Add Speex support to the Ogg muxer.
[FFMpeg-mirror/lagarith.git] / libavcodec / wmadec.c
blob5a31963520b347db5034b13cae03e00341d9d97c
1 /*
2 * WMA compatible decoder
3 * Copyright (c) 2002 The FFmpeg Project
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file libavcodec/wmadec.c
24 * WMA compatible decoder.
25 * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
26 * WMA v1 is identified by audio format 0x160 in Microsoft media files
27 * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
29 * To use this decoder, a calling application must supply the extra data
30 * bytes provided with the WMA data. These are the extra, codec-specific
31 * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
32 * to the decoder using the extradata[_size] fields in AVCodecContext. There
33 * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
36 #include "avcodec.h"
37 #include "wma.h"
39 #undef NDEBUG
40 #include <assert.h>
42 #define EXPVLCBITS 8
43 #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
45 #define HGAINVLCBITS 9
46 #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
48 static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
50 #ifdef TRACE
51 static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
53 int i;
55 tprintf(s->avctx, "%s[%d]:\n", name, n);
56 for(i=0;i<n;i++) {
57 if ((i & 7) == 0)
58 tprintf(s->avctx, "%4d: ", i);
59 tprintf(s->avctx, " %5d.0", tab[i]);
60 if ((i & 7) == 7)
61 tprintf(s->avctx, "\n");
65 static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
67 int i;
69 tprintf(s->avctx, "%s[%d]:\n", name, n);
70 for(i=0;i<n;i++) {
71 if ((i & 7) == 0)
72 tprintf(s->avctx, "%4d: ", i);
73 tprintf(s->avctx, " %8.*f", prec, tab[i]);
74 if ((i & 7) == 7)
75 tprintf(s->avctx, "\n");
77 if ((i & 7) != 0)
78 tprintf(s->avctx, "\n");
80 #endif
82 static int wma_decode_init(AVCodecContext * avctx)
84 WMACodecContext *s = avctx->priv_data;
85 int i, flags2;
86 uint8_t *extradata;
88 s->avctx = avctx;
90 /* extract flag infos */
91 flags2 = 0;
92 extradata = avctx->extradata;
93 if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
94 flags2 = AV_RL16(extradata+2);
95 } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
96 flags2 = AV_RL16(extradata+4);
98 // for(i=0; i<avctx->extradata_size; i++)
99 // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
101 s->use_exp_vlc = flags2 & 0x0001;
102 s->use_bit_reservoir = flags2 & 0x0002;
103 s->use_variable_block_len = flags2 & 0x0004;
105 if(ff_wma_init(avctx, flags2)<0)
106 return -1;
108 /* init MDCT */
109 for(i = 0; i < s->nb_block_sizes; i++)
110 ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
112 if (s->use_noise_coding) {
113 init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
114 ff_wma_hgain_huffbits, 1, 1,
115 ff_wma_hgain_huffcodes, 2, 2, 0);
118 if (s->use_exp_vlc) {
119 init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_wma_scale_huffbits), //FIXME move out of context
120 ff_wma_scale_huffbits, 1, 1,
121 ff_wma_scale_huffcodes, 4, 4, 0);
122 } else {
123 wma_lsp_to_curve_init(s, s->frame_len);
126 avctx->sample_fmt = SAMPLE_FMT_S16;
127 return 0;
131 * compute x^-0.25 with an exponent and mantissa table. We use linear
132 * interpolation to reduce the mantissa table size at a small speed
133 * expense (linear interpolation approximately doubles the number of
134 * bits of precision).
