Add Speex support to the Ogg muxer.
[FFMpeg-mirror/lagarith.git] / libavcodec / vp3.c
blob60b84f0b5f785edb2240a0553b667f646fe2b3db
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 /**
22 * @file libavcodec/vp3.c
23 * On2 VP3 Video Decoder
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
29 * Theora decoder by Alex Beregszaszi
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
36 #include "avcodec.h"
37 #include "dsputil.h"
38 #include "get_bits.h"
40 #include "vp3data.h"
41 #include "xiph.h"
43 #define FRAGMENT_PIXELS 8
45 static av_cold int vp3_decode_end(AVCodecContext *avctx);
47 typedef struct Coeff {
48 struct Coeff *next;
49 DCTELEM coeff;
50 uint8_t index;
51 } Coeff;
53 //FIXME split things out into their own arrays
54 typedef struct Vp3Fragment {
55 Coeff *next_coeff;
56 /* address of first pixel taking into account which plane the fragment
57 * lives on as well as the plane stride */
58 int first_pixel;
59 /* this is the macroblock that the fragment belongs to */
60 uint16_t macroblock;
61 uint8_t coding_method;
62 int8_t motion_x;
63 int8_t motion_y;
64 uint8_t qpi;
65 } Vp3Fragment;
67 #define SB_NOT_CODED 0
68 #define SB_PARTIALLY_CODED 1
69 #define SB_FULLY_CODED 2
71 #define MODE_INTER_NO_MV 0
72 #define MODE_INTRA 1
73 #define MODE_INTER_PLUS_MV 2
74 #define MODE_INTER_LAST_MV 3
75 #define MODE_INTER_PRIOR_LAST 4
76 #define MODE_USING_GOLDEN 5
77 #define MODE_GOLDEN_MV 6
78 #define MODE_INTER_FOURMV 7
79 #define CODING_MODE_COUNT 8
81 /* special internal mode */
82 #define MODE_COPY 8
84 /* There are 6 preset schemes, plus a free-form scheme */
85 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
87 /* scheme 1: Last motion vector dominates */
88 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
89 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
90 MODE_INTRA, MODE_USING_GOLDEN,
91 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
93 /* scheme 2 */
94 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
95 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
96 MODE_INTRA, MODE_USING_GOLDEN,
97 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
99 /* scheme 3 */
100 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
101 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
102 MODE_INTRA, MODE_USING_GOLDEN,
103 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
105 /* scheme 4 */
106 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
107 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
108 MODE_INTRA, MODE_USING_GOLDEN,
109 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
111 /* scheme 5: No motion vector dominates */
112 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
113 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
114 MODE_INTRA, MODE_USING_GOLDEN,
115 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
117 /* scheme 6 */
118 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
119 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
120 MODE_INTER_PLUS_MV, MODE_INTRA,
121 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
125 #define MIN_DEQUANT_VAL 2
127 typedef struct Vp3DecodeContext {
128 AVCodecContext *avctx;
129 int theora, theora_tables;
130 int version;
131 int width, height;
132 AVFrame golden_frame;
133 AVFrame last_frame;
134 AVFrame current_frame;
135 int keyframe;
136 DSPContext dsp;
137 int flipped_image;
139 int qps[3];
140 int nqps;
141 int last_qps[3];
143 int superblock_count;
144 int y_superblock_width;
145 int y_superblock_height;
146 int c_superblock_width;
147 int c_superblock_height;
148 int u_superblock_start;
149 int v_superblock_start;
150 unsigned char *superblock_coding;
152 int macroblock_count;
153 int macroblock_width;
154 int macroblock_height;
156 int fragment_count;
157 int fragment_width;
158 int fragment_height;
160 Vp3Fragment *all_fragments;
161 uint8_t *coeff_counts;
162 Coeff *coeffs;
163 Coeff *next_coeff;
164 int fragment_start[3];
166 ScanTable scantable;
168 /* tables */
169 uint16_t coded_dc_scale_factor[64];
170 uint32_t coded_ac_scale_factor[64];
171 uint8_t base_matrix[384][64];
172 uint8_t qr_count[2][3];
173 uint8_t qr_size [2][3][64];
174 uint16_t qr_base[2][3][64];
176 /* this is a list of indexes into the all_fragments array indicating
177 * which of the fragments are coded */
178 int *coded_fragment_list;
179 int coded_fragment_list_index;
180 int pixel_addresses_initialized;
182 VLC dc_vlc[16];
183 VLC ac_vlc_1[16];
184 VLC ac_vlc_2[16];
185 VLC ac_vlc_3[16];
186 VLC ac_vlc_4[16];
188 VLC superblock_run_length_vlc;
189 VLC fragment_run_length_vlc;
190 VLC mode_code_vlc;
191 VLC motion_vector_vlc;
193 /* these arrays need to be on 16-byte boundaries since SSE2 operations
194 * index into them */
195 DECLARE_ALIGNED_16(int16_t, qmat[3][2][3][64]); //<qmat[qpi][is_inter][plane]
197 /* This table contains superblock_count * 16 entries. Each set of 16
198 * numbers corresponds to the fragment indexes 0..15 of the superblock.
199 * An entry will be -1 to indicate that no entry corresponds to that
200 * index. */
201 int *superblock_fragments;
203 /* This table contains superblock_count * 4 entries. Each set of 4
204 * numbers corresponds to the macroblock indexes 0..3 of the superblock.
205 * An entry will be -1 to indicate that no entry corresponds to that
206 * index. */
207 int *superblock_macroblocks;
209 /* This table contains macroblock_count * 6 entries. Each set of 6
210 * numbers corresponds to the fragment indexes 0..5 which comprise
211 * the macroblock (4 Y fragments and 2 C fragments). */
212 int *macroblock_fragments;
213 /* This is an array that indicates how a particular macroblock
214 * is coded. */
215 unsigned char *macroblock_coding;
217 int first_coded_y_fragment;
218 int first_coded_c_fragment;
219 int last_coded_y_fragment;
220 int last_coded_c_fragment;
222 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
223 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
225 /* Huffman decode */
226 int hti;
227 unsigned int hbits;
228 int entries;
229 int huff_code_size;
230 uint16_t huffman_table[80][32][2];
232 uint8_t filter_limit_values[64];
233 DECLARE_ALIGNED_8(int, bounding_values_array[256+2]);
234 } Vp3DecodeContext;
236 /************************************************************************
237 * VP3 specific functions
238 ************************************************************************/
241 * This function sets up all of the various blocks mappings:
242 * superblocks <-> fragments, macroblocks <-> fragments,
243 * superblocks <-> macroblocks
245 * Returns 0 is successful; returns 1 if *anything* went wrong.
