Move 2 variable declarations to inside of loop.
[FFMpeg-mirror/lagarith.git] / libavcodec / fft.c
blobc827139fafd3787b9ba8b86dd9dc4978be17cbc4
1 /*
2 * FFT/IFFT transforms
3 * Copyright (c) 2008 Loren Merritt
4 * Copyright (c) 2002 Fabrice Bellard
5 * Partly based on libdjbfft by D. J. Bernstein
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 /**
25 * @file libavcodec/fft.c
26 * FFT/IFFT transforms.
29 #include "dsputil.h"
31 /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
32 DECLARE_ALIGNED_16(FFTSample, ff_cos_16[8]);
33 DECLARE_ALIGNED_16(FFTSample, ff_cos_32[16]);
34 DECLARE_ALIGNED_16(FFTSample, ff_cos_64[32]);
35 DECLARE_ALIGNED_16(FFTSample, ff_cos_128[64]);
36 DECLARE_ALIGNED_16(FFTSample, ff_cos_256[128]);
37 DECLARE_ALIGNED_16(FFTSample, ff_cos_512[256]);
38 DECLARE_ALIGNED_16(FFTSample, ff_cos_1024[512]);
39 DECLARE_ALIGNED_16(FFTSample, ff_cos_2048[1024]);
40 DECLARE_ALIGNED_16(FFTSample, ff_cos_4096[2048]);
41 DECLARE_ALIGNED_16(FFTSample, ff_cos_8192[4096]);
42 DECLARE_ALIGNED_16(FFTSample, ff_cos_16384[8192]);
43 DECLARE_ALIGNED_16(FFTSample, ff_cos_32768[16384]);
44 DECLARE_ALIGNED_16(FFTSample, ff_cos_65536[32768]);
45 FFTSample * const ff_cos_tabs[] = {
46 ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
47 ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
50 static int split_radix_permutation(int i, int n, int inverse)
52 int m;
53 if(n <= 2) return i&1;
54 m = n >> 1;
55 if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
56 m >>= 1;
57 if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
58 else return split_radix_permutation(i, m, inverse)*4 - 1;
61 av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
63 int i, j, m, n;
64 float alpha, c1, s1, s2;
65 int av_unused has_vectors;
67 if (nbits < 2 || nbits > 16)
68 goto fail;
69 s->nbits = nbits;
70 n = 1 << nbits;
72 s->tmp_buf = NULL;
73 s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
74 if (!s->exptab)
75 goto fail;
76 s->revtab = av_malloc(n * sizeof(uint16_t));
77 if (!s->revtab)
78 goto fail;
79 s->inverse = inverse;
81 s2 = inverse ? 1.0 : -1.0;
83 s->fft_permute = ff_fft_permute_c;
84 s->fft_calc = ff_fft_calc_c;
85 s->imdct_calc = ff_imdct_calc_c;
86 s->imdct_half = ff_imdct_half_c;
87 s->mdct_calc = ff_mdct_calc_c;
88 s->exptab1 = NULL;
89 s->split_radix = 1;
91 if (ARCH_ARM) ff_fft_init_arm(s);
92 if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
93 if (HAVE_MMX) ff_fft_init_mmx(s);
95 if (s->split_radix) {
96 for(j=4; j<=nbits; j++) {
97 int m = 1<<j;
98 double freq = 2*M_PI/m;
99 FFTSample *tab = ff_cos_tabs[j-4];
100 for(i=0; i<=m/4; i++)
101 tab[i] = cos(i*freq);
102 for(i=1; i<m/4; i++)
103 tab[m/2-i] = tab[i];
105 for(i=0; i<n; i++)
106 s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
107 s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
108 } else {
109 int np, nblocks, np2, l;
110 FFTComplex *q;
112 for(i=0; i<(n/2); i++) {
113 alpha = 2 * M_PI * (float)i / (float)n;
114 c1 = cos(alpha);
115 s1 = sin(alpha) * s2;
116 s->exptab[i].re = c1;
117 s->exptab[i].im = s1;
120 np = 1 << nbits;
121 nblocks = np >> 3;
122 np2 = np >> 1;
123 s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
124 if (!s->exptab1)
125 goto fail;
126 q = s->exptab1;
127 do {
128 for(l = 0; l < np2; l += 2 * nblocks) {
129 *q++ = s->exptab[l];
130 *q++ = s->exptab[l + nblocks];
132 q->re = -s->exptab[l].im;
133 q->im = s->exptab[l].re;
134 q++;
135 q->re = -s->exptab[l + nblocks].im;
136 q->im = s->exptab[l + nblocks].re;
137 q++;
139 nblocks = nblocks >> 1;
140 } while (nblocks != 0);
141 av_freep(&s->exptab);
143 /* compute bit reverse table */
144 for(i=0;i<n;i++) {
145 m=0;
146 for(j=0;j<nbits;j++) {
147 m |= ((i >> j) & 1) << (nbits-j-1);
149 s->revtab[i]=m;
153 return 0;
154 fail:
155 av_freep(&s->revtab);
156 av_freep(&s->exptab);
157 av_freep(&s->exptab1);
158 av_freep(&s->tmp_buf);
159 return -1;
162 void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
164 int j, k, np;
165 FFTComplex tmp;
166 const uint16_t *revtab = s->revtab;
167 np = 1 << s->nbits;
169 if (s->tmp_buf) {
170 /* TODO: handle split-radix permute in a more optimal way, probably in-place */
171 for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
172 memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
173 return;
176 /* reverse */
177 for(j=0;j<np;j++) {
178 k = revtab[j];
179 if (k < j) {
180 tmp = z[k];
181 z[k] = z[j];
182 z[j] = tmp;
187 av_cold void ff_fft_end(FFTContext *s)
189 av_freep(&s->revtab);
190 av_freep(&s->exptab);
191 av_freep(&s->exptab1);
192 av_freep(&s->tmp_buf);
195 #define sqrthalf (float)M_SQRT1_2
197 #define BF(x,y,a,b) {\
198 x = a - b;\
199 y = a + b;\
202 #define BUTTERFLIES(a0,a1,a2,a3) {\
203 BF(t3, t5, t5, t1);\
204 BF(a2.re, a0.re, a0.re, t5);\
205 BF(a3.im, a1.im, a1.im, t3);\
206 BF(t4, t6, t2, t6);\
207 BF(a3.re, a1.re, a1.re, t4);\
208 BF(a2.im, a0.im, a0.im, t6);\
211 // force loading all the inputs before storing any.