136 static inline float pow_m1_4(WMACodecContext *s, float x)
138 union {
139 float f;
140 unsigned int v;
141 } u, t;
142 unsigned int e, m;
143 float a, b;
145 u.f = x;
146 e = u.v >> 23;
147 m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
148 /* build interpolation scale: 1 <= t < 2. */
149 t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
150 a = s->lsp_pow_m_table1[m];
151 b = s->lsp_pow_m_table2[m];
152 return s->lsp_pow_e_table[e] * (a + b * t.f);
155 static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
157 float wdel, a, b;
158 int i, e, m;
160 wdel = M_PI / frame_len;
161 for(i=0;i<frame_len;i++)
162 s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
164 /* tables for x^-0.25 computation */
165 for(i=0;i<256;i++) {
166 e = i - 126;
167 s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
170 /* NOTE: these two tables are needed to avoid two operations in
171 pow_m1_4 */
172 b = 1.0;
173 for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
174 m = (1 << LSP_POW_BITS) + i;
175 a = (float)m * (0.5 / (1 << LSP_POW_BITS));
176 a = pow(a, -0.25);
177 s->lsp_pow_m_table1[i] = 2 * a - b;
178 s->lsp_pow_m_table2[i] = b - a;
179 b = a;
181 #if 0
182 for(i=1;i<20;i++) {
183 float v, r1, r2;
184 v = 5.0 / i;
185 r1 = pow_m1_4(s, v);
186 r2 = pow(v,-0.25);
187 printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
189 #endif
193 * NOTE: We use the same code as Vorbis here
194 * @todo optimize it further with SSE/3Dnow
196 static void wma_lsp_to_curve(WMACodecContext *s,
197 float *out, float *val_max_ptr,
198 int n, float *lsp)
200 int i, j;
201 float p, q, w, v, val_max;
203 val_max = 0;
204 for(i=0;i<n;i++) {
205 p = 0.5f;
206 q = 0.5f;
207 w = s->lsp_cos_table[i];
208 for(j=1;j<NB_LSP_COEFS;j+=2){
209 q *= w - lsp[j - 1];
210 p *= w - lsp[j];
212 p *= p * (2.0f - w);
213 q *= q * (2.0f + w);
214 v = p + q;
215 v = pow_m1_4(s, v);
216 if (v > val_max)
217 val_max = v;
218 out[i] = v;
220 *val_max_ptr = val_max;
224 * decode exponents coded with LSP coefficients (same idea as Vorbis)
226 static void decode_exp_lsp(WMACodecContext *s, int ch)
228 float lsp_coefs[NB_LSP_COEFS];
229 int val, i;
231 for(i = 0; i < NB_LSP_COEFS; i++) {
232 if (i == 0 || i >= 8)
233 val = get_bits(&s->gb, 3);
234 else
235 val = get_bits(&s->gb, 4);
236 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
239 wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
240 s->block_len, lsp_coefs);
243 /** pow(10, i / 16.0) for i in -60..67 */
244 static const float pow_tab[128] = {
245 1.7782794100389e-04, 2.0535250264571e-04,
246 2.3713737056617e-04, 2.7384196342644e-04,
247 3.1622776601684e-04, 3.6517412725484e-04,
248 4.2169650342858e-04, 4.8696752516586e-04,
249 5.6234132519035e-04, 6.4938163157621e-04,
250 7.4989420933246e-04, 8.6596432336006e-04,
251 1.0000000000000e-03, 1.1547819846895e-03,
252 1.3335214321633e-03, 1.5399265260595e-03,
253 1.7782794100389e-03, 2.0535250264571e-03,
254 2.3713737056617e-03, 2.7384196342644e-03,
255 3.1622776601684e-03, 3.6517412725484e-03,
256 4.2169650342858e-03, 4.8696752516586e-03,
257 5.6234132519035e-03, 6.4938163157621e-03,
258 7.4989420933246e-03, 8.6596432336006e-03,
259 1.0000000000000e-02, 1.1547819846895e-02,
260 1.3335214321633e-02, 1.5399265260595e-02,
261 1.7782794100389e-02, 2.0535250264571e-02,
262 2.3713737056617e-02, 2.7384196342644e-02,
263 3.1622776601684e-02, 3.6517412725484e-02,
264 4.2169650342858e-02, 4.8696752516586e-02,