247 static int init_block_mapping(Vp3DecodeContext *s)
249 int i, j;
250 signed int hilbert_walk_mb[4];
252 int current_fragment = 0;
253 int current_width = 0;
254 int current_height = 0;
255 int right_edge = 0;
256 int bottom_edge = 0;
257 int superblock_row_inc = 0;
258 int mapping_index = 0;
260 int current_macroblock;
261 int c_fragment;
263 static const signed char travel_width[16] = {
264 1, 1, 0, -1,
265 0, 0, 1, 0,
266 1, 0, 1, 0,
267 0, -1, 0, 1
270 static const signed char travel_height[16] = {
271 0, 0, 1, 0,
272 1, 1, 0, -1,
273 0, 1, 0, -1,
274 -1, 0, -1, 0
277 static const signed char travel_width_mb[4] = {
278 1, 0, 1, 0
281 static const signed char travel_height_mb[4] = {
282 0, 1, 0, -1
285 hilbert_walk_mb[0] = 1;
286 hilbert_walk_mb[1] = s->macroblock_width;
287 hilbert_walk_mb[2] = 1;
288 hilbert_walk_mb[3] = -s->macroblock_width;
290 /* iterate through each superblock (all planes) and map the fragments */
291 for (i = 0; i < s->superblock_count; i++) {
292 /* time to re-assign the limits? */
293 if (i == 0) {
295 /* start of Y superblocks */
296 right_edge = s->fragment_width;
297 bottom_edge = s->fragment_height;
298 current_width = -1;
299 current_height = 0;
300 superblock_row_inc = 3 * s->fragment_width -
301 (s->y_superblock_width * 4 - s->fragment_width);
303 /* the first operation for this variable is to advance by 1 */
304 current_fragment = -1;
306 } else if (i == s->u_superblock_start) {
308 /* start of U superblocks */
309 right_edge = s->fragment_width / 2;
310 bottom_edge = s->fragment_height / 2;
311 current_width = -1;
312 current_height = 0;
313 superblock_row_inc = 3 * (s->fragment_width / 2) -
314 (s->c_superblock_width * 4 - s->fragment_width / 2);
316 /* the first operation for this variable is to advance by 1 */
317 current_fragment = s->fragment_start[1] - 1;
319 } else if (i == s->v_superblock_start) {
321 /* start of V superblocks */
322 right_edge = s->fragment_width / 2;
323 bottom_edge = s->fragment_height / 2;
324 current_width = -1;
325 current_height = 0;
326 superblock_row_inc = 3 * (s->fragment_width / 2) -
327 (s->c_superblock_width * 4 - s->fragment_width / 2);
329 /* the first operation for this variable is to advance by 1 */
330 current_fragment = s->fragment_start[2] - 1;
334 if (current_width >= right_edge - 1) {
335 /* reset width and move to next superblock row */
336 current_width = -1;
337 current_height += 4;
339 /* fragment is now at the start of a new superblock row */
340 current_fragment += superblock_row_inc;
343 /* iterate through all 16 fragments in a superblock */
344 for (j = 0; j < 16; j++) {
345 current_fragment += travel_width[j] + right_edge * travel_height[j];
346 current_width += travel_width[j];
347 current_height += travel_height[j];
349 /* check if the fragment is in bounds */
350 if ((current_width < right_edge) &&
351 (current_height < bottom_edge)) {
352 s->superblock_fragments[mapping_index] = current_fragment;
353 } else {
354 s->superblock_fragments[mapping_index] = -1;
357 mapping_index++;
361 /* initialize the superblock <-> macroblock mapping; iterate through
362 * all of the Y plane superblocks to build this mapping */
363 right_edge = s->macroblock_width;
364 bottom_edge = s->macroblock_height;
365 current_width = -1;
366 current_height = 0;
367 superblock_row_inc = s->macroblock_width -
368 (s->y_superblock_width * 2 - s->macroblock_width);
369 mapping_index = 0;
370 current_macroblock = -1;
371 for (i = 0; i < s->u_superblock_start; i++) {
373 if (current_width >= right_edge - 1) {
374 /* reset width and move to next superblock row */
375 current_width = -1;
376 current_height += 2;
378 /* macroblock is now at the start of a new superblock row */
379 current_macroblock += superblock_row_inc;
382 /* iterate through each potential macroblock in the superblock */
383 for (j = 0; j < 4; j++) {
384 current_macroblock += hilbert_walk_mb[j];
385 current_width += travel_width_mb[j];
386 current_height += travel_height_mb[j];
388 /* check if the macroblock is in bounds */
389 if ((current_width < right_edge) &&
390 (current_height < bottom_edge)) {
391 s->superblock_macroblocks[mapping_index] = current_macroblock;
392 } else {
393 s->superblock_macroblocks[mapping_index] = -1;
396 mapping_index++;
400 /* initialize the macroblock <-> fragment mapping */
401 current_fragment = 0;
402 current_macroblock = 0;
403 mapping_index = 0;
404 for (i = 0; i < s->fragment_height; i += 2) {
406 for (j = 0; j < s->fragment_width; j += 2) {
408 s->all_fragments[current_fragment].macroblock = current_macroblock;
409 s->macroblock_fragments[mapping_index++] = current_fragment;
411 if (j + 1 < s->fragment_width) {
412 s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
413 s->macroblock_fragments[mapping_index++] = current_fragment + 1;
414 } else
415 s->macroblock_fragments[mapping_index++] = -1;
417 if (i + 1 < s->fragment_height) {
418 s->all_fragments[current_fragment + s->fragment_width].macroblock =
419 current_macroblock;
420 s->macroblock_fragments[mapping_index++] =
421 current_fragment + s->fragment_width;
422 } else
423 s->macroblock_fragments[mapping_index++] = -1;
425 if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
426 s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
427 current_macroblock;
428 s->macroblock_fragments[mapping_index++] =
429 current_fragment + s->fragment_width + 1;
430 } else
431 s->macroblock_fragments[mapping_index++] = -1;
433 /* C planes */
434 c_fragment = s->fragment_start[1] +
435 (i * s->fragment_width / 4) + (j / 2);
436 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
437 s->macroblock_fragments[mapping_index++] = c_fragment;
439 c_fragment = s->fragment_start[2] +
440 (i * s->fragment_width / 4) + (j / 2);
441 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
442 s->macroblock_fragments[mapping_index++] = c_fragment;
444 if (j + 2 <= s->fragment_width)
445 current_fragment += 2;
446 else
447 current_fragment++;
448 current_macroblock++;
451 current_fragment += s->fragment_width;
454 return 0; /* successful path out */
458 * This function wipes out all of the fragment data.
460 static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
462 int i;
464 /* zero out all of the fragment information */
465 s->coded_fragment_list_index = 0;
466 for (i = 0; i < s->fragment_count; i++) {
467 s->coeff_counts[i] = 0;
468 s->all_fragments[i].motion_x = 127;
469 s->all_fragments[i].motion_y = 127;
470 s->all_fragments[i].next_coeff= NULL;
471 s->all_fragments[i].qpi = 0;
472 s->coeffs[i].index=
473 s->coeffs[i].coeff=0;
474 s->coeffs[i].next= NULL;
479 * This function sets up the dequantization tables used for a particular
480 * frame.
482 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
484 int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
485 int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
486 int i, plane, inter, qri, bmi, bmj, qistart;
488 for(inter=0; inter<2; inter++){
489 for(plane=0; plane<3; plane++){
490 int sum=0;
491 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
492 sum+= s->qr_size[inter][plane][qri];
493 if(s->qps[qpi] <= sum)
494 break;
496 qistart= sum - s->qr_size[inter][plane][qri];
497 bmi= s->qr_base[inter][plane][qri ];
498 bmj= s->qr_base[inter][plane][qri+1];
499 for(i=0; i<64; i++){
500 int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i]
501 - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
502 + s->qr_size[inter][plane][qri])
503 / (2*s->qr_size[inter][plane][qri]);
505 int qmin= 8<<(inter + !i);
506 int qscale= i ? ac_scale_factor : dc_scale_factor;
508 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
510 // all DC coefficients use the same quant so as not to interfere with DC prediction
511 s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
515 memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
519 * This function initializes the loop filter boundary limits if the frame's
520 * quality index is different from the previous frame's.
522 * The filter_limit_values may not be larger than 127.
524 static void init_loop_filter(Vp3DecodeContext *s)
526 int *bounding_values= s->bounding_values_array+127;
527 int filter_limit;
528 int x;
529 int value;
531 filter_limit = s->filter_limit_values[s->qps[0]];
533 /* set up the bounding values */
534 memset(s->bounding_values_array, 0, 256 * sizeof(int));
535 for (x = 0; x < filter_limit; x++) {
536 bounding_values[-x] = -x;
537 bounding_values[x] = x;
539 for (x = value = filter_limit; x < 128 && value; x++, value--) {
540 bounding_values[ x] = value;
541 bounding_values[-x] = -value;
543 if (value)
544 bounding_values[128] = value;
545 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
549 * This function unpacks all of the superblock/macroblock/fragment coding
550 * information from the bitstream.
