = av_clip_int16(c->predictor);
792 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
793 c->step = av_clip(c->step, 127, 24567);
794 return c->predictor;
797 static void xa_decode(short *out, const unsigned char *in,
798 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
800 int i, j;
801 int shift,filter,f0,f1;
802 int s_1,s_2;
803 int d,s,t;
805 for(i=0;i<4;i++) {
807 shift = 12 - (in[4+i*2] & 15);
808 filter = in[4+i*2] >> 4;
809 f0 = xa_adpcm_table[filter][0];
810 f1 = xa_adpcm_table[filter][1];
812 s_1 = left->sample1;
813 s_2 = left->sample2;
815 for(j=0;j<28;j++) {
816 d = in[16+i+j*4];
818 t = (signed char)(d<<4)>>4;
819 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
820 s_2 = s_1;
821 s_1 = av_clip_int16(s);
822 *out = s_1;
823 out += inc;
826 if (inc==2) { /* stereo */
827 left->sample1 = s_1;
828 left->sample2 = s_2;
829 s_1 = right->sample1;
830 s_2 = right->sample2;
831 out = out + 1 - 28*2;
834 shift = 12 - (in[5+i*2] & 15);
835 filter = in[5+i*2] >> 4;
837 f0 = xa_adpcm_table[filter][0];
838 f1 = xa_adpcm_table[filter][1];
840 for(j=0;j<28;j++) {
841 d = in[16+i+j*4];
843 t = (signed char)d >> 4;
844 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
845 s_2 = s_1;
846 s_1 = av_clip_int16(s);
847 *out = s_1;
848 out += inc;
851 if (inc==2) { /* stereo */
852 right->sample1 = s_1;
853 right->sample2 = s_2;
854 out -= 1;
855 } else {
856 left->sample1 = s_1;
857 left->sample2 = s_2;
863 /* DK3 ADPCM support macro */
864 #define DK3_GET_NEXT_NIBBLE() \
865 if (decode_top_nibble_next) \
867 nibble = last_byte >> 4; \
868 decode_top_nibble_next = 0; \
870 else \
872 last_byte = *src++; \
873 if (src >= buf + buf_size) break; \
874 nibble = last_byte & 0x0F; \
875 decode_top_nibble_next = 1; \
878 static int adpcm_decode_frame(AVCodecContext *avctx,
879 void *data, int *data_size,
880 const uint8_t *buf, int buf_size)
882 ADPCMContext *c = avctx->priv_data;
883 ADPCMChannelStatus *cs;
884 int n, m, channel, i;
885 int block_predictor[2];
886 short *samples;
887 short *samples_end;
888 const uint8_t *src;
889 int st; /* stereo */
891 /* DK3 ADPCM accounting variables */
892 unsigned char last_byte = 0;
893 unsigned char nibble;
894 int decode_top_nibble_next = 0;
895 int diff_channel;
897 /* EA ADPCM state variables */
898 uint32_t samples_in_chunk;
899 int32_t previous_left_sample, previous_right_sample;
900 int32_t current_left_sample, current_right_sample;
901 int32_t next_left_sample, next_right_sample;
902 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
903 uint8_t shift_left, shift_right;
904 int count1, count2;
905 int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
907 if (!buf_size)
908 return 0;
910 //should protect all 4bit ADPCM variants
911 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
913 if(*data_size/4 < buf_size + 8)
914 return -1;
916 samples = data;
917 samples_end= samples + *data_size/2;
918 *data_size= 0;
919 src = buf;
921 st = avctx->channels == 2 ? 1 : 0;
923 switch(avctx->codec->id) {
924 case CODEC_ID_ADPCM_IMA_QT:
925 n = buf_size - 2*avctx->channels;
926 for (channel = 0; channel < avctx->channels; channel++) {
927 cs = &(c->status[channel]);
928 /* (pppppp) (piiiiiii) */
930 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
931 cs->predictor = (*src++) << 8;
932 cs->predictor |= (*src & 0x80);
933 cs->predictor &= 0xFF80;
935 /* sign extension */
936 if(cs->predictor & 0x8000)
937 cs->predictor -= 0x10000;
939 cs->predictor = av_clip_int16(cs->predictor);
941 cs->step_index = (*src++) & 0x7F;
943 if (cs->step_index > 88){
944 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
945 cs->step_index = 88;
948 cs->step = step_table[cs->step_index];
950 samples = (short*)data + channel;
952 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
953 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
954 samples += avctx->channels;
955 *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3);
956 samples += avctx->channels;
957 src ++;
960 if (st)
961 samples--;
962 break;
963 case CODEC_ID_ADPCM_IMA_WAV:
964 if (avctx->block_align != 0 && buf_size > avctx->block_align)
965 buf_size = avctx->block_align;
967 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
969 for(i=0; i<avctx->channels; i++){
970 cs = &(c->status[i]);
971 cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
973 cs->step_index = *src++;
974 if (cs->step_index > 88){