265 5.6234132519035e-02, 6.4938163157621e-02,
266 7.4989420933246e-02, 8.6596432336007e-02,
267 1.0000000000000e-01, 1.1547819846895e-01,
268 1.3335214321633e-01, 1.5399265260595e-01,
269 1.7782794100389e-01, 2.0535250264571e-01,
270 2.3713737056617e-01, 2.7384196342644e-01,
271 3.1622776601684e-01, 3.6517412725484e-01,
272 4.2169650342858e-01, 4.8696752516586e-01,
273 5.6234132519035e-01, 6.4938163157621e-01,
274 7.4989420933246e-01, 8.6596432336007e-01,
275 1.0000000000000e+00, 1.1547819846895e+00,
276 1.3335214321633e+00, 1.5399265260595e+00,
277 1.7782794100389e+00, 2.0535250264571e+00,
278 2.3713737056617e+00, 2.7384196342644e+00,
279 3.1622776601684e+00, 3.6517412725484e+00,
280 4.2169650342858e+00, 4.8696752516586e+00,
281 5.6234132519035e+00, 6.4938163157621e+00,
282 7.4989420933246e+00, 8.6596432336007e+00,
283 1.0000000000000e+01, 1.1547819846895e+01,
284 1.3335214321633e+01, 1.5399265260595e+01,
285 1.7782794100389e+01, 2.0535250264571e+01,
286 2.3713737056617e+01, 2.7384196342644e+01,
287 3.1622776601684e+01, 3.6517412725484e+01,
288 4.2169650342858e+01, 4.8696752516586e+01,
289 5.6234132519035e+01, 6.4938163157621e+01,
290 7.4989420933246e+01, 8.6596432336007e+01,
291 1.0000000000000e+02, 1.1547819846895e+02,
292 1.3335214321633e+02, 1.5399265260595e+02,
293 1.7782794100389e+02, 2.0535250264571e+02,
294 2.3713737056617e+02, 2.7384196342644e+02,
295 3.1622776601684e+02, 3.6517412725484e+02,
296 4.2169650342858e+02, 4.8696752516586e+02,
297 5.6234132519035e+02, 6.4938163157621e+02,
298 7.4989420933246e+02, 8.6596432336007e+02,
299 1.0000000000000e+03, 1.1547819846895e+03,
300 1.3335214321633e+03, 1.5399265260595e+03,
301 1.7782794100389e+03, 2.0535250264571e+03,
302 2.3713737056617e+03, 2.7384196342644e+03,
303 3.1622776601684e+03, 3.6517412725484e+03,
304 4.2169650342858e+03, 4.8696752516586e+03,
305 5.6234132519035e+03, 6.4938163157621e+03,
306 7.4989420933246e+03, 8.6596432336007e+03,
307 1.0000000000000e+04, 1.1547819846895e+04,
308 1.3335214321633e+04, 1.5399265260595e+04,
312 * decode exponents coded with VLC codes
314 static int decode_exp_vlc(WMACodecContext *s, int ch)
316 int last_exp, n, code;
317 const uint16_t *ptr;
318 float v, max_scale;
319 uint32_t *q, *q_end, iv;
320 const float *ptab = pow_tab + 60;
321 const uint32_t *iptab = (const uint32_t*)ptab;
323 ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
324 q = (uint32_t *)s->exponents[ch];
325 q_end = q + s->block_len;
326 max_scale = 0;
327 if (s->version == 1) {
328 last_exp = get_bits(&s->gb, 5) + 10;
329 v = ptab[last_exp];
330 iv = iptab[last_exp];
331 max_scale = v;
332 n = *ptr++;
333 switch (n & 3) do {
334 case 0: *q++ = iv;
335 case 3: *q++ = iv;
336 case 2: *q++ = iv;
337 case 1: *q++ = iv;
338 } while ((n -= 4) > 0);
339 }else
340 last_exp = 36;
342 while (q < q_end) {
343 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
344 if (code < 0)
345 return -1;
346 /* NOTE: this offset is the same as MPEG4 AAC ! */
347 last_exp += code - 60;
348 if ((unsigned)last_exp + 60 > FF_ARRAY_ELEMS(pow_tab))
349 return -1;
350 v = ptab[last_exp];
351 iv = iptab[last_exp];
352 if (v > max_scale)
353 max_scale = v;
354 n = *ptr++;
355 switch (n & 3) do {
356 case 0: *q++ = iv;
357 case 3: *q++ = iv;
358 case 2: *q++ = iv;
359 case 1: *q++ = iv;
360 } while ((n -= 4) > 0);
362 s->max_exponent[ch] = max_scale;
363 return 0;
368 * Apply MDCT window and add into output.