552 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
554 int bit = 0;
555 int current_superblock = 0;
556 int current_run = 0;
557 int decode_fully_flags = 0;
558 int decode_partial_blocks = 0;
559 int first_c_fragment_seen;
561 int i, j;
562 int current_fragment;
564 if (s->keyframe) {
565 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
567 } else {
569 /* unpack the list of partially-coded superblocks */
570 bit = get_bits1(gb);
571 /* toggle the bit because as soon as the first run length is
572 * fetched the bit will be toggled again */
573 bit ^= 1;
574 while (current_superblock < s->superblock_count) {
575 if (current_run-- == 0) {
576 bit ^= 1;
577 current_run = get_vlc2(gb,
578 s->superblock_run_length_vlc.table, 6, 2);
579 if (current_run == 33)
580 current_run += get_bits(gb, 12);
582 /* if any of the superblocks are not partially coded, flag
583 * a boolean to decode the list of fully-coded superblocks */
584 if (bit == 0) {
585 decode_fully_flags = 1;
586 } else {
588 /* make a note of the fact that there are partially coded
589 * superblocks */
590 decode_partial_blocks = 1;
593 s->superblock_coding[current_superblock++] = bit;
596 /* unpack the list of fully coded superblocks if any of the blocks were
597 * not marked as partially coded in the previous step */
598 if (decode_fully_flags) {
600 current_superblock = 0;
601 current_run = 0;
602 bit = get_bits1(gb);
603 /* toggle the bit because as soon as the first run length is
604 * fetched the bit will be toggled again */
605 bit ^= 1;
606 while (current_superblock < s->superblock_count) {
608 /* skip any superblocks already marked as partially coded */
609 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
611 if (current_run-- == 0) {
612 bit ^= 1;
613 current_run = get_vlc2(gb,
614 s->superblock_run_length_vlc.table, 6, 2);
615 if (current_run == 33)
616 current_run += get_bits(gb, 12);
618 s->superblock_coding[current_superblock] = 2*bit;
620 current_superblock++;
624 /* if there were partial blocks, initialize bitstream for
625 * unpacking fragment codings */
626 if (decode_partial_blocks) {
628 current_run = 0;
629 bit = get_bits1(gb);
630 /* toggle the bit because as soon as the first run length is
631 * fetched the bit will be toggled again */
632 bit ^= 1;
636 /* figure out which fragments are coded; iterate through each
637 * superblock (all planes) */
638 s->coded_fragment_list_index = 0;
639 s->next_coeff= s->coeffs + s->fragment_count;
640 s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
641 s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
642 first_c_fragment_seen = 0;
643 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
644 for (i = 0; i < s->superblock_count; i++) {
646 /* iterate through all 16 fragments in a superblock */
647 for (j = 0; j < 16; j++) {
649 /* if the fragment is in bounds, check its coding status */
650 current_fragment = s->superblock_fragments[i * 16 + j];
651 if (current_fragment >= s->fragment_count) {
652 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
653 current_fragment, s->fragment_count);
654 return 1;
656 if (current_fragment != -1) {
657 if (s->superblock_coding[i] == SB_NOT_CODED) {
659 /* copy all the fragments from the prior frame */
660 s->all_fragments[current_fragment].coding_method =
661 MODE_COPY;
663 } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
665 /* fragment may or may not be coded; this is the case
666 * that cares about the fragment coding runs */
667 if (current_run-- == 0) {
668 bit ^= 1;
669 current_run = get_vlc2(gb,
670 s->fragment_run_length_vlc.table, 5, 2);
673 if (bit) {
674 /* default mode; actual mode will be decoded in
675 * the next phase */
676 s->all_fragments[current_fragment].coding_method =
677 MODE_INTER_NO_MV;
678 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
679 s->coded_fragment_list[s->coded_fragment_list_index] =
680 current_fragment;
681 if ((current_fragment >= s->fragment_start[1]) &&
682 (s->last_coded_y_fragment == -1) &&
683 (!first_c_fragment_seen)) {
684 s->first_coded_c_fragment = s->coded_fragment_list_index;
685 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
686 first_c_fragment_seen = 1;
688 s->coded_fragment_list_index++;
689 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
690 } else {
691 /* not coded; copy this fragment from the prior frame */
692 s->all_fragments[current_fragment].coding_method =
693 MODE_COPY;
696 } else {
698 /* fragments are fully coded in this superblock; actual
699 * coding will be determined in next step */
700 s->all_fragments[current_fragment].coding_method =
701 MODE_INTER_NO_MV;
702 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
703 s->coded_fragment_list[s->coded_fragment_list_index] =
704 current_fragment;
705 if ((current_fragment >= s->fragment_start[1]) &&
706 (s->last_coded_y_fragment == -1) &&
707 (!first_c_fragment_seen)) {
708 s->first_coded_c_fragment = s->coded_fragment_list_index;
709 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
710 first_c_fragment_seen = 1;
712 s->coded_fragment_list_index++;
713 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
719 if (!first_c_fragment_seen)
720 /* only Y fragments coded in this frame */
721 s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
722 else
723 /* end the list of coded C fragments */
724 s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
726 return 0;
730 * This function unpacks all the coding mode data for individual macroblocks
731 * from the bitstream.
733 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
735 int i, j, k;
736 int scheme;
737 int current_macroblock;
738 int current_fragment;
739 int coding_mode;
740 int custom_mode_alphabet[CODING_MODE_COUNT];
742 if (s->keyframe) {
743 for (i = 0; i < s->fragment_count; i++)
744 s->all_fragments[i].coding_method = MODE_INTRA;
746 } else {
748 /* fetch the mode coding scheme for this frame */
749 scheme = get_bits(gb, 3);
751 /* is it a custom coding scheme? */
752 if (scheme == 0) {
753 for (i = 0; i < 8; i++)
754 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
755 for (i = 0; i < 8; i++)
756 custom_mode_alphabet[get_bits(gb, 3)] = i;
759 /* iterate through all of the macroblocks that contain 1 or more
760 * coded fragments */
761 for (i = 0; i < s->u_superblock_start; i++) {
763 for (j = 0; j < 4; j++) {
764 current_macroblock = s->superblock_macroblocks[i * 4 + j];
765 if ((current_macroblock == -1) ||
766 (s->macroblock_coding[current_macroblock] == MODE_COPY))
767 continue;
768 if (current_macroblock >= s->macroblock_count) {
769 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
770 current_macroblock, s->macroblock_count);
771 return 1;
774 /* mode 7 means get 3 bits for each coding mode */
775 if (scheme == 7)
776 coding_mode = get_bits(gb, 3);
777 else if(scheme == 0)
778 coding_mode = custom_mode_alphabet
779 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
780 else
781 coding_mode = ModeAlphabet[scheme-1]
782 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
784 s->macroblock_coding[current_macroblock] = coding_mode;
785 for (k = 0; k < 6; k++) {
786 current_fragment =
787 s->macroblock_fragments[current_macroblock * 6 + k];
788 if (current_fragment == -1)
789 continue;
790 if (current_fragment >= s->fragment_count) {
791 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
792 current_fragment, s->fragment_count);
793 return 1;
795 if (s->all_fragments[current_fragment].coding_method !=
796 MODE_COPY)
797 s->all_fragments[current_fragment].coding_method =
798 coding_mode;
804 return 0;
808 * This function unpacks all the motion vectors for the individual
809 * macroblocks from the bitstream.
811 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
813 int i, j, k, l;
814 int coding_mode;
815 int motion_x[6];
816 int motion_y[6];
817 int last_motion_x = 0;
818 int last_motion_y = 0;
819 int prior_last_motion_x = 0;
820 int prior_last_motion_y = 0;
821 int current_macroblock;
822 int current_fragment;
824 if (s->keyframe)
825 return 0;
827 memset(motion_x, 0, 6 * sizeof(int));
828 memset(motion_y, 0, 6 * sizeof(int));
830 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
831 coding_mode = get_bits1(gb);
833 /* iterate through all of the macroblocks that contain 1 or more
834 * coded fragments */
835 for (i = 0; i < s->u_superblock_start; i++) {
837 for (j = 0; j < 4; j++) {
838 current_macroblock = s->superblock_macroblocks[i * 4 + j];
839 if ((current_macroblock == -1) ||
840 (s->macroblock_coding[current_macroblock] == MODE_COPY))
841 continue;
842 if (current_macroblock >= s->macroblock_count) {
843 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
844 current_macroblock, s->macroblock_count);
845 return 1;
848 current_fragment = s->macroblock_fragments[current_macroblock * 6];
849 if (current_fragment >= s->fragment_count) {
850 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
851 current_fragment, s->fragment_count);
852 return 1;
854 switch (s->macroblock_coding[current_macroblock]) {
856 case MODE_INTER_PLUS_MV:
857 case MODE_GOLDEN_MV:
858 /* all 6 fragments use the same motion vector */
859 if (coding_mode == 0) {
860 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
861 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
862 } else {
863 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
864 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
867 for (k = 1; k < 6; k++) {
868 motion_x[k] = motion_x[0];
869 motion_y[k] = motion_y[0];
