Move 2 variable declarations to inside of loop.
[FFMpeg-mirror/lagarith.git] / libavcodec / wmaprodec.c
blob7f35edc699daf278272947ca3d95dadb317247ee
1 /*
2 * Wmapro compatible decoder
3 * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
4 * Copyright (c) 2008 - 2009 Sascha Sommer, Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/wmaprodec.c
25 * @brief wmapro decoder implementation
26 * Wmapro is an MDCT based codec comparable to wma standard or AAC.
27 * The decoding therefore consists of the following steps:
28 * - bitstream decoding
29 * - reconstruction of per-channel data
30 * - rescaling and inverse quantization
31 * - IMDCT
32 * - windowing and overlapp-add
34 * The compressed wmapro bitstream is split into individual packets.
35 * Every such packet contains one or more wma frames.
36 * The compressed frames may have a variable length and frames may
37 * cross packet boundaries.
38 * Common to all wmapro frames is the number of samples that are stored in
39 * a frame.
40 * The number of samples and a few other decode flags are stored
41 * as extradata that has to be passed to the decoder.
43 * The wmapro frames themselves are again split into a variable number of
44 * subframes. Every subframe contains the data for 2^N time domain samples
45 * where N varies between 7 and 12.
47 * Example wmapro bitstream (in samples):
49 * || packet 0 || packet 1 || packet 2 packets
50 * ---------------------------------------------------
51 * || frame 0 || frame 1 || frame 2 || frames
52 * ---------------------------------------------------
53 * || | | || | | | || || subframes of channel 0
54 * ---------------------------------------------------
55 * || | | || | | | || || subframes of channel 1
56 * ---------------------------------------------------
58 * The frame layouts for the individual channels of a wma frame does not need
59 * to be the same.
61 * However, if the offsets and lengths of several subframes of a frame are the
62 * same, the subframes of the channels can be grouped.
63 * Every group may then use special coding techniques like M/S stereo coding
64 * to improve the compression ratio. These channel transformations do not
65 * need to be applied to a whole subframe. Instead, they can also work on
66 * individual scale factor bands (see below).
67 * The coefficients that carry the audio signal in the frequency domain
68 * are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
69 * In addition to that, the encoder can switch to a runlevel coding scheme
70 * by transmitting subframe_length / 128 zero coefficients.
72 * Before the audio signal can be converted to the time domain, the
73 * coefficients have to be rescaled and inverse quantized.
74 * A subframe is therefore split into several scale factor bands that get
75 * scaled individually.
76 * Scale factors are submitted for every frame but they might be shared
77 * between the subframes of a channel. Scale factors are initially DPCM-coded.
78 * Once scale factors are shared, the differences are transmitted as runlevel
79 * codes.
80 * Every subframe length and offset combination in the frame layout shares a
81 * common quantization factor that can be adjusted for every channel by a
82 * modifier.
83 * After the inverse quantization, the coefficients get processed by an IMDCT.
84 * The resulting values are then windowed with a sine window and the first half
85 * of the values are added to the second half of the output from the previous
86 * subframe in order to reconstruct the output samples.
89 #include "avcodec.h"
90 #include "internal.h"
91 #include "get_bits.h"
92 #include "put_bits.h"
93 #include "wmaprodata.h"
94 #include "dsputil.h"
95 #include "wma.h"
97 /** current decoder limitations */
98 #define WMAPRO_MAX_CHANNELS 8 ///< max number of handled channels
99 #define MAX_SUBFRAMES 32 ///< max number of subframes per channel
100 #define MAX_BANDS 29 ///< max number of scale factor bands
101 #define MAX_FRAMESIZE 16384 ///< maximum compressed frame size
103 #define WMAPRO_BLOCK_MAX_BITS 12 ///< log2 of max block size
104 #define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS) ///< maximum block size
105 #define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1) ///< possible block sizes
108 #define VLCBITS 9
109 #define SCALEVLCBITS 8
110 #define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
111 #define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
112 #define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
113 #define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
114 #define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
116 static VLC sf_vlc; ///< scale factor DPCM vlc
117 static VLC sf_rl_vlc; ///< scale factor run length vlc
118 static VLC vec4_vlc; ///< 4 coefficients per symbol
119 static VLC vec2_vlc; ///< 2 coefficients per symbol
120 static VLC vec1_vlc; ///< 1 coefficient per symbol
121 static VLC coef_vlc[2]; ///< coefficient run length vlc codes
122 static float sin64[33]; ///< sinus table for decorrelation
125 * @brief frame specific decoder context for a single channel
127 typedef struct {
128 int16_t prev_block_len; ///< length of the previous block
129 uint8_t transmit_coefs;
130 uint8_t num_subframes;
131 uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples
132 uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame
133 uint8_t cur_subframe; ///< current subframe number
134 uint16_t decoded_samples; ///< number of already processed samples
135 uint8_t grouped; ///< channel is part of a group
136 int quant_step; ///< quantization step for the current subframe
137 int8_t reuse_sf; ///< share scale factors between subframes
138 int8_t scale_factor_step; ///< scaling step for the current subframe
139 int max_scale_factor; ///< maximum scale factor for the current subframe
140 int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values
141 int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling)
142 int* scale_factors; ///< pointer to the scale factor values used for decoding
143 uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block
144 float* coeffs; ///< pointer to the subframe decode buffer
145 DECLARE_ALIGNED_16(float, out[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]); ///< output buffer
146 } WMAProChannelCtx;
149 * @brief channel group for channel transformations
151 typedef struct {
152 uint8_t num_channels; ///< number of channels in the group
153 int8_t transform; ///< transform on / off
154 int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band
155 float decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
156 float* channel_data[WMAPRO_MAX_CHANNELS]; ///< transformation coefficients
157 } WMAProChannelGrp;
160 * @brief main decoder context
162 typedef struct WMAProDecodeCtx {
163 /* generic decoder variables */
164 AVCodecContext* avctx; ///< codec context for av_log
165 DSPContext dsp; ///< accelerated DSP functions
166 uint8_t frame_data[MAX_FRAMESIZE +
167 FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
168 PutBitContext pb; ///< context for filling the frame_data buffer
169 FFTContext mdct_ctx[WMAPRO_BLOCK_SIZES]; ///< MDCT context per block size
170 DECLARE_ALIGNED_16(float, tmp[WMAPRO_BLOCK_MAX_SIZE]); ///< IMDCT output buffer
171 float* windows[WMAPRO_BLOCK_SIZES]; ///< windows for the different block sizes
173 /* frame size dependent frame information (set during initialization) */
174 uint32_t decode_flags; ///< used compression features
175 uint8_t len_prefix; ///< frame is prefixed with its length
176 uint8_t dynamic_range_compression; ///< frame contains DRC data
177 uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
178 uint16_t samples_per_frame; ///< number of samples to output
179 uint16_t log2_frame_size;
180 int8_t num_channels; ///< number of channels in the stream (same as AVCodecContext.num_channels)
181 int8_t lfe_channel; ///< lfe channel index
182 uint8_t max_num_subframes;
183 uint8_t subframe_len_bits; ///< number of bits used for the subframe length
184 uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
185 uint16_t min_samples_per_subframe;
186 int8_t num_sfb[WMAPRO_BLOCK_SIZES]; ///< scale factor bands per block size
187 int16_t sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4)
188 int8_t sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
189 int16_t subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values
191 /* packet decode state */
192 GetBitContext pgb; ///< bitstream reader context for the packet
193 uint8_t packet_offset; ///< frame offset in the packet
194 uint8_t packet_sequence_number; ///< current packet number
195 int num_saved_bits; ///< saved number of bits
196 int frame_offset; ///< frame offset in the bit reservoir
197 int subframe_offset; ///< subframe offset in the bit reservoir
198 uint8_t packet_loss; ///< set in case of bitstream error
199 uint8_t packet_done; ///< set when a packet is fully decoded
201 /* frame decode state */
202 uint32_t frame_num; ///< current frame number (not used for decoding)
203 GetBitContext gb; ///< bitstream reader context
204 int buf_bit_size; ///< buffer size in bits
205 float* samples; ///< current samplebuffer pointer
206 float* samples_end; ///< maximum samplebuffer pointer
207 uint8_t drc_gain; ///< gain for the DRC tool
208 int8_t skip_frame; ///< skip output step
209 int8_t parsed_all_subframes; ///< all subframes decoded?
