Add Speex support to the Ogg muxer.
[FFMpeg-mirror/lagarith.git] / libavcodec / mpegaudiodec.c
blobdd986bd85909a7459e2541942597cf25fe5f9917
1 /*
2 * MPEG Audio decoder
3 * Copyright (c) 2001, 2002 Fabrice Bellard
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file libavcodec/mpegaudiodec.c
24 * MPEG Audio decoder.
27 #include "avcodec.h"
28 #include "get_bits.h"
29 #include "dsputil.h"
32 * TODO:
33 * - in low precision mode, use more 16 bit multiplies in synth filter
34 * - test lsf / mpeg25 extensively.
37 #include "mpegaudio.h"
38 #include "mpegaudiodecheader.h"
40 #include "mathops.h"
42 /* WARNING: only correct for posititive numbers */
43 #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
44 #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
46 #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
48 /****************/
50 #define HEADER_SIZE 4
52 /* layer 3 "granule" */
53 typedef struct GranuleDef {
54 uint8_t scfsi;
55 int part2_3_length;
56 int big_values;
57 int global_gain;
58 int scalefac_compress;
59 uint8_t block_type;
60 uint8_t switch_point;
61 int table_select[3];
62 int subblock_gain[3];
63 uint8_t scalefac_scale;
64 uint8_t count1table_select;
65 int region_size[3]; /* number of huffman codes in each region */
66 int preflag;
67 int short_start, long_end; /* long/short band indexes */
68 uint8_t scale_factors[40];
69 int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
70 } GranuleDef;
72 #include "mpegaudiodata.h"
73 #include "mpegaudiodectab.h"
75 static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
76 static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
78 /* vlc structure for decoding layer 3 huffman tables */
79 static VLC huff_vlc[16];
80 static VLC_TYPE huff_vlc_tables[
81 0+128+128+128+130+128+154+166+
82 142+204+190+170+542+460+662+414
83 ][2];
84 static const int huff_vlc_tables_sizes[16] = {
85 0, 128, 128, 128, 130, 128, 154, 166,
86 142, 204, 190, 170, 542, 460, 662, 414
88 static VLC huff_quad_vlc[2];
89 static VLC_TYPE huff_quad_vlc_tables[128+16][2];
90 static const int huff_quad_vlc_tables_sizes[2] = {
91 128, 16
93 /* computed from band_size_long */
94 static uint16_t band_index_long[9][23];
95 /* XXX: free when all decoders are closed */
96 #define TABLE_4_3_SIZE (8191 + 16)*4
97 static int8_t table_4_3_exp[TABLE_4_3_SIZE];
98 static uint32_t table_4_3_value[TABLE_4_3_SIZE];
99 static uint32_t exp_table[512];
100 static uint32_t expval_table[512][16];
101 /* intensity stereo coef table */
102 static int32_t is_table[2][16];
103 static int32_t is_table_lsf[2][2][16];
104 static int32_t csa_table[8][4];
105 static float csa_table_float[8][4];
106 static int32_t mdct_win[8][36];
108 /* lower 2 bits: modulo 3, higher bits: shift */
109 static uint16_t scale_factor_modshift[64];
110 /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
111 static int32_t scale_factor_mult[15][3];
112 /* mult table for layer 2 group quantization */
114 #define SCALE_GEN(v) \
115 { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
117 static const int32_t scale_factor_mult2[3][3] = {
118 SCALE_GEN(4.0 / 3.0), /* 3 steps */
119 SCALE_GEN(4.0 / 5.0), /* 5 steps */
120 SCALE_GEN(4.0 / 9.0), /* 9 steps */
123 static DECLARE_ALIGNED_16(MPA_INT, window[512]);
126 * Convert region offsets to region sizes and truncate
127 * size to big_values.