872 /* vector maintenance, only on MODE_INTER_PLUS_MV */
873 if (s->macroblock_coding[current_macroblock] ==
874 MODE_INTER_PLUS_MV) {
875 prior_last_motion_x = last_motion_x;
876 prior_last_motion_y = last_motion_y;
877 last_motion_x = motion_x[0];
878 last_motion_y = motion_y[0];
880 break;
882 case MODE_INTER_FOURMV:
883 /* vector maintenance */
884 prior_last_motion_x = last_motion_x;
885 prior_last_motion_y = last_motion_y;
887 /* fetch 4 vectors from the bitstream, one for each
888 * Y fragment, then average for the C fragment vectors */
889 motion_x[4] = motion_y[4] = 0;
890 for (k = 0; k < 4; k++) {
891 for (l = 0; l < s->coded_fragment_list_index; l++)
892 if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k])
893 break;
894 if (l < s->coded_fragment_list_index) {
895 if (coding_mode == 0) {
896 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
897 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
898 } else {
899 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
900 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
902 last_motion_x = motion_x[k];
903 last_motion_y = motion_y[k];
904 } else {
905 motion_x[k] = 0;
906 motion_y[k] = 0;
908 motion_x[4] += motion_x[k];
909 motion_y[4] += motion_y[k];
912 motion_x[5]=
913 motion_x[4]= RSHIFT(motion_x[4], 2);
914 motion_y[5]=
915 motion_y[4]= RSHIFT(motion_y[4], 2);
916 break;
918 case MODE_INTER_LAST_MV:
919 /* all 6 fragments use the last motion vector */
920 motion_x[0] = last_motion_x;
921 motion_y[0] = last_motion_y;
922 for (k = 1; k < 6; k++) {
923 motion_x[k] = motion_x[0];
924 motion_y[k] = motion_y[0];
927 /* no vector maintenance (last vector remains the
928 * last vector) */
929 break;
931 case MODE_INTER_PRIOR_LAST:
932 /* all 6 fragments use the motion vector prior to the
933 * last motion vector */
934 motion_x[0] = prior_last_motion_x;
935 motion_y[0] = prior_last_motion_y;
936 for (k = 1; k < 6; k++) {
937 motion_x[k] = motion_x[0];
938 motion_y[k] = motion_y[0];
941 /* vector maintenance */
942 prior_last_motion_x = last_motion_x;
943 prior_last_motion_y = last_motion_y;
944 last_motion_x = motion_x[0];
945 last_motion_y = motion_y[0];
946 break;
948 default:
949 /* covers intra, inter without MV, golden without MV */
950 memset(motion_x, 0, 6 * sizeof(int));
951 memset(motion_y, 0, 6 * sizeof(int));
953 /* no vector maintenance */
954 break;
957 /* assign the motion vectors to the correct fragments */
958 for (k = 0; k < 6; k++) {
959 current_fragment =
960 s->macroblock_fragments[current_macroblock * 6 + k];
961 if (current_fragment == -1)
962 continue;
963 if (current_fragment >= s->fragment_count) {
964 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
965 current_fragment, s->fragment_count);
966 return 1;
968 s->all_fragments[current_fragment].motion_x = motion_x[k];
969 s->all_fragments[current_fragment].motion_y = motion_y[k];
974 return 0;
977 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
979 int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
980 int num_blocks = s->coded_fragment_list_index;
982 for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
983 i = blocks_decoded = num_blocks_at_qpi = 0;
985 bit = get_bits1(gb);
987 do {
988 run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
989 if (run_length == 34)
990 run_length += get_bits(gb, 12);
991 blocks_decoded += run_length;
993 if (!bit)
994 num_blocks_at_qpi += run_length;
996 for (j = 0; j < run_length; i++) {
997 if (i >= s->coded_fragment_list_index)
998 return -1;
1000 if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) {
1001 s->all_fragments[s->coded_fragment_list[i]].qpi += bit;
1002 j++;
1006 if (run_length == 4129)
1007 bit = get_bits1(gb);
1008 else
1009 bit ^= 1;
1010 } while (blocks_decoded < num_blocks);
1012 num_blocks -= num_blocks_at_qpi;
1015 return 0;
1019 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1020 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1021 * data. This function unpacks all the VLCs for either the Y plane or both
1022 * C planes, and is called for DC coefficients or different AC coefficient
1023 * levels (since different coefficient types require different VLC tables.
1025 * This function returns a residual eob run. E.g, if a particular token gave
1026 * instructions to EOB the next 5 fragments and there were only 2 fragments
1027 * left in the current fragment range, 3 would be returned so that it could
1028 * be passed into the next call to this same function.
1030 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1031 VLC *table, int coeff_index,
1032 int first_fragment, int last_fragment,
1033 int eob_run)
1035 int i;
1036 int token;
1037 int zero_run = 0;
1038 DCTELEM coeff = 0;
1039 Vp3Fragment *fragment;
1040 int bits_to_get;
1042 /* local references to structure members to avoid repeated deferences */
1043 uint8_t *perm= s->scantable.permutated;
1044 int *coded_fragment_list = s->coded_fragment_list;
1045 Vp3Fragment *all_fragments = s->all_fragments;
1046 uint8_t *coeff_counts = s->coeff_counts;
1047 VLC_TYPE (*vlc_table)[2] = table->table;
1049 if ((first_fragment >= s->fragment_count) ||
1050 (last_fragment >= s->fragment_count)) {
1052 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1053 first_fragment, last_fragment);
1054 return 0;
1057 for (i = first_fragment; i <= last_fragment; i++) {
1058 int fragment_num = coded_fragment_list[i];
1060 if (coeff_counts[fragment_num] > coeff_index)
1061 continue;
1062 fragment = &all_fragments[fragment_num];
1064 if (!eob_run) {
1065 /* decode a VLC into a token */
1066 token = get_vlc2(gb, vlc_table, 5, 3);
1067 /* use the token to get a zero run, a coefficient, and an eob run */
1068 if (token <= 6) {
1069 eob_run = eob_run_base[token];
1070 if (eob_run_get_bits[token])
1071 eob_run += get_bits(gb, eob_run_get_bits[token]);
1072 coeff = zero_run = 0;
1073 } else {
1074 bits_to_get = coeff_get_bits[token];
1075 if (bits_to_get)
1076 bits_to_get = get_bits(gb, bits_to_get);
1077 coeff = coeff_tables[token][bits_to_get];
1079 zero_run = zero_run_base[token];
1080 if (zero_run_get_bits[token])
1081 zero_run += get_bits(gb, zero_run_get_bits[token]);
1085 if (!eob_run) {
1086 coeff_counts[fragment_num] += zero_run;
1087 if (coeff_counts[fragment_num] < 64){
1088 fragment->next_coeff->coeff= coeff;
1089 fragment->next_coeff->index= perm[coeff_counts[fragment_num]++]; //FIXME perm here already?
1090 fragment->next_coeff->next= s->next_coeff;
1091 s->next_coeff->next=NULL;
1092 fragment->next_coeff= s->next_coeff++;
1094 } else {
1095 coeff_counts[fragment_num] |= 128;
1096 eob_run--;
1100 return eob_run;
1103 static void reverse_dc_prediction(Vp3DecodeContext *s,
1104 int first_fragment,
1105 int fragment_width,
1106 int fragment_height);
1108 * This function unpacks all of the DCT coefficient data from the
1109 * bitstream.
1111 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1113 int i;
1114 int dc_y_table;
1115 int dc_c_table;
1116 int ac_y_table;
1117 int ac_c_table;
1118 int residual_eob_run = 0;
1120 /* fetch the DC table indexes */
1121 dc_y_table = get_bits(gb, 4);
1122 dc_c_table = get_bits(gb, 4);
1124 /* unpack the Y plane DC coefficients */
1125 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1126 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1128 /* reverse prediction of the Y-plane DC coefficients */
1129 reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1131 /* unpack the C plane DC coefficients */
1132 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1133 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1135 /* reverse prediction of the C-plane DC coefficients */
1136 if (!(s->avctx->flags & CODEC_FLAG_GRAY))
1138 reverse_dc_prediction(s, s->fragment_start[1],
1139 s->fragment_width / 2, s->fragment_height / 2);
1140 reverse_dc_prediction(s, s->fragment_start[2],
1141 s->fragment_width / 2, s->fragment_height / 2);
1144 /* fetch the AC table indexes */
1145 ac_y_table = get_bits(gb, 4);
1146 ac_c_table = get_bits(gb, 4);
1148 /* unpack the group 1 AC coefficients (coeffs 1-5) */
1149 for (i = 1; i <= 5; i++) {
1150 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1151 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1153 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1154 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1157 /* unpack the group 2 AC coefficients (coeffs 6-14) */
1158 for (i = 6; i <= 14; i++) {
1159 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1160 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1162 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1163 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1166 /* unpack the group 3 AC coefficients (coeffs 15-27) */
1167 for (i = 15; i <= 27; i++) {
1168 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1169 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1171 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1172 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1175 /* unpack the group 4 AC coefficients (coeffs 28-63) */
1176 for (i = 28; i <= 63; i++) {
1177 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1178 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1180 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1181 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1184 return 0;
1188 * This function reverses the DC prediction for each coded fragment in
1189 * the frame. Much of this function is adapted directly from the original
1190 * VP3 source code.