211 /* subframe/block decode state */
212 int16_t subframe_len; ///< current subframe length
213 int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe
214 int8_t channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS];
215 int8_t num_bands; ///< number of scale factor bands
216 int16_t* cur_sfb_offsets; ///< sfb offsets for the current block
217 uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
218 int8_t esc_len; ///< length of escaped coefficients
220 uint8_t num_chgroups; ///< number of channel groups
221 WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS]; ///< channel group information
223 WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS]; ///< per channel data
224 } WMAProDecodeCtx;
228 *@brief helper function to print the most important members of the context
229 *@param s context
231 static void av_cold dump_context(WMAProDecodeCtx *s)
233 #define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
234 #define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b);
236 PRINT("ed sample bit depth", s->bits_per_sample);
237 PRINT_HEX("ed decode flags", s->decode_flags);
238 PRINT("samples per frame", s->samples_per_frame);
239 PRINT("log2 frame size", s->log2_frame_size);
240 PRINT("max num subframes", s->max_num_subframes);
241 PRINT("len prefix", s->len_prefix);
242 PRINT("num channels", s->num_channels);
246 *@brief Uninitialize the decoder and free all resources.
247 *@param avctx codec context
248 *@return 0 on success, < 0 otherwise
250 static av_cold int decode_end(AVCodecContext *avctx)
252 WMAProDecodeCtx *s = avctx->priv_data;
253 int i;
255 for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
256 ff_mdct_end(&s->mdct_ctx[i]);
258 return 0;
262 *@brief Initialize the decoder.
263 *@param avctx codec context
264 *@return 0 on success, -1 otherwise
266 static av_cold int decode_init(AVCodecContext *avctx)
268 WMAProDecodeCtx *s = avctx->priv_data;
269 uint8_t *edata_ptr = avctx->extradata;
270 unsigned int channel_mask;
271 int i;
272 int log2_max_num_subframes;
273 int num_possible_block_sizes;
275 s->avctx = avctx;
276 dsputil_init(&s->dsp, avctx);
277 init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
279 avctx->sample_fmt = SAMPLE_FMT_FLT;
281 if (avctx->extradata_size >= 18) {
282 s->decode_flags = AV_RL16(edata_ptr+14);
283 channel_mask = AV_RL32(edata_ptr+2);
284 s->bits_per_sample = AV_RL16(edata_ptr);
285 /** dump the extradata */
286 for (i = 0; i < avctx->extradata_size; i++)
287 dprintf(avctx, "[%x] ", avctx->extradata[i]);
288 dprintf(avctx, "\n");
290 } else {
291 av_log_ask_for_sample(avctx, "Unknown extradata size\n");
292 return AVERROR_INVALIDDATA;
295 /** generic init */
296 s->log2_frame_size = av_log2(avctx->block_align) + 4;
298 /** frame info */
299 s->skip_frame = 1; /** skip first frame */
300 s->packet_loss = 1;
301 s->len_prefix = (s->decode_flags & 0x40);
303 if (!s->len_prefix) {
304 av_log_ask_for_sample(avctx, "no length prefix\n");
305 return AVERROR_INVALIDDATA;
308 /** get frame len */
309 s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate,
310 3, s->decode_flags);
312 /** init previous block len */
313 for (i = 0; i < avctx->channels; i++)
314 s->channel[i].prev_block_len = s->samples_per_frame;
316 /** subframe info */
317 log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3);
318 s->max_num_subframes = 1 << log2_max_num_subframes;
319 if (s->max_num_subframes == 16)
320 s->max_subframe_len_bit = 1;
321 s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
323 num_possible_block_sizes = log2_max_num_subframes + 1;
324 s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes;
325 s->dynamic_range_compression = (s->decode_flags & 0x80);
327 if (s->max_num_subframes > MAX_SUBFRAMES) {
328 av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n",
329 s->max_num_subframes);
330 return AVERROR_INVALIDDATA;
333 s->num_channels = avctx->channels;
335 /** extract lfe channel position */
336 s->lfe_channel = -1;
338 if (channel_mask & 8) {
339 unsigned int mask;
340 for (mask = 1; mask < 16; mask <<= 1) {
341 if (channel_mask & mask)
342 ++s->lfe_channel;
346 if (s->num_channels < 0 || s->num_channels > WMAPRO_MAX_CHANNELS) {
347 av_log_ask_for_sample(avctx, "invalid number of channels\n");
348 return AVERROR_NOTSUPP;
351 INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE,
352 scale_huffbits, 1, 1,
353 scale_huffcodes, 2, 2, 616);
355 INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE,
356 scale_rl_huffbits, 1, 1,
357 scale_rl_huffcodes, 4, 4, 1406);
359 INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
360 coef0_huffbits, 1, 1,
361 coef0_huffcodes, 4, 4, 2108);
363 INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
364 coef1_huffbits, 1, 1,
365 coef1_huffcodes, 4, 4, 3912);
367 INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE,
368 vec4_huffbits, 1, 1,
369 vec4_huffcodes, 2, 2, 604);
371 INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE,
372 vec2_huffbits, 1, 1,
373 vec2_huffcodes, 2, 2, 562);
375 INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE,
376 vec1_huffbits, 1, 1,
377 vec1_huffcodes, 2, 2, 562);
379 /** calculate number of scale factor bands and their offsets
380 for every possible block size */
381 for (i = 0; i < num_possible_block_sizes; i++) {
382 int subframe_len = s->samples_per_frame >> i;
383 int x;
384 int band = 1;
386 s->sfb_offsets[i][0] = 0;
388 for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) {
389 int offset = (subframe_len * 2 * critical_freq[x])
390 / s->avctx->sample_rate + 2;
391 offset &= ~3;
392 if (offset > s->sfb_offsets[i][band - 1])
393 s->sfb_offsets[i][band++] = offset;
395 s->sfb_offsets[i][band - 1] = subframe_len;
396 s->num_sfb[i] = band - 1;
400 /** Scale factors can be shared between blocks of different size
401 as every block has a different scale factor band layout.