370 * We ensure that when the windows overlap their squared sum
371 * is always 1 (MDCT reconstruction rule).
373 static void wma_window(WMACodecContext *s, float *out)
375 float *in = s->output;
376 int block_len, bsize, n;
378 /* left part */
379 if (s->block_len_bits <= s->prev_block_len_bits) {
380 block_len = s->block_len;
381 bsize = s->frame_len_bits - s->block_len_bits;
383 s->dsp.vector_fmul_add(out, in, s->windows[bsize],
384 out, block_len);
386 } else {
387 block_len = 1 << s->prev_block_len_bits;
388 n = (s->block_len - block_len) / 2;
389 bsize = s->frame_len_bits - s->prev_block_len_bits;
391 s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
392 out+n, block_len);
394 memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
397 out += s->block_len;
398 in += s->block_len;
400 /* right part */
401 if (s->block_len_bits <= s->next_block_len_bits) {
402 block_len = s->block_len;
403 bsize = s->frame_len_bits - s->block_len_bits;
405 s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
407 } else {
408 block_len = 1 << s->next_block_len_bits;
409 n = (s->block_len - block_len) / 2;
410 bsize = s->frame_len_bits - s->next_block_len_bits;
412 memcpy(out, in, n*sizeof(float));
414 s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
416 memset(out+n+block_len, 0, n*sizeof(float));
422 * @return 0 if OK. 1 if last block of frame. return -1 if
423 * unrecorrable error.
425 static int wma_decode_block(WMACodecContext *s)
427 int n, v, a, ch, bsize;
428 int coef_nb_bits, total_gain;
429 int nb_coefs[MAX_CHANNELS];
430 float mdct_norm;
432 #ifdef TRACE
433 tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
434 #endif
436 /* compute current block length */
437 if (s->use_variable_block_len) {
438 n = av_log2(s->nb_block_sizes - 1) + 1;
440 if (s->reset_block_lengths) {
441 s->reset_block_lengths = 0;
442 v = get_bits(&s->gb, n);
443 if (v >= s->nb_block_sizes)
444 return -1;
445 s->prev_block_len_bits = s->frame_len_bits - v;
446 v = get_bits(&s->gb, n);
447 if (v >= s->nb_block_sizes)
448 return -1;
449 s->block_len_bits = s->frame_len_bits - v;
450 } else {
451 /* update block lengths */
452 s->prev_block_len_bits = s->block_len_bits;
453 s->block_len_bits = s->next_block_len_bits;
455 v = get_bits(&s->gb, n);
456 if (v >= s->nb_block_sizes)
457 return -1;
458 s->next_block_len_bits = s->frame_len_bits - v;
459 } else {
460 /* fixed block len */
461 s->next_block_len_bits = s->frame_len_bits;
462 s->prev_block_len_bits = s->frame_len_bits;
463 s->block_len_bits = s->frame_len_bits;
466 /* now check if the block length is coherent with the frame length */
467 s->block_len = 1 << s->block_len_bits;
468 if ((s->block_pos + s->block_len) > s->frame_len)
469 return -1;
471 if (s->nb_channels == 2) {
472 s->ms_stereo = get_bits1(&s->gb);
474 v = 0;
475 for(ch = 0; ch < s->nb_channels; ch++) {
476 a = get_bits1(&s->gb);
477 s->channel_coded[ch] = a;
478 v |= a;
481 bsize = s->frame_len_bits - s->block_len_bits;
483 /* if no channel coded, no need to go further */
484 /* XXX: fix potential framing problems */
485 if (!v)
486 goto next;
488 /* read total gain and extract corresponding number of bits for
489 coef escape coding */
490 total_gain = 1;
491 for(;;) {
492 a = get_bits(&s->gb, 7);
493 total_gain += a;
494 if (a != 127)
495 break;
498 coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
500 /* compute number of coefficients */
501 n = s->coefs_end[bsize] - s->coefs_start;
502 for(ch = 0; ch < s->nb_channels; ch++)
503 nb_coefs[ch] = n;
505 /* complex coding */
506 if (s->use_noise_coding) {