1192 #define COMPATIBLE_FRAME(x) \
1193 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1194 #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1195 #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1197 static void reverse_dc_prediction(Vp3DecodeContext *s,
1198 int first_fragment,
1199 int fragment_width,
1200 int fragment_height)
1203 #define PUL 8
1204 #define PU 4
1205 #define PUR 2
1206 #define PL 1
1208 int x, y;
1209 int i = first_fragment;
1211 int predicted_dc;
1213 /* DC values for the left, up-left, up, and up-right fragments */
1214 int vl, vul, vu, vur;
1216 /* indexes for the left, up-left, up, and up-right fragments */
1217 int l, ul, u, ur;
1220 * The 6 fields mean:
1221 * 0: up-left multiplier
1222 * 1: up multiplier
1223 * 2: up-right multiplier
1224 * 3: left multiplier
1226 static const int predictor_transform[16][4] = {
1227 { 0, 0, 0, 0},
1228 { 0, 0, 0,128}, // PL
1229 { 0, 0,128, 0}, // PUR
1230 { 0, 0, 53, 75}, // PUR|PL
1231 { 0,128, 0, 0}, // PU
1232 { 0, 64, 0, 64}, // PU|PL
1233 { 0,128, 0, 0}, // PU|PUR
1234 { 0, 0, 53, 75}, // PU|PUR|PL
1235 {128, 0, 0, 0}, // PUL
1236 { 0, 0, 0,128}, // PUL|PL
1237 { 64, 0, 64, 0}, // PUL|PUR
1238 { 0, 0, 53, 75}, // PUL|PUR|PL
1239 { 0,128, 0, 0}, // PUL|PU
1240 {-104,116, 0,116}, // PUL|PU|PL
1241 { 24, 80, 24, 0}, // PUL|PU|PUR
1242 {-104,116, 0,116} // PUL|PU|PUR|PL
1245 /* This table shows which types of blocks can use other blocks for
1246 * prediction. For example, INTRA is the only mode in this table to
1247 * have a frame number of 0. That means INTRA blocks can only predict
1248 * from other INTRA blocks. There are 2 golden frame coding types;
1249 * blocks encoding in these modes can only predict from other blocks
1250 * that were encoded with these 1 of these 2 modes. */
1251 static const unsigned char compatible_frame[8] = {
1252 1, /* MODE_INTER_NO_MV */
1253 0, /* MODE_INTRA */
1254 1, /* MODE_INTER_PLUS_MV */
1255 1, /* MODE_INTER_LAST_MV */
1256 1, /* MODE_INTER_PRIOR_MV */
1257 2, /* MODE_USING_GOLDEN */
1258 2, /* MODE_GOLDEN_MV */
1259 1 /* MODE_INTER_FOUR_MV */
1261 int current_frame_type;
1263 /* there is a last DC predictor for each of the 3 frame types */
1264 short last_dc[3];
1266 int transform = 0;
1268 vul = vu = vur = vl = 0;
1269 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1271 /* for each fragment row... */
1272 for (y = 0; y < fragment_height; y++) {
1274 /* for each fragment in a row... */
1275 for (x = 0; x < fragment_width; x++, i++) {
1277 /* reverse prediction if this block was coded */
1278 if (s->all_fragments[i].coding_method != MODE_COPY) {
1280 current_frame_type =
1281 compatible_frame[s->all_fragments[i].coding_method];
1283 transform= 0;
1284 if(x){
1285 l= i-1;
1286 vl = DC_COEFF(l);
1287 if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
1288 transform |= PL;
1290 if(y){
1291 u= i-fragment_width;
1292 vu = DC_COEFF(u);
1293 if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
1294 transform |= PU;
1295 if(x){
1296 ul= i-fragment_width-1;
1297 vul = DC_COEFF(ul);
1298 if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
1299 transform |= PUL;
1301 if(x + 1 < fragment_width){
1302 ur= i-fragment_width+1;
1303 vur = DC_COEFF(ur);
1304 if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
1305 transform |= PUR;
1309 if (transform == 0) {
1311 /* if there were no fragments to predict from, use last
1312 * DC saved */
1313 predicted_dc = last_dc[current_frame_type];
1314 } else {
1316 /* apply the appropriate predictor transform */
1317 predicted_dc =
1318 (predictor_transform[transform][0] * vul) +
1319 (predictor_transform[transform][1] * vu) +
1320 (predictor_transform[transform][2] * vur) +
1321 (predictor_transform[transform][3] * vl);
1323 predicted_dc /= 128;
1325 /* check for outranging on the [ul u l] and
1326 * [ul u ur l] predictors */
1327 if ((transform == 13) || (transform == 15)) {
1328 if (FFABS(predicted_dc - vu) > 128)
1329 predicted_dc = vu;
1330 else if (FFABS(predicted_dc - vl) > 128)
1331 predicted_dc = vl;
1332 else if (FFABS(predicted_dc - vul) > 128)
1333 predicted_dc = vul;
1337 /* at long last, apply the predictor */
1338 if(s->coeffs[i].index){
1339 *s->next_coeff= s->coeffs[i];
1340 s->coeffs[i].index=0;
1341 s->coeffs[i].coeff=0;
1342 s->coeffs[i].next= s->next_coeff++;
1344 s->coeffs[i].coeff += predicted_dc;
1345 /* save the DC */
1346 last_dc[current_frame_type] = DC_COEFF(i);
1347 if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1348 s->coeff_counts[i]= 129;
1349 // s->all_fragments[i].next_coeff= s->next_coeff;
1350 s->coeffs[i].next= s->next_coeff;
1351 (s->next_coeff++)->next=NULL;
1359 * Perform the final rendering for a particular slice of data.
1360 * The slice number ranges from 0..(macroblock_height - 1).
1362 static void render_slice(Vp3DecodeContext *s, int slice)
1364 int x;
1365 int16_t *dequantizer;
1366 DECLARE_ALIGNED_16(DCTELEM, block[64]);
1367 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1368 int motion_halfpel_index;
1369 uint8_t *motion_source;
1370 int plane;
1371 int current_macroblock_entry = slice * s->macroblock_width * 6;
1373 if (slice >= s->macroblock_height)
1374 return;
1376 for (plane = 0; plane < 3; plane++) {
1377 uint8_t *output_plane = s->current_frame.data [plane];
1378 uint8_t * last_plane = s-> last_frame.data [plane];
1379 uint8_t *golden_plane = s-> golden_frame.data [plane];
1380 int stride = s->current_frame.linesize[plane];
1381 int plane_width = s->width >> !!plane;
1382 int plane_height = s->height >> !!plane;
1383 int y = slice * FRAGMENT_PIXELS << !plane ;
1384 int slice_height = y + (FRAGMENT_PIXELS << !plane);
1385 int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1387 if (!s->flipped_image) stride = -stride;
1390 if(FFABS(stride) > 2048)
1391 return; //various tables are fixed size
1393 /* for each fragment row in the slice (both of them)... */
1394 for (; y < slice_height; y += 8) {
1396 /* for each fragment in a row... */
1397 for (x = 0; x < plane_width; x += 8, i++) {
1399 if ((i < 0) || (i >= s->fragment_count)) {
1400 av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
1401 return;
1404 /* transform if this block was coded */
1405 if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1406 !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1408 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1409 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1410 motion_source= golden_plane;
1411 else
1412 motion_source= last_plane;
1414 motion_source += s->all_fragments[i].first_pixel;
1415 motion_halfpel_index = 0;
1417 /* sort out the motion vector if this fragment is coded
1418 * using a motion vector method */
1419 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1420 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1421 int src_x, src_y;
1422 motion_x = s->all_fragments[i].motion_x;
1423 motion_y = s->all_fragments[i].motion_y;
1424 if(plane){
1425 motion_x= (motion_x>>1) | (motion_x&1);
1426 motion_y= (motion_y>>1) | (motion_y&1);
1429 src_x= (motion_x>>1) + x;
1430 src_y= (motion_y>>1) + y;
1431 if ((motion_x == 127) || (motion_y == 127))
1432 av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1434 motion_halfpel_index = motion_x & 0x01;
1435 motion_source += (motion_x >> 1);
1437 motion_halfpel_index |= (motion_y & 0x01) << 1;
1438 motion_source += ((motion_y >> 1) * stride);
1440 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1441 uint8_t *temp= s->edge_emu_buffer;
1442 if(stride<0) temp -= 9*stride;
1443 else temp += 9*stride;
1445 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1446 motion_source= temp;
1451 /* first, take care of copying a block from either the
1452 * previous or the golden frame */
1453 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1454 /* Note, it is possible to implement all MC cases with
1455 put_no_rnd_pixels_l2 which would look more like the
1456 VP3 source but this would be slower as
1457 put_no_rnd_pixels_tab is better optimzed */
1458 if(motion_halfpel_index != 3){
1459 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1460 output_plane + s->all_fragments[i].first_pixel,
1461 motion_source, stride, 8);
1462 }else{
1463 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1464 s->dsp.put_no_rnd_pixels_l2[1](
1465 output_plane + s->all_fragments[i].first_pixel,
1466 motion_source - d,
1467 motion_source + stride + 1 + d,
1468 stride, 8);
1470 dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane];
1471 }else{
1472 dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane];
1475 /* dequantize the DCT coefficients */
1476 if(s->avctx->idct_algo==FF_IDCT_VP3){
1477 Coeff *coeff= s->coeffs + i;