975 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
976 cs->step_index = 88;
978 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
981 while(src < buf + buf_size){
982 for(m=0; m<4; m++){
983 for(i=0; i<=st; i++)
984 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
985 for(i=0; i<=st; i++)
986 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
987 src++;
989 src += 4*st;
991 break;
992 case CODEC_ID_ADPCM_4XM:
993 cs = &(c->status[0]);
994 c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
995 if(st){
996 c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
998 c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
999 if(st){
1000 c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1002 if (cs->step_index < 0) cs->step_index = 0;
1003 if (cs->step_index > 88) cs->step_index = 88;
1005 m= (buf_size - (src - buf))>>st;
1006 for(i=0; i<m; i++) {
1007 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1008 if (st)
1009 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1010 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1011 if (st)
1012 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1015 src += m<<st;
1017 break;
1018 case CODEC_ID_ADPCM_MS:
1019 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1020 buf_size = avctx->block_align;
1021 n = buf_size - 7 * avctx->channels;
1022 if (n < 0)
1023 return -1;
1024 block_predictor[0] = av_clip(*src++, 0, 6);
1025 block_predictor[1] = 0;
1026 if (st)
1027 block_predictor[1] = av_clip(*src++, 0, 6);
1028 c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1029 if (st){
1030 c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1032 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1033 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1034 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1035 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1037 c->status[0].sample1 = bytestream_get_le16(&src);
1038 if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1039 c->status[0].sample2 = bytestream_get_le16(&src);
1040 if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1042 *samples++ = c->status[0].sample2;
1043 if (st) *samples++ = c->status[1].sample2;
1044 *samples++ = c->status[0].sample1;
1045 if (st) *samples++ = c->status[1].sample1;
1046 for(;n>0;n--) {
1047 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
1048 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1049 src ++;
1051 break;
1052 case CODEC_ID_ADPCM_IMA_DK4:
1053 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1054 buf_size = avctx->block_align;
1056 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1057 c->status[0].step_index = *src++;
1058 src++;
1059 *samples++ = c->status[0].predictor;
1060 if (st) {
1061 c->status[1].predictor = (int16_t)bytestream_get_le16(&src);
1062 c->status[1].step_index = *src++;
1063 src++;
1064 *samples++ = c->status[1].predictor;
1066 while (src < buf + buf_size) {
1068 /* take care of the top nibble (always left or mono channel) */
1069 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1070 src[0] >> 4, 3);
1072 /* take care of the bottom nibble, which is right sample for
1073 * stereo, or another mono sample */
1074 if (st)
1075 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1076 src[0] & 0x0F, 3);
1077 else
1078 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1079 src[0] & 0x0F, 3);
1081 src++;
1083 break;
1084 case CODEC_ID_ADPCM_IMA_DK3:
1085 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1086 buf_size = avctx->block_align;
1088 if(buf_size + 16 > (samples_end - samples)*3/8)
1089 return -1;
1091 c->status[0].predictor = (int16_t)AV_RL16(src + 10);
1092 c->status[1].predictor = (int16_t)AV_RL16(src + 12);
1093 c->status[0].step_index = src[14];
1094 c->status[1].step_index = src[15];
1095 /* sign extend the predictors */
1096 src += 16;
1097 diff_channel = c->status[1].predictor;
1099 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1100 * the buffer is consumed */
1101 while (1) {
1103 /* for this algorithm, c->status[0] is the sum channel and
1104 * c->status[1] is the diff channel */
1106 /* process the first predictor of the sum channel */
1107 DK3_GET_NEXT_NIBBLE();
1108 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1110 /* process the diff channel predictor */
1111 DK3_GET_NEXT_NIBBLE();
1112 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1114 /* process the first pair of stereo PCM samples */