402 The matrix sf_offsets is needed to find the correct scale factor.
405 for (i = 0; i < num_possible_block_sizes; i++) {
406 int b;
407 for (b = 0; b < s->num_sfb[i]; b++) {
408 int x;
409 int offset = ((s->sfb_offsets[i][b]
410 + s->sfb_offsets[i][b + 1] - 1) << i) >> 1;
411 for (x = 0; x < num_possible_block_sizes; x++) {
412 int v = 0;
413 while (s->sfb_offsets[x][v + 1] << x < offset)
414 ++v;
415 s->sf_offsets[i][x][b] = v;
420 /** init MDCT, FIXME: only init needed sizes */
421 for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
422 ff_mdct_init(&s->mdct_ctx[i], BLOCK_MIN_BITS+1+i, 1,
423 1.0 / (1 << (BLOCK_MIN_BITS + i - 1))
424 / (1 << (s->bits_per_sample - 1)));
426 /** init MDCT windows: simple sinus window */
427 for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) {
428 const int n = 1 << (WMAPRO_BLOCK_MAX_BITS - i);
429 const int win_idx = WMAPRO_BLOCK_MAX_BITS - i;
430 ff_sine_window_init(ff_sine_windows[win_idx], n);
431 s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
434 /** calculate subwoofer cutoff values */
435 for (i = 0; i < num_possible_block_sizes; i++) {
436 int block_size = s->samples_per_frame >> i;
437 int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1)
438 / s->avctx->sample_rate;
439 s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
442 /** calculate sine values for the decorrelation matrix */
443 for (i = 0; i < 33; i++)
444 sin64[i] = sin(i*M_PI / 64.0);
446 if (avctx->debug & FF_DEBUG_BITSTREAM)
447 dump_context(s);
449 avctx->channel_layout = channel_mask;
450 return 0;
454 *@brief Decode the subframe length.
455 *@param s context
456 *@param offset sample offset in the frame
457 *@return decoded subframe length on success, < 0 in case of an error
459 static int decode_subframe_length(WMAProDecodeCtx *s, int offset)
461 int frame_len_shift = 0;
462 int subframe_len;
464 /** no need to read from the bitstream when only one length is possible */
465 if (offset == s->samples_per_frame - s->min_samples_per_subframe)
466 return s->min_samples_per_subframe;
468 /** 1 bit indicates if the subframe is of maximum length */
469 if (s->max_subframe_len_bit) {
470 if (get_bits1(&s->gb))
471 frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1);
472 } else
473 frame_len_shift = get_bits(&s->gb, s->subframe_len_bits);
475 subframe_len = s->samples_per_frame >> frame_len_shift;
477 /** sanity check the length */
478 if (subframe_len < s->min_samples_per_subframe ||
479 subframe_len > s->samples_per_frame) {
480 av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
481 subframe_len);
482 return AVERROR_INVALIDDATA;
484 return subframe_len;
488 *@brief Decode how the data in the frame is split into subframes.
489 * Every WMA frame contains the encoded data for a fixed number of
490 * samples per channel. The data for every channel might be split
491 * into several subframes. This function will reconstruct the list of
492 * subframes for every channel.
494 * If the subframes are not evenly split, the algorithm estimates the
495 * channels with the lowest number of total samples.
496 * Afterwards, for each of these channels a bit is read from the
497 * bitstream that indicates if the channel contains a subframe with the
498 * next subframe size that is going to be read from the bitstream or not.
499 * If a channel contains such a subframe, the subframe size gets added to
500 * the channel's subframe list.
501 * The algorithm repeats these steps until the frame is properly divided
502 * between the individual channels.
504 *@param s context
505 *@return 0 on success, < 0 in case of an error
507 static int decode_tilehdr(WMAProDecodeCtx *s)
509 uint16_t num_samples[WMAPRO_MAX_CHANNELS]; /** sum of samples for all currently known subframes of a channel */
510 uint8_t contains_subframe[WMAPRO_MAX_CHANNELS]; /** flag indicating if a channel contains the current subframe */
511 int channels_for_cur_subframe = s->num_channels; /** number of channels that contain the current subframe */
512 int fixed_channel_layout = 0; /** flag indicating that all channels use the same subframe offsets and sizes */
513 int min_channel_len = 0; /** smallest sum of samples (channels with this length will be processed first) */
514 int c;
516 /* Should never consume more than 3073 bits (256 iterations for the
517 * while loop when always the minimum amount of 128 samples is substracted
518 * from missing samples in the 8 channel case).