508 for(ch = 0; ch < s->nb_channels; ch++) {
509 if (s->channel_coded[ch]) {
510 int i, n, a;
511 n = s->exponent_high_sizes[bsize];
512 for(i=0;i<n;i++) {
513 a = get_bits1(&s->gb);
514 s->high_band_coded[ch][i] = a;
515 /* if noise coding, the coefficients are not transmitted */
516 if (a)
517 nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
521 for(ch = 0; ch < s->nb_channels; ch++) {
522 if (s->channel_coded[ch]) {
523 int i, n, val, code;
525 n = s->exponent_high_sizes[bsize];
526 val = (int)0x80000000;
527 for(i=0;i<n;i++) {
528 if (s->high_band_coded[ch][i]) {
529 if (val == (int)0x80000000) {
530 val = get_bits(&s->gb, 7) - 19;
531 } else {
532 code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
533 if (code < 0)
534 return -1;
535 val += code - 18;
537 s->high_band_values[ch][i] = val;
544 /* exponents can be reused in short blocks. */
545 if ((s->block_len_bits == s->frame_len_bits) ||
546 get_bits1(&s->gb)) {
547 for(ch = 0; ch < s->nb_channels; ch++) {
548 if (s->channel_coded[ch]) {
549 if (s->use_exp_vlc) {
550 if (decode_exp_vlc(s, ch) < 0)
551 return -1;
552 } else {
553 decode_exp_lsp(s, ch);
555 s->exponents_bsize[ch] = bsize;
560 /* parse spectral coefficients : just RLE encoding */
561 for(ch = 0; ch < s->nb_channels; ch++) {
562 if (s->channel_coded[ch]) {
563 int tindex;
564 WMACoef* ptr = &s->coefs1[ch][0];
566 /* special VLC tables are used for ms stereo because
567 there is potentially less energy there */
568 tindex = (ch == 1 && s->ms_stereo);
569 memset(ptr, 0, s->block_len * sizeof(WMACoef));
570 ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
571 s->level_table[tindex], s->run_table[tindex],
572 0, ptr, 0, nb_coefs[ch],
573 s->block_len, s->frame_len_bits, coef_nb_bits);
575 if (s->version == 1 && s->nb_channels >= 2) {
576 align_get_bits(&s->gb);
580 /* normalize */
582 int n4 = s->block_len / 2;
583 mdct_norm = 1.0 / (float)n4;
584 if (s->version == 1) {
585 mdct_norm *= sqrt(n4);
589 /* finally compute the MDCT coefficients */
590 for(ch = 0; ch < s->nb_channels; ch++) {
591 if (s->channel_coded[ch]) {
592 WMACoef *coefs1;
593 float *coefs, *exponents, mult, mult1, noise;
594 int i, j, n, n1, last_high_band, esize;
595 float exp_power[HIGH_BAND_MAX_SIZE];
597 coefs1 = s->coefs1[ch];
598 exponents = s->exponents[ch];
599 esize = s->exponents_bsize[ch];
600 mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
601 mult *= mdct_norm;
602 coefs = s->coefs[ch];
603 if (s->use_noise_coding) {
604 mult1 = mult;
605 /* very low freqs : noise */
606 for(i = 0;i < s->coefs_start; i++) {
607 *coefs++ = s->noise_table[s->noise_index] *
608 exponents[i<<bsize>>esize] * mult1;
609 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
612 n1 = s->exponent_high_sizes[bsize];
614 /* compute power of high bands */
615 exponents = s->exponents[ch] +
616 (s->high_band_start[bsize]<<bsize);
617 last_high_band = 0; /* avoid warning */
618 for(j=0;j<n1;j++) {
619 n = s->exponent_high_bands[s->frame_len_bits -
620 s->block_len_bits][j];
621 if (s->high_band_coded[ch][j]) {
622 float e2, v;
623 e2 = 0;
624 for(i = 0;i < n; i++) {
625 v = exponents[i<<bsize>>esize];
626 e2 += v * v;
628 exp_power[j] = e2 / n;
629 last_high_band = j;
630 tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
632 exponents += n<<bsize;
635 /* main freqs and high freqs */
636 exponents = s->exponents[ch] + (s->coefs_start<<bsize);
637 for(j=-1;j<n1;j++) {
638 if (j < 0) {
639 n = s->high_band_start[bsize] -
640 s->coefs_start;
641 } else {
642 n = s->exponent_high_bands[s->frame_len_bits -