1478 s->dsp.clear_block(block);
1479 while(coeff->next){
1480 block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1481 coeff= coeff->next;
1483 }else{
1484 Coeff *coeff= s->coeffs + i;
1485 s->dsp.clear_block(block);
1486 while(coeff->next){
1487 block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1488 coeff= coeff->next;
1492 /* invert DCT and place (or add) in final output */
1494 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1495 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1496 block[0] += 128<<3;
1497 s->dsp.idct_put(
1498 output_plane + s->all_fragments[i].first_pixel,
1499 stride,
1500 block);
1501 } else {
1502 s->dsp.idct_add(
1503 output_plane + s->all_fragments[i].first_pixel,
1504 stride,
1505 block);
1507 } else {
1509 /* copy directly from the previous frame */
1510 s->dsp.put_pixels_tab[1][0](
1511 output_plane + s->all_fragments[i].first_pixel,
1512 last_plane + s->all_fragments[i].first_pixel,
1513 stride, 8);
1516 #if 0
1517 /* perform the left edge filter if:
1518 * - the fragment is not on the left column
1519 * - the fragment is coded in this frame
1520 * - the fragment is not coded in this frame but the left
1521 * fragment is coded in this frame (this is done instead
1522 * of a right edge filter when rendering the left fragment
1523 * since this fragment is not available yet) */
1524 if ((x > 0) &&
1525 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1526 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1527 (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1528 horizontal_filter(
1529 output_plane + s->all_fragments[i].first_pixel + 7*stride,
1530 -stride, s->bounding_values_array + 127);
1533 /* perform the top edge filter if:
1534 * - the fragment is not on the top row
1535 * - the fragment is coded in this frame
1536 * - the fragment is not coded in this frame but the above
1537 * fragment is coded in this frame (this is done instead
1538 * of a bottom edge filter when rendering the above
1539 * fragment since this fragment is not available yet) */
1540 if ((y > 0) &&
1541 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1542 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1543 (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1544 vertical_filter(
1545 output_plane + s->all_fragments[i].first_pixel - stride,
1546 -stride, s->bounding_values_array + 127);
1548 #endif
1553 /* this looks like a good place for slice dispatch... */
1554 /* algorithm:
1555 * if (slice == s->macroblock_height - 1)
1556 * dispatch (both last slice & 2nd-to-last slice);
1557 * else if (slice > 0)
1558 * dispatch (slice - 1);
1561 emms_c();
1564 static void apply_loop_filter(Vp3DecodeContext *s)
1566 int plane;
1567 int x, y;
1568 int *bounding_values= s->bounding_values_array+127;
1570 #if 0
1571 int bounding_values_array[256];
1572 int filter_limit;
1574 /* find the right loop limit value */
1575 for (x = 63; x >= 0; x--) {
1576 if (vp31_ac_scale_factor[x] >= s->quality_index)
1577 break;
1579 filter_limit = vp31_filter_limit_values[s->quality_index];
1581 /* set up the bounding values */
1582 memset(bounding_values_array, 0, 256 * sizeof(int));
1583 for (x = 0; x < filter_limit; x++) {
1584 bounding_values[-x - filter_limit] = -filter_limit + x;
1585 bounding_values[-x] = -x;
1586 bounding_values[x] = x;
1587 bounding_values[x + filter_limit] = filter_limit - x;
1589 #endif
1591 for (plane = 0; plane < 3; plane++) {
1592 int width = s->fragment_width >> !!plane;
1593 int height = s->fragment_height >> !!plane;
1594 int fragment = s->fragment_start [plane];
1595 int stride = s->current_frame.linesize[plane];
1596 uint8_t *plane_data = s->current_frame.data [plane];
1597 if (!s->flipped_image) stride = -stride;
1599 for (y = 0; y < height; y++) {
1601 for (x = 0; x < width; x++) {
1602 /* do not perform left edge filter for left columns frags */
1603 if ((x > 0) &&
1604 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1605 s->dsp.vp3_h_loop_filter(
1606 plane_data + s->all_fragments[fragment].first_pixel,
1607 stride, bounding_values);
1610 /* do not perform top edge filter for top row fragments */
1611 if ((y > 0) &&
1612 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1613 s->dsp.vp3_v_loop_filter(
1614 plane_data + s->all_fragments[fragment].first_pixel,
1615 stride, bounding_values);
1618 /* do not perform right edge filter for right column
1619 * fragments or if right fragment neighbor is also coded
1620 * in this frame (it will be filtered in next iteration) */
1621 if ((x < width - 1) &&
1622 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1623 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1624 s->dsp.vp3_h_loop_filter(
1625 plane_data + s->all_fragments[fragment + 1].first_pixel,
1626 stride, bounding_values);
1629 /* do not perform bottom edge filter for bottom row
1630 * fragments or if bottom fragment neighbor is also coded
1631 * in this frame (it will be filtered in the next row) */
1632 if ((y < height - 1) &&
1633 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1634 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1635 s->dsp.vp3_v_loop_filter(
1636 plane_data + s->all_fragments[fragment + width].first_pixel,
1637 stride, bounding_values);
1640 fragment++;
1647 * This function computes the first pixel addresses for each fragment.
1648 * This function needs to be invoked after the first frame is allocated
1649 * so that it has access to the plane strides.
1651 static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1653 #define Y_INITIAL(chroma_shift) s->flipped_image ? 1 : s->fragment_height >> chroma_shift
1654 #define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0
1656 int i, x, y;
1657 const int y_inc = s->flipped_image ? 1 : -1;
1659 /* figure out the first pixel addresses for each of the fragments */
1660 /* Y plane */
1661 i = 0;
1662 for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) {
1663 for (x = 0; x < s->fragment_width; x++) {
1664 s->all_fragments[i++].first_pixel =
1665 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1666 s->golden_frame.linesize[0] +
1667 x * FRAGMENT_PIXELS;
1671 /* U plane */
1672 i = s->fragment_start[1];
1673 for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1674 for (x = 0; x < s->fragment_width / 2; x++) {
1675 s->all_fragments[i++].first_pixel =
1676 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1677 s->golden_frame.linesize[1] +
1678 x * FRAGMENT_PIXELS;
1682 /* V plane */
1683 i = s->fragment_start[2];
1684 for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1685 for (x = 0; x < s->fragment_width / 2; x++) {
1686 s->all_fragments[i++].first_pixel =
1687 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1688 s->golden_frame.linesize[2] +
1689 x * FRAGMENT_PIXELS;
1695 * This is the ffmpeg/libavcodec API init function.
1697 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1699 Vp3DecodeContext *s = avctx->priv_data;
1700 int i, inter, plane;
1701 int c_width;
1702 int c_height;
1703 int y_superblock_count;
1704 int c_superblock_count;
1706 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1707 s->version = 0;
1708 else
1709 s->version = 1;
1711 s->avctx = avctx;
1712 s->width = FFALIGN(avctx->width, 16);
1713 s->height = FFALIGN(avctx->height, 16);
1714 avctx->pix_fmt = PIX_FMT_YUV420P;
1715 avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1716 if(avctx->idct_algo==FF_IDCT_AUTO)
1717 avctx->idct_algo=FF_IDCT_VP3;
1718 dsputil_init(&s->dsp, avctx);
1720 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1722 /* initialize to an impossible value which will force a recalculation
1723 * in the first frame decode */
1724 for (i = 0; i < 3; i++)
1725 s->qps[i] = -1;
1727 s->y_superblock_width = (s->width + 31) / 32;
1728 s->y_superblock_height = (s->height + 31) / 32;
1729 y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1731 /* work out the dimensions for the C planes */
1732 c_width = s->width / 2;
1733 c_height = s->height / 2;
1734 s->c_superblock_width = (c_width + 31) / 32;
1735 s->c_superblock_height = (c_height + 31) / 32;
1736 c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1738 s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1739 s->u_superblock_start = y_superblock_count;
1740 s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1741 s->superblock_coding = av_malloc(s->superblock_count);
1743 s->macroblock_width = (s->width + 15) / 16;
1744 s->macroblock_height = (s->height + 15) / 16;
1745 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1747 s->fragment_width = s->width / FRAGMENT_PIXELS;
1748 s->fragment_height = s->height / FRAGMENT_PIXELS;