519 * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4)
522 /** reset tiling information */
523 for (c = 0; c < s->num_channels; c++)
524 s->channel[c].num_subframes = 0;
526 memset(num_samples, 0, sizeof(num_samples));
528 if (s->max_num_subframes == 1 || get_bits1(&s->gb))
529 fixed_channel_layout = 1;
531 /** loop until the frame data is split between the subframes */
532 do {
533 int subframe_len;
535 /** check which channels contain the subframe */
536 for (c = 0; c < s->num_channels; c++) {
537 if (num_samples[c] == min_channel_len) {
538 if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
539 (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe))
540 contains_subframe[c] = 1;
541 else
542 contains_subframe[c] = get_bits1(&s->gb);
543 } else
544 contains_subframe[c] = 0;
547 /** get subframe length, subframe_len == 0 is not allowed */
548 if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
549 return AVERROR_INVALIDDATA;
551 /** add subframes to the individual channels and find new min_channel_len */
552 min_channel_len += subframe_len;
553 for (c = 0; c < s->num_channels; c++) {
554 WMAProChannelCtx* chan = &s->channel[c];
556 if (contains_subframe[c]) {
557 if (chan->num_subframes >= MAX_SUBFRAMES) {
558 av_log(s->avctx, AV_LOG_ERROR,
559 "broken frame: num subframes > 31\n");
560 return AVERROR_INVALIDDATA;
562 chan->subframe_len[chan->num_subframes] = subframe_len;
563 num_samples[c] += subframe_len;
564 ++chan->num_subframes;
565 if (num_samples[c] > s->samples_per_frame) {
566 av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
567 "channel len > samples_per_frame\n");
568 return AVERROR_INVALIDDATA;
570 } else if (num_samples[c] <= min_channel_len) {
571 if (num_samples[c] < min_channel_len) {
572 channels_for_cur_subframe = 0;
573 min_channel_len = num_samples[c];
575 ++channels_for_cur_subframe;
578 } while (min_channel_len < s->samples_per_frame);
580 for (c = 0; c < s->num_channels; c++) {
581 int i;
582 int offset = 0;
583 for (i = 0; i < s->channel[c].num_subframes; i++) {
584 dprintf(s->avctx, "frame[%i] channel[%i] subframe[%i]"
585 " len %i\n", s->frame_num, c, i,
586 s->channel[c].subframe_len[i]);
587 s->channel[c].subframe_offset[i] = offset;
588 offset += s->channel[c].subframe_len[i];
592 return 0;
596 *@brief Calculate a decorrelation matrix from the bitstream parameters.
597 *@param s codec context
598 *@param chgroup channel group for which the matrix needs to be calculated
600 static void decode_decorrelation_matrix(WMAProDecodeCtx *s,
601 WMAProChannelGrp *chgroup)
603 int i;
604 int offset = 0;
605 int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
606 memset(chgroup->decorrelation_matrix, 0, s->num_channels *
607 s->num_channels * sizeof(*chgroup->decorrelation_matrix));
609 for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
610 rotation_offset[i] = get_bits(&s->gb, 6);
612 for (i = 0; i < chgroup->num_channels; i++)
613 chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
614 get_bits1(&s->gb) ? 1.0 : -1.0;
616 for (i = 1; i < chgroup->num_channels; i++) {
617 int x;
618 for (x = 0; x < i; x++) {
619 int y;
620 for (y = 0; y < i + 1; y++) {
621 float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
622 float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
623 int n = rotation_offset[offset + x];
624 float sinv;
625 float cosv;
627 if (n < 32) {
628 sinv = sin64[n];
629 cosv = sin64[32 - n];
630 } else {
631 sinv = sin64[64 - n];
632 cosv = -sin64[n - 32];
635 chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
636 (v1 * sinv) - (v2 * cosv);
637 chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
638 (v1 * cosv) + (v2 * sinv);
641 offset += i;
646 *@brief Decode channel transformation parameters
647 *@param s codec context
648 *@return 0 in case of success, < 0 in case of bitstream errors
650 static int decode_channel_transform(WMAProDecodeCtx* s)
652 int i;
653 /* should never consume more than 1921 bits for the 8 channel case
654 * 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
655 * + MAX_CHANNELS + MAX_BANDS + 1)
658 /** in the one channel case channel transforms are pointless */
659 s->num_chgroups = 0;
660 if (s->num_channels > 1) {
661 int remaining_channels = s->channels_for_cur_subframe;
663 if (get_bits1(&s->gb)) {
664 av_log_ask_for_sample(s->avctx,
665 "unsupported channel transform bit\n");
666 return AVERROR_INVALIDDATA;
669 for (s->num_chgroups = 0; remaining_channels &&
670 s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) {
671 WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups];
672 float** channel_data = chgroup->channel_data;
673 chgroup->num_channels = 0;
674 chgroup->transform = 0;
676 /** decode channel mask */
677 if (remaining_channels > 2) {
678 for (i = 0; i < s->channels_for_cur_subframe; i++) {
679 int channel_idx = s->channel_indexes_for_cur_subframe[i];
680 if (!s->channel[channel_idx].grouped
681 && get_bits1(&s->gb)) {
682 ++chgroup->num_channels;
683 s->channel[channel_idx].grouped = 1;
684 *channel_data++ = s->channel[channel_idx].coeffs;
687 } else {
688 chgroup->num_channels = remaining_channels;
689 for (i = 0; i < s->channels_for_cur_subframe; i++) {
690 int channel_idx = s->channel_indexes_for_cur_subframe[i];
691 if (!s->channel[channel_idx].grouped)
692 *channel_data++ = s->channel[channel_idx].coeffs;
693 s->channel[channel_idx].grouped = 1;
697 /** decode transform type */
698 if (chgroup->num_channels == 2) {
699 if (get_bits1(&s->gb)) {
700 if (get_bits1(&s->gb)) {
701 av_log_ask_for_sample(s->avctx,
702 "unsupported channel transform type\n");
704 } else {
705 chgroup->transform = 1;
706 if (s->num_channels == 2) {
707 chgroup->decorrelation_matrix[0] = 1.0;
708 chgroup->decorrelation_matrix[1] = -1.0;
709 chgroup->decorrelation_matrix[2] = 1.0;
710 chgroup->decorrelation_matrix[3] = 1.0;
711 } else {
712 /** cos(pi/4) */
713 chgroup->decorrelation_matrix[0] = 0.70703125;
714 chgroup->decorrelation_matrix[1] = -0.70703125;
715 chgroup->decorrelation_matrix[2] = 0.70703125;
716 chgroup->decorrelation_matrix[3] = 0.70703125;
719 } else if (chgroup->num_channels > 2) {
720 if (get_bits1(&s->gb)) {
721 chgroup->transform = 1;
722 if (get_bits1(&s->gb)) {
723 decode_decorrelation_matrix(s, chgroup);
724 } else {
725 /** FIXME: more than 6 coupled channels not supported */
726 if (chgroup->num_channels > 6) {
727 av_log_ask_for_sample(s->avctx,
728 "coupled channels > 6\n");
729 } else {
730 memcpy(chgroup->decorrelation_matrix,
731 default_decorrelation[chgroup->num_channels],
732 chgroup->num_channels * chgroup->num_channels *
733 sizeof(*chgroup->decorrelation_matrix));
739 /** decode transform on / off */
740 if (chgroup->transform) {
741 if (!get_bits1(&s->gb)) {
742 int i;
743 /** transform can be enabled for individual bands */
744 for (i = 0; i < s->num_bands; i++) {
745 chgroup->transform_band[i] = get_bits1(&s->gb);
747 } else {
748 memset(chgroup->transform_band, 1, s->num_bands);
751 remaining_channels -= chgroup->num_channels;
754 return 0;
758 *@brief Extract the coefficients from the bitstream.