643 s->block_len_bits][j];
645 if (j >= 0 && s->high_band_coded[ch][j]) {
646 /* use noise with specified power */
647 mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
648 /* XXX: use a table */
649 mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
650 mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
651 mult1 *= mdct_norm;
652 for(i = 0;i < n; i++) {
653 noise = s->noise_table[s->noise_index];
654 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
655 *coefs++ = noise *
656 exponents[i<<bsize>>esize] * mult1;
658 exponents += n<<bsize;
659 } else {
660 /* coded values + small noise */
661 for(i = 0;i < n; i++) {
662 noise = s->noise_table[s->noise_index];
663 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
664 *coefs++ = ((*coefs1++) + noise) *
665 exponents[i<<bsize>>esize] * mult;
667 exponents += n<<bsize;
671 /* very high freqs : noise */
672 n = s->block_len - s->coefs_end[bsize];
673 mult1 = mult * exponents[((-1<<bsize))>>esize];
674 for(i = 0; i < n; i++) {
675 *coefs++ = s->noise_table[s->noise_index] * mult1;
676 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
678 } else {
679 /* XXX: optimize more */
680 for(i = 0;i < s->coefs_start; i++)
681 *coefs++ = 0.0;
682 n = nb_coefs[ch];
683 for(i = 0;i < n; i++) {
684 *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
686 n = s->block_len - s->coefs_end[bsize];
687 for(i = 0;i < n; i++)
688 *coefs++ = 0.0;
693 #ifdef TRACE
694 for(ch = 0; ch < s->nb_channels; ch++) {
695 if (s->channel_coded[ch]) {
696 dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
697 dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
700 #endif
702 if (s->ms_stereo && s->channel_coded[1]) {
703 /* nominal case for ms stereo: we do it before mdct */
704 /* no need to optimize this case because it should almost
705 never happen */
706 if (!s->channel_coded[0]) {
707 tprintf(s->avctx, "rare ms-stereo case happened\n");
708 memset(s->coefs[0], 0, sizeof(float) * s->block_len);
709 s->channel_coded[0] = 1;
712 s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
715 next:
716 for(ch = 0; ch < s->nb_channels; ch++) {
717 int n4, index;
719 n4 = s->block_len / 2;
720 if(s->channel_coded[ch]){
721 ff_imdct_calc(&s->mdct_ctx[bsize], s->output, s->coefs[ch]);
722 }else if(!(s->ms_stereo && ch==1))
723 memset(s->output, 0, sizeof(s->output));
725 /* multiply by the window and add in the frame */
726 index = (s->frame_len / 2) + s->block_pos - n4;
727 wma_window(s, &s->frame_out[ch][index]);
730 /* update block number */
731 s->block_num++;
732 s->block_pos += s->block_len;
733 if (s->block_pos >= s->frame_len)
734 return 1;
735 else
736 return 0;
739 /* decode a frame of frame_len samples */
740 static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
742 int ret, i, n, ch, incr;
743 int16_t *ptr;
744 float *iptr;
746 #ifdef TRACE
747 tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
748 #endif
750 /* read each block */
751 s->block_num = 0;
752 s->block_pos = 0;
753 for(;;) {
754 ret = wma_decode_block(s);
755 if (ret < 0)
756 return -1;
757 if (ret)
758 break;
761 /* convert frame to integer */
762 n = s->frame_len;
763 incr = s->nb_channels;
764 for(ch = 0; ch < s->nb_channels; ch++) {
765 ptr = samples + ch;
766 iptr = s->frame_out[ch];
768 for(i=0;i<n;i++) {
769 *ptr = av_clip_int16(lrintf(*iptr++));
770 ptr += incr;
772 /* prepare for next block */
773 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
774 s->frame_len * sizeof(float));
777 #ifdef TRACE
778 dump_shorts(s, "samples", samples, n * s->nb_channels);
779 #endif