1750 /* fragment count covers all 8x8 blocks for all 3 planes */
1751 s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1752 s->fragment_start[1] = s->fragment_width * s->fragment_height;
1753 s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1755 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1756 s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1757 s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1758 s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1759 s->pixel_addresses_initialized = 0;
1760 if (!s->superblock_coding || !s->all_fragments || !s->coeff_counts ||
1761 !s->coeffs || !s->coded_fragment_list) {
1762 vp3_decode_end(avctx);
1763 return -1;
1766 if (!s->theora_tables)
1768 for (i = 0; i < 64; i++) {
1769 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1770 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1771 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1772 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1773 s->base_matrix[2][i] = vp31_inter_dequant[i];
1774 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1777 for(inter=0; inter<2; inter++){
1778 for(plane=0; plane<3; plane++){
1779 s->qr_count[inter][plane]= 1;
1780 s->qr_size [inter][plane][0]= 63;
1781 s->qr_base [inter][plane][0]=
1782 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1786 /* init VLC tables */
1787 for (i = 0; i < 16; i++) {
1789 /* DC histograms */
1790 init_vlc(&s->dc_vlc[i], 5, 32,
1791 &dc_bias[i][0][1], 4, 2,
1792 &dc_bias[i][0][0], 4, 2, 0);
1794 /* group 1 AC histograms */
1795 init_vlc(&s->ac_vlc_1[i], 5, 32,
1796 &ac_bias_0[i][0][1], 4, 2,
1797 &ac_bias_0[i][0][0], 4, 2, 0);
1799 /* group 2 AC histograms */
1800 init_vlc(&s->ac_vlc_2[i], 5, 32,
1801 &ac_bias_1[i][0][1], 4, 2,
1802 &ac_bias_1[i][0][0], 4, 2, 0);
1804 /* group 3 AC histograms */
1805 init_vlc(&s->ac_vlc_3[i], 5, 32,
1806 &ac_bias_2[i][0][1], 4, 2,
1807 &ac_bias_2[i][0][0], 4, 2, 0);
1809 /* group 4 AC histograms */
1810 init_vlc(&s->ac_vlc_4[i], 5, 32,
1811 &ac_bias_3[i][0][1], 4, 2,
1812 &ac_bias_3[i][0][0], 4, 2, 0);
1814 } else {
1815 for (i = 0; i < 16; i++) {
1817 /* DC histograms */
1818 if (init_vlc(&s->dc_vlc[i], 5, 32,
1819 &s->huffman_table[i][0][1], 4, 2,
1820 &s->huffman_table[i][0][0], 4, 2, 0) < 0)
1821 goto vlc_fail;
1823 /* group 1 AC histograms */
1824 if (init_vlc(&s->ac_vlc_1[i], 5, 32,
1825 &s->huffman_table[i+16][0][1], 4, 2,
1826 &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
1827 goto vlc_fail;
1829 /* group 2 AC histograms */
1830 if (init_vlc(&s->ac_vlc_2[i], 5, 32,
1831 &s->huffman_table[i+16*2][0][1], 4, 2,
1832 &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
1833 goto vlc_fail;
1835 /* group 3 AC histograms */
1836 if (init_vlc(&s->ac_vlc_3[i], 5, 32,
1837 &s->huffman_table[i+16*3][0][1], 4, 2,
1838 &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
1839 goto vlc_fail;
1841 /* group 4 AC histograms */
1842 if (init_vlc(&s->ac_vlc_4[i], 5, 32,
1843 &s->huffman_table[i+16*4][0][1], 4, 2,
1844 &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
1845 goto vlc_fail;
1849 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1850 &superblock_run_length_vlc_table[0][1], 4, 2,
1851 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1853 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1854 &fragment_run_length_vlc_table[0][1], 4, 2,
1855 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1857 init_vlc(&s->mode_code_vlc, 3, 8,
1858 &mode_code_vlc_table[0][1], 2, 1,
1859 &mode_code_vlc_table[0][0], 2, 1, 0);
1861 init_vlc(&s->motion_vector_vlc, 6, 63,
1862 &motion_vector_vlc_table[0][1], 2, 1,
1863 &motion_vector_vlc_table[0][0], 2, 1, 0);
1865 /* work out the block mapping tables */
1866 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1867 s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
1868 s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
1869 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1870 if (!s->superblock_fragments || !s->superblock_macroblocks ||
1871 !s->macroblock_fragments || !s->macroblock_coding) {
1872 vp3_decode_end(avctx);
1873 return -1;
1875 init_block_mapping(s);
1877 for (i = 0; i < 3; i++) {
1878 s->current_frame.data[i] = NULL;
1879 s->last_frame.data[i] = NULL;
1880 s->golden_frame.data[i] = NULL;
1883 return 0;
1885 vlc_fail:
1886 av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1887 return -1;
1891 * This is the ffmpeg/libavcodec API frame decode function.
1893 static int vp3_decode_frame(AVCodecContext *avctx,
1894 void *data, int *data_size,
1895 AVPacket *avpkt)
1897 const uint8_t *buf = avpkt->data;
1898 int buf_size = avpkt->size;
1899 Vp3DecodeContext *s = avctx->priv_data;
1900 GetBitContext gb;
1901 static int counter = 0;
1902 int i;
1904 init_get_bits(&gb, buf, buf_size * 8);
1906 if (s->theora && get_bits1(&gb))
1908 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1909 return -1;
1912 s->keyframe = !get_bits1(&gb);
1913 if (!s->theora)
1914 skip_bits(&gb, 1);
1915 for (i = 0; i < 3; i++)
1916 s->last_qps[i] = s->qps[i];
1918 s->nqps=0;
1920 s->qps[s->nqps++]= get_bits(&gb, 6);
1921 } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1922 for (i = s->nqps; i < 3; i++)
1923 s->qps[i] = -1;
1925 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1926 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1927 s->keyframe?"key":"", counter, s->qps[0]);
1928 counter++;
1930 if (s->qps[0] != s->last_qps[0])
1931 init_loop_filter(s);
1933 for (i = 0; i < s->nqps; i++)
1934 // reinit all dequantizers if the first one changed, because
1935 // the DC of the first quantizer must be used for all matrices
1936 if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1937 init_dequantizer(s, i);
1939 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1940 return buf_size;
1942 if (s->keyframe) {
1943 if (!s->theora)
1945 skip_bits(&gb, 4); /* width code */
1946 skip_bits(&gb, 4); /* height code */
1947 if (s->version)
1949 s->version = get_bits(&gb, 5);
1950 if (counter == 1)
1951 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1954 if (s->version || s->theora)
1956 if (get_bits1(&gb))
1957 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1958 skip_bits(&gb, 2); /* reserved? */
1961 if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1962 if (s->golden_frame.data[0])
1963 avctx->release_buffer(avctx, &s->golden_frame);
1964 s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1965 } else {
1966 if (s->golden_frame.data[0])
1967 avctx->release_buffer(avctx, &s->golden_frame);
1968 if (s->last_frame.data[0])
1969 avctx->release_buffer(avctx, &s->last_frame);
1972 s->golden_frame.reference = 3;
1973 if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1974 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1975 return -1;
1978 /* golden frame is also the current frame */
1979 s->current_frame= s->golden_frame;
1981 /* time to figure out pixel addresses? */
1982 if (!s->pixel_addresses_initialized)
1984 vp3_calculate_pixel_addresses(s);
1985 s->pixel_addresses_initialized = 1;
1987 } else {
1988 /* allocate a new current frame */
1989 s->current_frame.reference = 3;
1990 if (!s->pixel_addresses_initialized) {
1991 av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1992 return -1;
1994 if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1995 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1996 return -1;
2000 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
2001 s->current_frame.qstride= 0;
2003 init_frame(s, &gb);
2005 if (unpack_superblocks(s, &gb)){
2006 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2007 return -1;
2009 if (unpack_modes(s, &gb)){
2010 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2011 return -1;
2013 if (unpack_vectors(s, &gb)){
2014 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2015 return -1;
2017 if (unpack_block_qpis(s, &gb)){
2018 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
2019 return -1;
2021 if (unpack_dct_coeffs(s, &gb)){
2022 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2023 return -1;
2026 for (i = 0; i < s->macroblock_height; i++)
2027 render_slice(s, i);
2029 apply_loop_filter(s);
2031 *data_size=sizeof(AVFrame);
2032 *(AVFrame*)data= s->current_frame;
2034 /* release the last frame, if it is allocated and if it is not the
2035 * golden frame */
2036 if ((s->last_frame.data[0]) &&
2037 (s->last_frame.data[0] != s->golden_frame.data[0]))
2038 avctx->release_buffer(avctx, &s->last_frame);
2040 /* shuffle frames (last = current) */
2041 s->last_frame= s->current_frame;
2042 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2044 return buf_size;
2048 * This is the ffmpeg/libavcodec API module cleanup function.