759 *@param s codec context
760 *@param c current channel number
761 *@return 0 on success, < 0 in case of bitstream errors
763 static int decode_coeffs(WMAProDecodeCtx *s, int c)
765 int vlctable;
766 VLC* vlc;
767 WMAProChannelCtx* ci = &s->channel[c];
768 int rl_mode = 0;
769 int cur_coeff = 0;
770 int num_zeros = 0;
771 const uint16_t* run;
772 const uint16_t* level;
774 dprintf(s->avctx, "decode coefficients for channel %i\n", c);
776 vlctable = get_bits1(&s->gb);
777 vlc = &coef_vlc[vlctable];
779 if (vlctable) {
780 run = coef1_run;
781 level = coef1_level;
782 } else {
783 run = coef0_run;
784 level = coef0_level;
787 /** decode vector coefficients (consumes up to 167 bits per iteration for
788 4 vector coded large values) */
789 while (!rl_mode && cur_coeff + 3 < s->subframe_len) {
790 int vals[4];
791 int i;
792 unsigned int idx;
794 idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH);
796 if (idx == HUFF_VEC4_SIZE - 1) {
797 for (i = 0; i < 4; i += 2) {
798 idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH);
799 if (idx == HUFF_VEC2_SIZE - 1) {
800 vals[i] = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
801 if (vals[i] == HUFF_VEC1_SIZE - 1)
802 vals[i] += ff_wma_get_large_val(&s->gb);
803 vals[i+1] = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
804 if (vals[i+1] == HUFF_VEC1_SIZE - 1)
805 vals[i+1] += ff_wma_get_large_val(&s->gb);
806 } else {
807 vals[i] = symbol_to_vec2[idx] >> 4;
808 vals[i+1] = symbol_to_vec2[idx] & 0xF;
811 } else {
812 vals[0] = symbol_to_vec4[idx] >> 12;
813 vals[1] = (symbol_to_vec4[idx] >> 8) & 0xF;
814 vals[2] = (symbol_to_vec4[idx] >> 4) & 0xF;
815 vals[3] = symbol_to_vec4[idx] & 0xF;
818 /** decode sign */
819 for (i = 0; i < 4; i++) {
820 if (vals[i]) {
821 int sign = get_bits1(&s->gb) - 1;
822 ci->coeffs[cur_coeff] = (vals[i] ^ sign) - sign;
823 num_zeros = 0;
824 } else {
825 ci->coeffs[cur_coeff] = 0;
826 /** switch to run level mode when subframe_len / 128 zeros
827 were found in a row */
828 rl_mode |= (++num_zeros > s->subframe_len >> 8);
830 ++cur_coeff;
834 /** decode run level coded coefficients */
835 if (rl_mode) {
836 memset(&ci->coeffs[cur_coeff], 0,
837 sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
838 if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc,
839 level, run, 1, ci->coeffs,
840 cur_coeff, s->subframe_len,
841 s->subframe_len, s->esc_len, 0))
842 return AVERROR_INVALIDDATA;
845 return 0;
849 *@brief Extract scale factors from the bitstream.
850 *@param s codec context
851 *@return 0 on success, < 0 in case of bitstream errors
853 static int decode_scale_factors(WMAProDecodeCtx* s)
855 int i;
857 /** should never consume more than 5344 bits
858 * MAX_CHANNELS * (1 + MAX_BANDS * 23)
861 for (i = 0; i < s->channels_for_cur_subframe; i++) {
862 int c = s->channel_indexes_for_cur_subframe[i];
863 int* sf;
864 int* sf_end;
865 s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx];
866 sf_end = s->channel[c].scale_factors + s->num_bands;
868 /** resample scale factors for the new block size
869 * as the scale factors might need to be resampled several times
870 * before some new values are transmitted, a backup of the last
871 * transmitted scale factors is kept in saved_scale_factors
873 if (s->channel[c].reuse_sf) {
874 const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
875 int b;
876 for (b = 0; b < s->num_bands; b++)
877 s->channel[c].scale_factors[b] =
878 s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++];
881 if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) {
883 if (!s->channel[c].reuse_sf) {
884 int val;
885 /** decode DPCM coded scale factors */
886 s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1;
887 val = 45 / s->channel[c].scale_factor_step;
888 for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
889 val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
890 *sf = val;
892 } else {
893 int i;
894 /** run level decode differences to the resampled factors */
895 for (i = 0; i < s->num_bands; i++) {
896 int idx;
897 int skip;
898 int val;
899 int sign;
901 idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH);
903 if (!idx) {
904 uint32_t code = get_bits(&s->gb, 14);
905 val = code >> 6;
906 sign = (code & 1) - 1;
907 skip = (code & 0x3f) >> 1;
908 } else if (idx == 1) {
909 break;
910 } else {
911 skip = scale_rl_run[idx];
912 val = scale_rl_level[idx];
913 sign = get_bits1(&s->gb)-1;
916 i += skip;
917 if (i >= s->num_bands) {
918 av_log(s->avctx, AV_LOG_ERROR,
919 "invalid scale factor coding\n");
920 return AVERROR_INVALIDDATA;
922 s->channel[c].scale_factors[i] += (val ^ sign) - sign;
925 /** swap buffers */
926 s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx;
927 s->channel[c].table_idx = s->table_idx;
928 s->channel[c].reuse_sf = 1;
931 /** calculate new scale factor maximum */
932 s->channel[c].max_scale_factor = s->channel[c].scale_factors[0];
933 for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) {
934 s->channel[c].max_scale_factor =
935 FFMAX(s->channel[c].max_scale_factor, *sf);
939 return 0;
943 *@brief Reconstruct the individual channel data.