212 // this is slightly slower for small data, but avoids store->load aliasing
213 // for addresses separated by large powers of 2.
214 #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
215 FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
216 BF(t3, t5, t5, t1);\
217 BF(a2.re, a0.re, r0, t5);\
218 BF(a3.im, a1.im, i1, t3);\
219 BF(t4, t6, t2, t6);\
220 BF(a3.re, a1.re, r1, t4);\
221 BF(a2.im, a0.im, i0, t6);\
224 #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
225 t1 = a2.re * wre + a2.im * wim;\
226 t2 = a2.im * wre - a2.re * wim;\
227 t5 = a3.re * wre - a3.im * wim;\
228 t6 = a3.im * wre + a3.re * wim;\
229 BUTTERFLIES(a0,a1,a2,a3)\
232 #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
233 t1 = a2.re;\
234 t2 = a2.im;\
235 t5 = a3.re;\
236 t6 = a3.im;\
237 BUTTERFLIES(a0,a1,a2,a3)\
240 /* z[0...8n-1], w[1...2n-1] */
241 #define PASS(name)\
242 static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
244 FFTSample t1, t2, t3, t4, t5, t6;\
245 int o1 = 2*n;\
246 int o2 = 4*n;\
247 int o3 = 6*n;\
248 const FFTSample *wim = wre+o1;\
249 n--;\
251 TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
252 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
253 do {\
254 z += 2;\
255 wre += 2;\
256 wim -= 2;\
257 TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
258 TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
259 } while(--n);\
262 PASS(pass)
263 #undef BUTTERFLIES
264 #define BUTTERFLIES BUTTERFLIES_BIG
265 PASS(pass_big)
267 #define DECL_FFT(n,n2,n4)\
268 static void fft##n(FFTComplex *z)\
270 fft##n2(z);\
271 fft##n4(z+n4*2);\
272 fft##n4(z+n4*3);\
273 pass(z,ff_cos_##n,n4/2);\
276 static void fft4(FFTComplex *z)
278 FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
280 BF(t3, t1, z[0].re, z[1].re);
281 BF(t8, t6, z[3].re, z[2].re);
282 BF(z[2].re, z[0].re, t1, t6);
283 BF(t4, t2, z[0].im, z[1].im);
284 BF(t7, t5, z[2].im, z[3].im);
285 BF(z[3].im, z[1].im, t4, t8);
286 BF(z[3].re, z[1].re, t3, t7);
287 BF(z[2].im, z[0].im, t2, t5);
290 static void fft8(FFTComplex *z)
292 FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
294 fft4(z);
296 BF(t1, z[5].re, z[4].re, -z[5].re);
297 BF(t2, z[5].im, z[4].im, -z[5].im);
298 BF(t3, z[7].re, z[6].re, -z[7].re);
299 BF(t4, z[7].im, z[6].im, -z[7].im);
300 BF(t8, t1, t3, t1);
301 BF(t7, t2, t2, t4);
302 BF(z[4].re, z[0].re, z[0].re, t1);
303 BF(z[4].im, z[0].im, z[0].im, t2);
304 BF(z[6].re, z[2].re, z[2].re, t7);
305 BF(z[6].im, z[2].im, z[2].im, t8);
307 TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
310 #if !CONFIG_SMALL
311 static void fft16(FFTComplex *z)
313 FFTSample t1, t2, t3, t4, t5, t6;
315 fft8(z);
316 fft4(z+8);
317 fft4(z+12);
319 TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
320 TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
321 TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
322 TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
324 #else
325 DECL_FFT(16,8,4)
326 #endif
327 DECL_FFT(32,16,8)
328 DECL_FFT(64,32,16)
329 DECL_FFT(128,64,32)
330 DECL_FFT(256,128,64)
331 DECL_FFT(512,256,128)
332 #if !CONFIG_SMALL
333 #define pass pass_big
334 #endif
335 DECL_FFT(1024,512,256)
336 DECL_FFT(2048,1024,512)
337 DECL_FFT(4096,2048,1024)
338 DECL_FFT(8192,4096,2048)
339 DECL_FFT(16384,8192,4096)
340 DECL_FFT(32768,16384,8192)
341 DECL_FFT(65536,32768,16384)
343 static void (*fft_dispatch[])(FFTComplex*) = {
344 fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
345 fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
348 void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
350 fft_dispatch[s->nbits-2](z);