2050 static av_cold int vp3_decode_end(AVCodecContext *avctx)
2052 Vp3DecodeContext *s = avctx->priv_data;
2053 int i;
2055 av_free(s->superblock_coding);
2056 av_free(s->all_fragments);
2057 av_free(s->coeff_counts);
2058 av_free(s->coeffs);
2059 av_free(s->coded_fragment_list);
2060 av_free(s->superblock_fragments);
2061 av_free(s->superblock_macroblocks);
2062 av_free(s->macroblock_fragments);
2063 av_free(s->macroblock_coding);
2065 for (i = 0; i < 16; i++) {
2066 free_vlc(&s->dc_vlc[i]);
2067 free_vlc(&s->ac_vlc_1[i]);
2068 free_vlc(&s->ac_vlc_2[i]);
2069 free_vlc(&s->ac_vlc_3[i]);
2070 free_vlc(&s->ac_vlc_4[i]);
2073 free_vlc(&s->superblock_run_length_vlc);
2074 free_vlc(&s->fragment_run_length_vlc);
2075 free_vlc(&s->mode_code_vlc);
2076 free_vlc(&s->motion_vector_vlc);
2078 /* release all frames */
2079 if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2080 avctx->release_buffer(avctx, &s->golden_frame);
2081 if (s->last_frame.data[0])
2082 avctx->release_buffer(avctx, &s->last_frame);
2083 /* no need to release the current_frame since it will always be pointing
2084 * to the same frame as either the golden or last frame */
2086 return 0;
2089 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2091 Vp3DecodeContext *s = avctx->priv_data;
2093 if (get_bits1(gb)) {
2094 int token;
2095 if (s->entries >= 32) { /* overflow */
2096 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2097 return -1;
2099 token = get_bits(gb, 5);
2100 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2101 s->huffman_table[s->hti][token][0] = s->hbits;
2102 s->huffman_table[s->hti][token][1] = s->huff_code_size;
2103 s->entries++;
2105 else {
2106 if (s->huff_code_size >= 32) {/* overflow */
2107 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2108 return -1;
2110 s->huff_code_size++;
2111 s->hbits <<= 1;
2112 if (read_huffman_tree(avctx, gb))
2113 return -1;
2114 s->hbits |= 1;
2115 if (read_huffman_tree(avctx, gb))
2116 return -1;
2117 s->hbits >>= 1;
2118 s->huff_code_size--;
2120 return 0;
2123 #if CONFIG_THEORA_DECODER
2124 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2126 Vp3DecodeContext *s = avctx->priv_data;
2127 int visible_width, visible_height;
2129 s->theora = get_bits_long(gb, 24);
2130 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2132 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2133 /* but previous versions have the image flipped relative to vp3 */
2134 if (s->theora < 0x030200)
2136 s->flipped_image = 1;
2137 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2140 visible_width = s->width = get_bits(gb, 16) << 4;
2141 visible_height = s->height = get_bits(gb, 16) << 4;
2143 if(avcodec_check_dimensions(avctx, s->width, s->height)){
2144 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2145 s->width= s->height= 0;
2146 return -1;
2149 if (s->theora >= 0x030400)
2151 skip_bits(gb, 32); /* total number of superblocks in a frame */
2152 // fixme, the next field is 36bits long
2153 skip_bits(gb, 32); /* total number of blocks in a frame */
2154 skip_bits(gb, 4); /* total number of blocks in a frame */
2155 skip_bits(gb, 32); /* total number of macroblocks in a frame */
2158 if (s->theora >= 0x030200) {
2159 visible_width = get_bits_long(gb, 24);
2160 visible_height = get_bits_long(gb, 24);
2162 skip_bits(gb, 8); /* offset x */
2163 skip_bits(gb, 8); /* offset y */
2166 skip_bits(gb, 32); /* fps numerator */
2167 skip_bits(gb, 32); /* fps denumerator */
2168 skip_bits(gb, 24); /* aspect numerator */
2169 skip_bits(gb, 24); /* aspect denumerator */
2171 if (s->theora < 0x030200)
2172 skip_bits(gb, 5); /* keyframe frequency force */
2173 skip_bits(gb, 8); /* colorspace */
2174 if (s->theora >= 0x030400)
2175 skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2176 skip_bits(gb, 24); /* bitrate */
2178 skip_bits(gb, 6); /* quality hint */
2180 if (s->theora >= 0x030200)
2182 skip_bits(gb, 5); /* keyframe frequency force */
2184 if (s->theora < 0x030400)
2185 skip_bits(gb, 5); /* spare bits */
2188 // align_get_bits(gb);
2190 if ( visible_width <= s->width && visible_width > s->width-16
2191 && visible_height <= s->height && visible_height > s->height-16)
2192 avcodec_set_dimensions(avctx, visible_width, visible_height);
2193 else
2194 avcodec_set_dimensions(avctx, s->width, s->height);
2196 return 0;
2199 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2201 Vp3DecodeContext *s = avctx->priv_data;
2202 int i, n, matrices, inter, plane;
2204 if (s->theora >= 0x030200) {
2205 n = get_bits(gb, 3);
2206 /* loop filter limit values table */
2207 for (i = 0; i < 64; i++) {
2208 s->filter_limit_values[i] = get_bits(gb, n);
2209 if (s->filter_limit_values[i] > 127) {
2210 av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2211 s->filter_limit_values[i] = 127;
2216 if (s->theora >= 0x030200)
2217 n = get_bits(gb, 4) + 1;
2218 else
2219 n = 16;
2220 /* quality threshold table */
2221 for (i = 0; i < 64; i++)
2222 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2224 if (s->theora >= 0x030200)
2225 n = get_bits(gb, 4) + 1;
2226 else
2227 n = 16;
2228 /* dc scale factor table */
2229 for (i = 0; i < 64; i++)
2230 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2232 if (s->theora >= 0x030200)
2233 matrices = get_bits(gb, 9) + 1;
2234 else
2235 matrices = 3;
2237 if(matrices > 384){
2238 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2239 return -1;
2242 for(n=0; n<matrices; n++){
2243 for (i = 0; i < 64; i++)
2244 s->base_matrix[n][i]= get_bits(gb, 8);
2247 for (inter = 0; inter <= 1; inter++) {
2248 for (plane = 0; plane <= 2; plane++) {
2249 int newqr= 1;
2250 if (inter || plane > 0)
2251 newqr = get_bits1(gb);
2252 if (!newqr) {
2253 int qtj, plj;
2254 if(inter && get_bits1(gb)){
2255 qtj = 0;
2256 plj = plane;
2257 }else{
2258 qtj= (3*inter + plane - 1) / 3;
2259 plj= (plane + 2) % 3;
2261 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2262 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2263 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2264 } else {
2265 int qri= 0;
2266 int qi = 0;
2268 for(;;){
2269 i= get_bits(gb, av_log2(matrices-1)+1);
2270 if(i>= matrices){
2271 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2272 return -1;
2274 s->qr_base[inter][plane][qri]= i;
2275 if(qi >= 63)
2276 break;
2277 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2278 s->qr_size[inter][plane][qri++]= i;
2279 qi += i;
2282 if (qi > 63) {
2283 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2284 return -1;
2286 s->qr_count[inter][plane]= qri;
2291 /* Huffman tables */
2292 for (s->hti = 0; s->hti < 80; s->hti++) {
2293 s->entries = 0;
2294 s->huff_code_size = 1;
2295 if (!get_bits1(gb)) {
2296 s->hbits = 0;
2297 if(read_huffman_tree(avctx, gb))
2298 return -1;
2299 s->hbits = 1;
2300 if(read_huffman_tree(avctx, gb))
2301 return -1;
2305 s->theora_tables = 1;
2307 return 0;
2310 static av_cold int theora_decode_init(AVCodecContext *avctx)
2312 Vp3DecodeContext *s = avctx->priv_data;
2313 GetBitContext gb;
2314 int ptype;
2315 uint8_t *header_start[3];
2316 int header_len[3];
2317 int i;
2319 s->theora = 1;
2321 if (!avctx->extradata_size)
2323 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2324 return -1;
2327 if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2328 42, header_start, header_len) < 0) {
2329 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2330 return -1;
2333 for(i=0;i<3;i++) {
2334 init_get_bits(&gb, header_start[i], header_len[i] * 8);
2336 ptype = get_bits(&gb, 8);
2338 if (!(ptype & 0x80))
2340 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2341 // return -1;
2344 // FIXME: Check for this as well.
2345 skip_bits_long(&gb, 6*8); /* "theora" */
2347 switch(ptype)
2349 case 0x80:
2350 theora_decode_header(avctx, &gb);
2351 break;
2352 case 0x81:
2353 // FIXME: is this needed? it breaks sometimes
2354 // theora_decode_comments(avctx, gb);
2355 break;
2356 case 0x82:
2357 if (theora_decode_tables(avctx, &gb))
2358 return -1;
2359 break;
2360 default:
2361 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2362 break;
2364 if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2365 av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2366 if (s->theora < 0x030200)
2367 break;
2370 return vp3_decode_init(avctx);
2373 AVCodec theora_decoder = {
2374 "theora",
2375 CODEC_TYPE_VIDEO,
2376 CODEC_ID_THEORA,
2377 sizeof(Vp3DecodeContext),
2378 theora_decode_init,
2379 NULL,
2380 vp3_decode_end,
2381 vp3_decode_frame,
2382 CODEC_CAP_DR1,
2383 NULL,
2384 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2386 #endif
2388 AVCodec vp3_decoder = {
2389 "vp3",
2390 CODEC_TYPE_VIDEO,
2391 CODEC_ID_VP3,
2392 sizeof(Vp3DecodeContext),
2393 vp3_decode_init,
2394 NULL,
2395 vp3_decode_end,
2396 vp3_decode_frame,
2397 CODEC_CAP_DR1,
2398 NULL,
2399 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),