944 *@param s codec context
946 static void inverse_channel_transform(WMAProDecodeCtx *s)
948 int i;
950 for (i = 0; i < s->num_chgroups; i++) {
951 if (s->chgroup[i].transform) {
952 float data[WMAPRO_MAX_CHANNELS];
953 const int num_channels = s->chgroup[i].num_channels;
954 float** ch_data = s->chgroup[i].channel_data;
955 float** ch_end = ch_data + num_channels;
956 const int8_t* tb = s->chgroup[i].transform_band;
957 int16_t* sfb;
959 /** multichannel decorrelation */
960 for (sfb = s->cur_sfb_offsets;
961 sfb < s->cur_sfb_offsets + s->num_bands; sfb++) {
962 int y;
963 if (*tb++ == 1) {
964 /** multiply values with the decorrelation_matrix */
965 for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
966 const float* mat = s->chgroup[i].decorrelation_matrix;
967 const float* data_end = data + num_channels;
968 float* data_ptr = data;
969 float** ch;
971 for (ch = ch_data; ch < ch_end; ch++)
972 *data_ptr++ = (*ch)[y];
974 for (ch = ch_data; ch < ch_end; ch++) {
975 float sum = 0;
976 data_ptr = data;
977 while (data_ptr < data_end)
978 sum += *data_ptr++ * *mat++;
980 (*ch)[y] = sum;
983 } else if (s->num_channels == 2) {
984 for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
985 ch_data[0][y] *= 181.0 / 128;
986 ch_data[1][y] *= 181.0 / 128;
995 *@brief Apply sine window and reconstruct the output buffer.
996 *@param s codec context
998 static void wmapro_window(WMAProDecodeCtx *s)
1000 int i;
1001 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1002 int c = s->channel_indexes_for_cur_subframe[i];
1003 float* window;
1004 int winlen = s->channel[c].prev_block_len;
1005 float* start = s->channel[c].coeffs - (winlen >> 1);
1007 if (s->subframe_len < winlen) {
1008 start += (winlen - s->subframe_len) >> 1;
1009 winlen = s->subframe_len;
1012 window = s->windows[av_log2(winlen) - BLOCK_MIN_BITS];
1014 winlen >>= 1;
1016 s->dsp.vector_fmul_window(start, start, start + winlen,
1017 window, 0, winlen);
1019 s->channel[c].prev_block_len = s->subframe_len;
1024 *@brief Decode a single subframe (block).
1025 *@param s codec context
1026 *@return 0 on success, < 0 when decoding failed
1028 static int decode_subframe(WMAProDecodeCtx *s)
1030 int offset = s->samples_per_frame;
1031 int subframe_len = s->samples_per_frame;
1032 int i;
1033 int total_samples = s->samples_per_frame * s->num_channels;
1034 int transmit_coeffs = 0;
1035 int cur_subwoofer_cutoff;
1037 s->subframe_offset = get_bits_count(&s->gb);
1039 /** reset channel context and find the next block offset and size
1040 == the next block of the channel with the smallest number of
1041 decoded samples
1043 for (i = 0; i < s->num_channels; i++) {
1044 s->channel[i].grouped = 0;
1045 if (offset > s->channel[i].decoded_samples) {
1046 offset = s->channel[i].decoded_samples;
1047 subframe_len =
1048 s->channel[i].subframe_len[s->channel[i].cur_subframe];
1052 dprintf(s->avctx,
1053 "processing subframe with offset %i len %i\n", offset, subframe_len);
1055 /** get a list of all channels that contain the estimated block */
1056 s->channels_for_cur_subframe = 0;
1057 for (i = 0; i < s->num_channels; i++) {
1058 const int cur_subframe = s->channel[i].cur_subframe;
1059 /** substract already processed samples */
1060 total_samples -= s->channel[i].decoded_samples;
1062 /** and count if there are multiple subframes that match our profile */
1063 if (offset == s->channel[i].decoded_samples &&
1064 subframe_len == s->channel[i].subframe_len[cur_subframe]) {
1065 total_samples -= s->channel[i].subframe_len[cur_subframe];
1066 s->channel[i].decoded_samples +=
1067 s->channel[i].subframe_len[cur_subframe];
1068 s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i;
1069 ++s->channels_for_cur_subframe;
1073 /** check if the frame will be complete after processing the
1074 estimated block */
1075 if (!total_samples)
1076 s->parsed_all_subframes = 1;
1079 dprintf(s->avctx, "subframe is part of %i channels\n",
1080 s->channels_for_cur_subframe);
1082 /** calculate number of scale factor bands and their offsets */
1083 s->table_idx = av_log2(s->samples_per_frame/subframe_len);
1084 s->num_bands = s->num_sfb[s->table_idx];
1085 s->cur_sfb_offsets = s->sfb_offsets[s->table_idx];
1086 cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx];
1088 /** configure the decoder for the current subframe */
1089 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1090 int c = s->channel_indexes_for_cur_subframe[i];
1092 s->channel[c].coeffs = &s->channel[c].out[(s->samples_per_frame >> 1)
1093 + offset];
1096 s->subframe_len = subframe_len;
1097 s->esc_len = av_log2(s->subframe_len - 1) + 1;
1099 /** skip extended header if any */
1100 if (get_bits1(&s->gb)) {
1101 int num_fill_bits;
1102 if (!(num_fill_bits = get_bits(&s->gb, 2))) {
1103 int len = get_bits(&s->gb, 4);
1104 num_fill_bits = get_bits(&s->gb, len) + 1;
1107 if (num_fill_bits >= 0) {
1108 if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) {
1109 av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
1110 return AVERROR_INVALIDDATA;
1113 skip_bits_long(&s->gb, num_fill_bits);
1117 /** no idea for what the following bit is used */
1118 if (get_bits1(&s->gb)) {
1119 av_log_ask_for_sample(s->avctx, "reserved bit set\n");
1120 return AVERROR_INVALIDDATA;
1124 if (decode_channel_transform(s) < 0)
1125 return AVERROR_INVALIDDATA;
1128 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1129 int c = s->channel_indexes_for_cur_subframe[i];
1130 if ((s->channel[c].transmit_coefs = get_bits1(&s->gb)))
1131 transmit_coeffs = 1;
1134 if (transmit_coeffs) {
1135 int step;
1136 int quant_step = 90 * s->bits_per_sample >> 4;
1137 if ((get_bits1(&s->gb))) {
1138 /** FIXME: might change run level mode decision */
1139 av_log_ask_for_sample(s->avctx, "unsupported quant step coding\n");
1140 return AVERROR_INVALIDDATA;
1142 /** decode quantization step */
1143 step = get_sbits(&s->gb, 6);
1144 quant_step += step;
1145 if (step == -32 || step == 31) {
1146 const int sign = (step == 31) - 1;
1147 int quant = 0;
1148 while (get_bits_count(&s->gb) + 5 < s->num_saved_bits &&
1149 (step = get_bits(&s->gb, 5)) == 31) {
1150 quant += 31;
1152 quant_step += ((quant + step) ^ sign) - sign;
1154 if (quant_step < 0) {
1155 av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