780 return 0;
783 static int wma_decode_superframe(AVCodecContext *avctx,
784 void *data, int *data_size,
785 AVPacket *avpkt)
787 const uint8_t *buf = avpkt->data;
788 int buf_size = avpkt->size;
789 WMACodecContext *s = avctx->priv_data;
790 int nb_frames, bit_offset, i, pos, len;
791 uint8_t *q;
792 int16_t *samples;
794 tprintf(avctx, "***decode_superframe:\n");
796 if(buf_size==0){
797 s->last_superframe_len = 0;
798 return 0;
800 if (buf_size < s->block_align)
801 return 0;
802 buf_size = s->block_align;
804 samples = data;
806 init_get_bits(&s->gb, buf, buf_size*8);
808 if (s->use_bit_reservoir) {
809 /* read super frame header */
810 skip_bits(&s->gb, 4); /* super frame index */
811 nb_frames = get_bits(&s->gb, 4) - 1;
813 if((nb_frames+1) * s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
814 av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
815 goto fail;
818 bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
820 if (s->last_superframe_len > 0) {
821 // printf("skip=%d\n", s->last_bitoffset);
822 /* add bit_offset bits to last frame */
823 if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
824 MAX_CODED_SUPERFRAME_SIZE)
825 goto fail;
826 q = s->last_superframe + s->last_superframe_len;
827 len = bit_offset;
828 while (len > 7) {
829 *q++ = (get_bits)(&s->gb, 8);
830 len -= 8;
832 if (len > 0) {
833 *q++ = (get_bits)(&s->gb, len) << (8 - len);
836 /* XXX: bit_offset bits into last frame */
837 init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
838 /* skip unused bits */
839 if (s->last_bitoffset > 0)
840 skip_bits(&s->gb, s->last_bitoffset);
841 /* this frame is stored in the last superframe and in the
842 current one */
843 if (wma_decode_frame(s, samples) < 0)
844 goto fail;
845 samples += s->nb_channels * s->frame_len;
848 /* read each frame starting from bit_offset */
849 pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
850 init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
851 len = pos & 7;
852 if (len > 0)
853 skip_bits(&s->gb, len);
855 s->reset_block_lengths = 1;
856 for(i=0;i<nb_frames;i++) {
857 if (wma_decode_frame(s, samples) < 0)
858 goto fail;
859 samples += s->nb_channels * s->frame_len;
862 /* we copy the end of the frame in the last frame buffer */
863 pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
864 s->last_bitoffset = pos & 7;
865 pos >>= 3;
866 len = buf_size - pos;
867 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
868 goto fail;
870 s->last_superframe_len = len;
871 memcpy(s->last_superframe, buf + pos, len);
872 } else {
873 if(s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
874 av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
875 goto fail;
877 /* single frame decode */
878 if (wma_decode_frame(s, samples) < 0)
879 goto fail;
880 samples += s->nb_channels * s->frame_len;
883 //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
885 *data_size = (int8_t *)samples - (int8_t *)data;
886 return s->block_align;
887 fail:
888 /* when error, we reset the bit reservoir */
889 s->last_superframe_len = 0;
890 return -1;
893 AVCodec wmav1_decoder =
895 "wmav1",
896 CODEC_TYPE_AUDIO,
897 CODEC_ID_WMAV1,
898 sizeof(WMACodecContext),
899 wma_decode_init,
900 NULL,
901 ff_wma_end,
902 wma_decode_superframe,
903 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
906 AVCodec wmav2_decoder =
908 "wmav2",
909 CODEC_TYPE_AUDIO,
910 CODEC_ID_WMAV2,
911 sizeof(WMACodecContext),
912 wma_decode_init,
913 NULL,
914 ff_wma_end,
915 wma_decode_superframe,
916 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),