1115 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1116 *samples++ = c->status[0].predictor + c->status[1].predictor;
1117 *samples++ = c->status[0].predictor - c->status[1].predictor;
1119 /* process the second predictor of the sum channel */
1120 DK3_GET_NEXT_NIBBLE();
1121 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1123 /* process the second pair of stereo PCM samples */
1124 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1125 *samples++ = c->status[0].predictor + c->status[1].predictor;
1126 *samples++ = c->status[0].predictor - c->status[1].predictor;
1128 break;
1129 case CODEC_ID_ADPCM_IMA_ISS:
1130 c->status[0].predictor = (int16_t)AV_RL16(src + 0);
1131 c->status[0].step_index = src[2];
1132 src += 4;
1133 if(st) {
1134 c->status[1].predictor = (int16_t)AV_RL16(src + 0);
1135 c->status[1].step_index = src[2];
1136 src += 4;
1139 while (src < buf + buf_size) {
1141 if (st) {
1142 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1143 src[0] >> 4 , 3);
1144 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1145 src[0] & 0x0F, 3);
1146 } else {
1147 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1148 src[0] & 0x0F, 3);
1149 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1150 src[0] >> 4 , 3);
1153 src++;
1155 break;
1156 case CODEC_ID_ADPCM_IMA_WS:
1157 /* no per-block initialization; just start decoding the data */
1158 while (src < buf + buf_size) {
1160 if (st) {
1161 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1162 src[0] >> 4 , 3);
1163 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1164 src[0] & 0x0F, 3);
1165 } else {
1166 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1167 src[0] >> 4 , 3);
1168 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1169 src[0] & 0x0F, 3);
1172 src++;
1174 break;
1175 case CODEC_ID_ADPCM_XA:
1176 while (buf_size >= 128) {
1177 xa_decode(samples, src, &c->status[0], &c->status[1],
1178 avctx->channels);
1179 src += 128;
1180 samples += 28 * 8;
1181 buf_size -= 128;
1183 break;
1184 case CODEC_ID_ADPCM_IMA_EA_EACS:
1185 samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1187 if (samples_in_chunk > buf_size-4-(8<<st)) {
1188 src += buf_size - 4;
1189 break;
1192 for (i=0; i<=st; i++)
1193 c->status[i].step_index = bytestream_get_le32(&src);
1194 for (i=0; i<=st; i++)
1195 c->status[i].predictor = bytestream_get_le32(&src);
1197 for (; samples_in_chunk; samples_in_chunk--, src++) {
1198 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
1199 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1201 break;
1202 case CODEC_ID_ADPCM_IMA_EA_SEAD:
1203 for (; src < buf+buf_size; src++) {
1204 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1205 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1207 break;
1208 case CODEC_ID_ADPCM_EA:
1209 samples_in_chunk = AV_RL32(src);
1210 if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1211 src += buf_size;
1212 break;
1214 src += 4;
1215 current_left_sample = (int16_t)bytestream_get_le16(&src);
1216 previous_left_sample = (int16_t)bytestream_get_le16(&src);
1217 current_right_sample = (int16_t)bytestream_get_le16(&src);
1218 previous_right_sample = (int16_t)bytestream_get_le16(&src);
1220 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1221 coeff1l = ea_adpcm_table[ *src >> 4 ];
1222 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
1223 coeff1r = ea_adpcm_table[*src & 0x0F];
1224 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1225 src++;
1227 shift_left = (*src >> 4 ) + 8;
1228 shift_right = (*src & 0x0F) + 8;
1229 src++;
1231 for (count2 = 0; count2 < 28; count2++) {
1232 next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1233 next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1234 src++;
1236 next_left_sample = (next_left_sample +
1237 (current_left_sample * coeff1l) +
1238 (previous_left_sample * coeff2l) + 0x80) >> 8;
1239 next_right_sample = (next_right_sample +
1240 (current_right_sample * coeff1r) +
1241 (previous_right_sample * coeff2r) + 0x80) >> 8;
1243 previous_left_sample = current_left_sample;
1244 current_left_sample = av_clip_int16(next_left_sample);
1245 previous_right_sample = current_right_sample;
1246 current_right_sample = av_clip_int16(next_right_sample);
1247 *samples++ = (unsigned short)current_left_sample;
1248 *samples++ = (unsigned short)current_right_sample;
1251 break;
1252 case CODEC_ID_ADPCM_EA_MAXIS_XA:
1253 for(channel = 0; channel < avctx->channels; channel++) {
1254 for (i=0; i<2; i++)
1255 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1256 shift[channel] = (*src & 0x0F) + 8;
1257 src++;
1259 for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1260 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1261 for(channel = 0; channel < avctx->channels; channel++) {
1262 int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1263 sample = (sample +
1264 c->status[channel].sample1 * coeff[channel][0] +
1265 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1266 c->status[channel].sample2 = c->status[channel].sample1;
1267 c->status[channel].sample1 = av_clip_int16(sample);
1268 *samples++ = c->status[channel].sample1;
1271 src+=avctx->channels;
1273 break;
1274 case CODEC_ID_ADPCM_EA_R1:
1275 case CODEC_ID_ADPCM_EA_R2:
1276 case CODEC_ID_ADPCM_EA_R3: {
1277 /* channel numbering
1278 2chan: 0=fl, 1=fr
1279 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1280 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1281 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1282 int32_t previous_sample, current_sample, next_sample;
1283 int32_t coeff1, coeff2;
1284 uint8_t shift;
1285 unsigned int channel;
1286 uint16_t *samplesC;
1287 const uint8_t *srcC;
1288 const uint8_t *src_end = buf + buf_size;
1290 samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1291 : bytestream_get_le32(&src)) / 28;
1292 if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1293 28*samples_in_chunk*avctx->channels > samples_end-samples) {
1294 src += buf_size - 4;
1295 break;
1298 for (channel=0; channel<avctx->channels; channel++) {
1299 int32_t offset = (big_endian ? bytestream_get_be32(&src)
1300 : bytestream_get_le32(&src))
1301 + (avctx->channels-channel-1) * 4;
1303 if ((offset < 0) || (offset >= src_end - src - 4)) break;
1304 srcC = src + offset;
1305 samplesC = samples + channel;
1307 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1308 current_sample = (int16_t)bytestream_get_le16(&srcC);
1309 previous_sample = (int16_t)bytestream_get_le16(&srcC);
1310 } else {
1311 current_sample = c->status[channel].predictor;
1312 previous_sample = c->status[channel].prev_sample;
1315 for (count1=0; count1<samples_in_chunk; count1++) {
1316 if (*srcC == 0xEE) { /* only seen in R2 and R3 */
1317 srcC++;
1318 if (srcC > src_end - 30*2) break;
1319 current_sample = (int16_t)bytestream_get_be16(&srcC);
1320 previous_sample = (int16_t)bytestream_get_be16(&srcC);
1322 for (count2=0; count2<28; count2++) {
1323 *samplesC = (int16_t)bytestream_get_be16(&srcC);
1324 samplesC += avctx->channels;
1326 } else {
1327 coeff1 = ea_adpcm_table[ *srcC>>4 ];
1328 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1329 shift = (*srcC++ & 0x0F) + 8;
1331 if (srcC > src_end - 14) break;
1332 for (count2=0; count2<28; count2++) {
1333 if (count2 & 1)
1334 next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1335 else
1336 next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift;
1338 next_sample += (current_sample * coeff1) +
1339 (previous_sample * coeff2);
1340 next_sample = av_clip_int16(next_sample >> 8);
1342 previous_sample = current_sample;
1343 current_sample = next_sample;
1344 *samplesC = current_sample;
1345 samplesC += avctx->channels;
1350 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1351 c->status[channel].predictor = current_sample;
1352 c->status[channel].prev_sample = previous_sample;
1356 src = src + buf_size - (4 + 4*avctx->channels);
1357 samples += 28 * samples_in_chunk * avctx->channels;
1358 break;
1360 case CODEC_ID_ADPCM_EA_XAS:
1361 if (samples_end-samples < 32*4*avctx->channels
1362 || buf_size < (4+15)*4*avctx->channels) {
1363 src += buf_size;
1364 break;
1366 for (channel=0; channel<avctx->channels; channel++) {
1367 int coeff[2][4], shift[4];
1368 short *s2, *s = &samples[channel];
1369 for (n=0; n<4; n++, s+=32*avctx->channels) {
1370 for (i=0; i<2; i++)
1371 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1372 shift[n] = (src[2]&0x0F) + 8;
1373 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1374 s2[0] = (src[0]&0xF0) + (src[1]<<8);
1377 for (m=2; m<32; m+=2) {
1378 s = &samples[m*avctx->channels + channel];
1379 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1380 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1381 int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1382 int pred = s2[-1*avctx->channels] * coeff[0][n]