1158 /** decode quantization step modifiers for every channel */
1160 if (s->channels_for_cur_subframe == 1) {
1161 s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
1162 } else {
1163 int modifier_len = get_bits(&s->gb, 3);
1164 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1165 int c = s->channel_indexes_for_cur_subframe[i];
1166 s->channel[c].quant_step = quant_step;
1167 if (get_bits1(&s->gb)) {
1168 if (modifier_len) {
1169 s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1;
1170 } else
1171 ++s->channel[c].quant_step;
1176 /** decode scale factors */
1177 if (decode_scale_factors(s) < 0)
1178 return AVERROR_INVALIDDATA;
1181 dprintf(s->avctx, "BITSTREAM: subframe header length was %i\n",
1182 get_bits_count(&s->gb) - s->subframe_offset);
1184 /** parse coefficients */
1185 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1186 int c = s->channel_indexes_for_cur_subframe[i];
1187 if (s->channel[c].transmit_coefs &&
1188 get_bits_count(&s->gb) < s->num_saved_bits) {
1189 decode_coeffs(s, c);
1190 } else
1191 memset(s->channel[c].coeffs, 0,
1192 sizeof(*s->channel[c].coeffs) * subframe_len);
1195 dprintf(s->avctx, "BITSTREAM: subframe length was %i\n",
1196 get_bits_count(&s->gb) - s->subframe_offset);
1198 if (transmit_coeffs) {
1199 /** reconstruct the per channel data */
1200 inverse_channel_transform(s);
1201 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1202 int c = s->channel_indexes_for_cur_subframe[i];
1203 const int* sf = s->channel[c].scale_factors;
1204 int b;
1206 if (c == s->lfe_channel)
1207 memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) *
1208 (subframe_len - cur_subwoofer_cutoff));
1210 /** inverse quantization and rescaling */
1211 for (b = 0; b < s->num_bands; b++) {
1212 const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len);
1213 const int exp = s->channel[c].quant_step -
1214 (s->channel[c].max_scale_factor - *sf++) *
1215 s->channel[c].scale_factor_step;
1216 const float quant = pow(10.0, exp / 20.0);
1217 int start;
1219 for (start = s->cur_sfb_offsets[b]; start < end; start++)
1220 s->tmp[start] = s->channel[c].coeffs[start] * quant;
1223 /** apply imdct (ff_imdct_half == DCTIV with reverse) */
1224 ff_imdct_half(&s->mdct_ctx[av_log2(subframe_len) - BLOCK_MIN_BITS],
1225 s->channel[c].coeffs, s->tmp);
1229 /** window and overlapp-add */
1230 wmapro_window(s);
1232 /** handled one subframe */
1233 for (i = 0; i < s->channels_for_cur_subframe; i++) {
1234 int c = s->channel_indexes_for_cur_subframe[i];
1235 if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
1236 av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
1237 return AVERROR_INVALIDDATA;
1239 ++s->channel[c].cur_subframe;
1242 return 0;
1246 *@brief Decode one WMA frame.
1247 *@param s codec context
1248 *@return 0 if the trailer bit indicates that this is the last frame,
1249 * 1 if there are additional frames
1251 static int decode_frame(WMAProDecodeCtx *s)
1253 GetBitContext* gb = &s->gb;
1254 int more_frames = 0;
1255 int len = 0;
1256 int i;
1258 /** check for potential output buffer overflow */
1259 if (s->num_channels * s->samples_per_frame > s->samples_end - s->samples) {
1260 /** return an error if no frame could be decoded at all */
1261 av_log(s->avctx, AV_LOG_ERROR,
1262 "not enough space for the output samples\n");
1263 s->packet_loss = 1;
1264 return 0;
1267 /** get frame length */
1268 if (s->len_prefix)
1269 len = get_bits(gb, s->log2_frame_size);
1271 dprintf(s->avctx, "decoding frame with length %x\n", len);
1273 /** decode tile information */
1274 if (decode_tilehdr(s)) {
1275 s->packet_loss = 1;
1276 return 0;
1279 /** read postproc transform */
1280 if (s->num_channels > 1 && get_bits1(gb)) {
1281 av_log_ask_for_sample(s->avctx, "Unsupported postproc transform found\n");
1282 s->packet_loss = 1;
1283 return 0;
1286 /** read drc info */
1287 if (s->dynamic_range_compression) {
1288 s->drc_gain = get_bits(gb, 8);
1289 dprintf(s->avctx, "drc_gain %i\n", s->drc_gain);
1292 /** no idea what these are for, might be the number of samples
1293 that need to be skipped at the beginning or end of a stream */
1294 if (get_bits1(gb)) {
1295 int skip;
1297 /** usually true for the first frame */
1298 if (get_bits1(gb)) {
1299 skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
1300 dprintf(s->avctx, "start skip: %i\n", skip);
1303 /** sometimes true for the last frame */
1304 if (get_bits1(gb)) {
1305 skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
1306 dprintf(s->avctx, "end skip: %i\n", skip);
1311 dprintf(s->avctx, "BITSTREAM: frame header length was %i\n",
1312 get_bits_count(gb) - s->frame_offset);
1314 /** reset subframe states */
1315 s->parsed_all_subframes = 0;
1316 for (i = 0; i < s->num_channels; i++) {
1317 s->channel[i].decoded_samples = 0;
1318 s->channel[i].cur_subframe = 0;
1319 s->channel[i].reuse_sf = 0;
1322 /** decode all subframes */
1323 while (!s->parsed_all_subframes) {
1324 if (decode_subframe(s) < 0) {
1325 s->packet_loss = 1;
1326 return 0;
1330 /** interleave samples and write them to the output buffer */
1331 for (i = 0; i < s->num_channels; i++) {
1332 float* ptr;
1333 int incr = s->num_channels;
1334 float* iptr = s->channel[i].out;
1335 int x;
1337 ptr = s->samples + i;
1339 for (x = 0; x < s->samples_per_frame; x++) {
1340 *ptr = av_clipf(*iptr++, -1.0, 32767.0 / 32768.0);
1341 ptr += incr;
1344 /** reuse second half of the IMDCT output for the next frame */
1345 memcpy(&s->channel[i].out[0],
1346 &s->channel[i].out[s->samples_per_frame],
1347 s->samples_per_frame * sizeof(*s->channel[i].out) >> 1);
1350 if (s->skip_frame) {
1351 s->skip_frame = 0;
1352 } else
1353 s->samples += s->num_channels * s->samples_per_frame;
1355 if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
1356 /** FIXME: not sure if this is always an error */
1357 av_log(s->avctx, AV_LOG_ERROR, "frame[%i] would have to skip %i bits\n",
1358 s->frame_num, len - (get_bits_count(gb) - s->frame_offset) - 1);
1359 s->packet_loss = 1;
1360 return 0;
1363 /** skip the rest of the frame data */
1364 skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
1366 /** decode trailer bit */
1367 more_frames = get_bits1(gb);
1369 ++s->frame_num;
1370 return more_frames;
1374 *@brief Calculate remaining input buffer length.