1383 + s2[-2*avctx->channels] * coeff[1][n];
1384 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1389 samples += 32*4*avctx->channels;
1390 break;
1391 case CODEC_ID_ADPCM_IMA_AMV:
1392 case CODEC_ID_ADPCM_IMA_SMJPEG:
1393 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1394 c->status[0].step_index = bytestream_get_le16(&src);
1396 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1397 src+=4;
1399 while (src < buf + buf_size) {
1400 char hi, lo;
1401 lo = *src & 0x0F;
1402 hi = *src >> 4;
1404 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1405 FFSWAP(char, hi, lo);
1407 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1408 lo, 3);
1409 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1410 hi, 3);
1411 src++;
1413 break;
1414 case CODEC_ID_ADPCM_CT:
1415 while (src < buf + buf_size) {
1416 if (st) {
1417 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1418 src[0] >> 4);
1419 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1420 src[0] & 0x0F);
1421 } else {
1422 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1423 src[0] >> 4);
1424 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1425 src[0] & 0x0F);
1427 src++;
1429 break;
1430 case CODEC_ID_ADPCM_SBPRO_4:
1431 case CODEC_ID_ADPCM_SBPRO_3:
1432 case CODEC_ID_ADPCM_SBPRO_2:
1433 if (!c->status[0].step_index) {
1434 /* the first byte is a raw sample */
1435 *samples++ = 128 * (*src++ - 0x80);
1436 if (st)
1437 *samples++ = 128 * (*src++ - 0x80);
1438 c->status[0].step_index = 1;
1440 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1441 while (src < buf + buf_size) {
1442 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1443 src[0] >> 4, 4, 0);
1444 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1445 src[0] & 0x0F, 4, 0);
1446 src++;
1448 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1449 while (src < buf + buf_size && samples + 2 < samples_end) {
1450 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1451 src[0] >> 5 , 3, 0);
1452 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1453 (src[0] >> 2) & 0x07, 3, 0);
1454 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1455 src[0] & 0x03, 2, 0);
1456 src++;
1458 } else {
1459 while (src < buf + buf_size && samples + 3 < samples_end) {
1460 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1461 src[0] >> 6 , 2, 2);
1462 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1463 (src[0] >> 4) & 0x03, 2, 2);
1464 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1465 (src[0] >> 2) & 0x03, 2, 2);
1466 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1467 src[0] & 0x03, 2, 2);
1468 src++;
1471 break;
1472 case CODEC_ID_ADPCM_SWF:
1474 GetBitContext gb;
1475 const int *table;
1476 int k0, signmask, nb_bits, count;
1477 int size = buf_size*8;
1479 init_get_bits(&gb, buf, size);
1481 //read bits & initial values
1482 nb_bits = get_bits(&gb, 2)+2;
1483 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1484 table = swf_index_tables[nb_bits-2];
1485 k0 = 1 << (nb_bits-2);
1486 signmask = 1 << (nb_bits-1);
1488 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1489 for (i = 0; i < avctx->channels; i++) {
1490 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1491 c->status[i].step_index = get_bits(&gb, 6);
1494 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1495 int i;
1497 for (i = 0; i < avctx->channels; i++) {
1498 // similar to IMA adpcm
1499 int delta = get_bits(&gb, nb_bits);
1500 int step = step_table[c->status[i].step_index];
1501 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1502 int k = k0;
1504 do {
1505 if (delta & k)
1506 vpdiff += step;
1507 step >>= 1;
1508 k >>= 1;
1509 } while(k);
1510 vpdiff += step;
1512 if (delta & signmask)
1513 c->status[i].predictor -= vpdiff;
1514 else
1515 c->status[i].predictor += vpdiff;
1517 c->status[i].step_index += table[delta & (~signmask)];
1519 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1520 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1522 *samples++ = c->status[i].predictor;
1523 if (samples >= samples_end) {
1524 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1525 return -1;
1530 src += buf_size;
1531 break;
1533 case CODEC_ID_ADPCM_YAMAHA:
1534 while (src < buf + buf_size) {
1535 if (st) {
1536 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1537 src[0] & 0x0F);
1538 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1539 src[0] >> 4 );
1540 } else {
1541 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1542 src[0] & 0x0F);
1543 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1544 src[0] >> 4 );
1546 src++;
1548 break;
1549 case CODEC_ID_ADPCM_THP:
1551 int table[2][16];
1552 unsigned int samplecnt;
1553 int prev[2][2];
1554 int ch;
1556 if (buf_size < 80) {
1557 av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1558 return -1;
1561 src+=4;
1562 samplecnt = bytestream_get_be32(&src);
1564 for (i = 0; i < 32; i++)
1565 table[0][i] = (int16_t)bytestream_get_be16(&src);
1567 /* Initialize the previous sample. */
1568 for (i = 0; i < 4; i++)
1569 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1571 if (samplecnt >= (samples_end - samples) / (st + 1)) {
1572 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1573 return -1;
1576 for (ch = 0; ch <= st; ch++) {
1577 samples = (unsigned short *) data + ch;
1579 /* Read in every sample for this channel. */
1580 for (i = 0; i < samplecnt / 14; i++) {
1581 int index = (*src >> 4) & 7;
1582 unsigned int exp = 28 - (*src++ & 15);
1583 int factor1 = table[ch][index * 2];
1584 int factor2 = table[ch][index * 2 + 1];
1586 /* Decode 14 samples. */
1587 for (n = 0; n < 14; n++) {
1588 int32_t sampledat;
1589 if(n&1) sampledat= *src++ <<28;
1590 else sampledat= (*src&0xF0)<<24;
1592 sampledat = ((prev[ch][0]*factor1
1593 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1594 *samples = av_clip_int16(sampledat);
1595 prev[ch][1] = prev[ch][0];
1596 prev[ch][0] = *samples++;
1598 /* In case of stereo, skip one sample, this sample
1599 is for the other channel. */
1600 samples += st;
1605 /* In the previous loop, in case stereo is used, samples is
1606 increased exactly one time too often. */
1607 samples -= st;
1608 break;
1611 default:
1612 return -1;
1614 *data_size = (uint8_t *)samples - (uint8_t *)data;
1615 return src - buf;
1620 #if CONFIG_ENCODERS
1621 #define ADPCM_ENCODER(id,name,long_name_) \
1622 AVCodec name ## _encoder = { \
1623 #name, \
1624 CODEC_TYPE_AUDIO, \
1625 id, \
1626 sizeof(ADPCMContext), \
1627 adpcm_encode_init, \
1628 adpcm_encode_frame, \
1629 adpcm_encode_close, \
1630 NULL, \
1631 .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1632 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1634 #else
1635 #define ADPCM_ENCODER(id,name,long_name_)
1636 #endif
1638 #if CONFIG_DECODERS
1639 #define ADPCM_DECODER(id,name,long_name_) \
1640 AVCodec name ## _decoder = { \
1641 #name, \
1642 CODEC_TYPE_AUDIO, \
1643 id, \
1644 sizeof(ADPCMContext), \
1645 adpcm_decode_init, \
1646 NULL, \
1647 NULL, \
1648 adpcm_decode_frame, \
1649 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1651 #else
1652 #define ADPCM_DECODER(id,name,long_name_)
1653 #endif
1655 #define ADPCM_CODEC(id,name,long_name_) \
1656 ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1658 /* Note: Do not forget to add new entries to the Makefile as well. */
1659 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1660 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1661 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1662 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1663 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1664 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1665 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1666 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1667 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1668 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1669 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1670 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1671 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1672 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1673 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1674 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1675 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1676 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1677 ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1678 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1679 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1680 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1681 ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1682 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1683 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1684 ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");