1375 *@param s codec context
1376 *@param gb bitstream reader context
1377 *@return remaining size in bits
1379 static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb)
1381 return s->buf_bit_size - get_bits_count(gb);
1385 *@brief Fill the bit reservoir with a (partial) frame.
1386 *@param s codec context
1387 *@param gb bitstream reader context
1388 *@param len length of the partial frame
1389 *@param append decides wether to reset the buffer or not
1391 static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len,
1392 int append)
1394 int buflen;
1396 /** when the frame data does not need to be concatenated, the input buffer
1397 is resetted and additional bits from the previous frame are copyed
1398 and skipped later so that a fast byte copy is possible */
1400 if (!append) {
1401 s->frame_offset = get_bits_count(gb) & 7;
1402 s->num_saved_bits = s->frame_offset;
1403 init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
1406 buflen = (s->num_saved_bits + len + 8) >> 3;
1408 if (len <= 0 || buflen > MAX_FRAMESIZE) {
1409 av_log_ask_for_sample(s->avctx, "input buffer too small\n");
1410 s->packet_loss = 1;
1411 return;
1414 s->num_saved_bits += len;
1415 if (!append) {
1416 ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
1417 s->num_saved_bits);
1418 } else {
1419 int align = 8 - (get_bits_count(gb) & 7);
1420 align = FFMIN(align, len);
1421 put_bits(&s->pb, align, get_bits(gb, align));
1422 len -= align;
1423 ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
1425 skip_bits_long(gb, len);
1428 PutBitContext tmp = s->pb;
1429 flush_put_bits(&tmp);
1432 init_get_bits(&s->gb, s->frame_data, s->num_saved_bits);
1433 skip_bits(&s->gb, s->frame_offset);
1437 *@brief Decode a single WMA packet.
1438 *@param avctx codec context
1439 *@param data the output buffer
1440 *@param data_size number of bytes that were written to the output buffer
1441 *@param avpkt input packet
1442 *@return number of bytes that were read from the input buffer
1444 static int decode_packet(AVCodecContext *avctx,
1445 void *data, int *data_size, AVPacket* avpkt)
1447 WMAProDecodeCtx *s = avctx->priv_data;
1448 GetBitContext* gb = &s->pgb;
1449 const uint8_t* buf = avpkt->data;
1450 int buf_size = avpkt->size;
1451 int num_bits_prev_frame;
1452 int packet_sequence_number;
1454 s->samples = data;
1455 s->samples_end = (float*)((int8_t*)data + *data_size);
1456 *data_size = 0;
1458 if (s->packet_done || s->packet_loss) {
1459 s->packet_done = 0;
1460 s->buf_bit_size = buf_size << 3;
1462 /** sanity check for the buffer length */
1463 if (buf_size < avctx->block_align)
1464 return 0;
1466 buf_size = avctx->block_align;
1468 /** parse packet header */
1469 init_get_bits(gb, buf, s->buf_bit_size);
1470 packet_sequence_number = get_bits(gb, 4);
1471 skip_bits(gb, 2);
1473 /** get number of bits that need to be added to the previous frame */
1474 num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
1475 dprintf(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
1476 num_bits_prev_frame);
1478 /** check for packet loss */
1479 if (!s->packet_loss &&
1480 ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
1481 s->packet_loss = 1;
1482 av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n",
1483 s->packet_sequence_number, packet_sequence_number);
1485 s->packet_sequence_number = packet_sequence_number;
1487 if (num_bits_prev_frame > 0) {
1488 /** append the previous frame data to the remaining data from the
1489 previous packet to create a full frame */
1490 save_bits(s, gb, num_bits_prev_frame, 1);
1491 dprintf(avctx, "accumulated %x bits of frame data\n",
1492 s->num_saved_bits - s->frame_offset);
1494 /** decode the cross packet frame if it is valid */
1495 if (!s->packet_loss)
1496 decode_frame(s);
1497 } else if (s->num_saved_bits - s->frame_offset) {
1498 dprintf(avctx, "ignoring %x previously saved bits\n",
1499 s->num_saved_bits - s->frame_offset);
1502 s->packet_loss = 0;
1504 } else {
1505 int frame_size;
1506 s->buf_bit_size = avpkt->size << 3;
1507 init_get_bits(gb, avpkt->data, s->buf_bit_size);
1508 skip_bits(gb, s->packet_offset);
1509 if (remaining_bits(s, gb) > s->log2_frame_size &&
1510 (frame_size = show_bits(gb, s->log2_frame_size)) &&
1511 frame_size <= remaining_bits(s, gb)) {
1512 save_bits(s, gb, frame_size, 0);
1513 s->packet_done = !decode_frame(s);
1514 } else
1515 s->packet_done = 1;
1518 if (s->packet_done && !s->packet_loss &&
1519 remaining_bits(s, gb) > 0) {
1520 /** save the rest of the data so that it can be decoded
1521 with the next packet */
1522 save_bits(s, gb, remaining_bits(s, gb), 0);
1525 *data_size = (int8_t *)s->samples - (int8_t *)data;
1526 s->packet_offset = get_bits_count(gb) & 7;
1528 return get_bits_count(gb) >> 3;
1532 *@brief Clear decoder buffers (for seeking).
1533 *@param avctx codec context
1535 static void flush(AVCodecContext *avctx)
1537 WMAProDecodeCtx *s = avctx->priv_data;
1538 int i;
1539 /** reset output buffer as a part of it is used during the windowing of a
1540 new frame */
1541 for (i = 0; i < s->num_channels; i++)
1542 memset(s->channel[i].out, 0, s->samples_per_frame *
1543 sizeof(*s->channel[i].out));
1544 s->packet_loss = 1;
1549 *@brief wmapro decoder
1551 AVCodec wmapro_decoder = {
1552 "wmapro",
1553 CODEC_TYPE_AUDIO,
1554 CODEC_ID_WMAPRO,
1555 sizeof(WMAProDecodeCtx),
1556 decode_init,
1557 NULL,
1558 decode_end,
1559 decode_packet,
1560 .capabilities = CODEC_CAP_SUBFRAMES,
1561 .flush= flush,
1562 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),