129 void ff_region_offset2size(GranuleDef *g){
130 int i, k, j=0;
131 g->region_size[2] = (576 / 2);
132 for(i=0;i<3;i++) {
133 k = FFMIN(g->region_size[i], g->big_values);
134 g->region_size[i] = k - j;
135 j = k;
139 void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
140 if (g->block_type == 2)
141 g->region_size[0] = (36 / 2);
142 else {
143 if (s->sample_rate_index <= 2)
144 g->region_size[0] = (36 / 2);
145 else if (s->sample_rate_index != 8)
146 g->region_size[0] = (54 / 2);
147 else
148 g->region_size[0] = (108 / 2);
150 g->region_size[1] = (576 / 2);
153 void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
154 int l;
155 g->region_size[0] =
156 band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
157 /* should not overflow */
158 l = FFMIN(ra1 + ra2 + 2, 22);
159 g->region_size[1] =
160 band_index_long[s->sample_rate_index][l] >> 1;
163 void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
164 if (g->block_type == 2) {
165 if (g->switch_point) {
166 /* if switched mode, we handle the 36 first samples as
167 long blocks. For 8000Hz, we handle the 48 first
168 exponents as long blocks (XXX: check this!) */
169 if (s->sample_rate_index <= 2)
170 g->long_end = 8;
171 else if (s->sample_rate_index != 8)
172 g->long_end = 6;
173 else
174 g->long_end = 4; /* 8000 Hz */
176 g->short_start = 2 + (s->sample_rate_index != 8);
177 } else {
178 g->long_end = 0;
179 g->short_start = 0;
181 } else {
182 g->short_start = 13;
183 g->long_end = 22;
187 /* layer 1 unscaling */
188 /* n = number of bits of the mantissa minus 1 */
189 static inline int l1_unscale(int n, int mant, int scale_factor)
191 int shift, mod;
192 int64_t val;
194 shift = scale_factor_modshift[scale_factor];
195 mod = shift & 3;
196 shift >>= 2;
197 val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
198 shift += n;
199 /* NOTE: at this point, 1 <= shift >= 21 + 15 */
200 return (int)((val + (1LL << (shift - 1))) >> shift);
203 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
205 int shift, mod, val;
207 shift = scale_factor_modshift[scale_factor];
208 mod = shift & 3;
209 shift >>= 2;
211 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
212 /* NOTE: at this point, 0 <= shift <= 21 */
213 if (shift > 0)
214 val = (val + (1 << (shift - 1))) >> shift;
215 return val;
218 /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
219 static inline int l3_unscale(int value, int exponent)
221 unsigned int m;
222 int e;
224 e = table_4_3_exp [4*value + (exponent&3)];
225 m = table_4_3_value[4*value + (exponent&3)];
226 e -= (exponent >> 2);
227 assert(e>=1);
228 if (e > 31)
229 return 0;
230 m = (m + (1 << (e-1))) >> e;
232 return m;
235 /* all integer n^(4/3) computation code */
236 #define DEV_ORDER 13
238 #define POW_FRAC_BITS 24
239 #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
240 #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
241 #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
243 static int dev_4_3_coefs[DEV_ORDER];
245 #if 0 /* unused */
246 static int pow_mult3[3] = {
247 POW_FIX(1.0),
248 POW_FIX(1.25992104989487316476),
249 POW_FIX(1.58740105196819947474),
251 #endif
253 static av_cold void int_pow_init(void)
255 int i, a;
257 a = POW_FIX(1.0);
258 for(i=0;i<DEV_ORDER;i++) {
259 a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
260 dev_4_3_coefs[i] = a;
264 #if 0 /* unused, remove? */
265 /* return the mantissa and the binary exponent */
266 static int int_pow(int i, int *exp_ptr)
268 int e, er, eq, j;
269 int a, a1;
271 /* renormalize */
272 a = i;
273 e = POW_FRAC_BITS;
274 while (a < (1 << (POW_FRAC_BITS - 1))) {
275 a = a << 1;
276 e--;
278 a -= (1 << POW_FRAC_BITS);
279 a1 = 0;
280 for(j = DEV_ORDER - 1; j >= 0; j--)
281 a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
282 a = (1 << POW_FRAC_BITS) + a1;
283 /* exponent compute (exact) */
284 e = e * 4;
285 er = e % 3;
286 eq = e / 3;
287 a = POW_MULL(a, pow_mult3[er]);
288 while (a >= 2 * POW_FRAC_ONE) {
289 a = a >> 1;
290 eq++;
292 /* convert to float */
293 while (a < POW_FRAC_ONE) {
294 a = a << 1;
295 eq--;
297 /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
298 #if POW_FRAC_BITS > FRAC_BITS
299 a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
300 /* correct overflow */
301 if (a >= 2 * (1 << FRAC_BITS)) {
302 a = a >> 1;
303 eq++;
305 #endif
306 *exp_ptr = eq;
307 return a;
309 #endif
311 static av_cold int decode_init(AVCodecContext * avctx)
313 MPADecodeContext *s = avctx->priv_data;
314 static int init=0;
315 int i, j, k;
317 s->avctx = avctx;
319 avctx->sample_fmt= OUT_FMT;
320 s->error_recognition= avctx->error_recognition;
322 if(avctx->antialias_algo != FF_AA_FLOAT)
323 s->compute_antialias= compute_antialias_integer;
324 else
325 s->compute_antialias= compute_antialias_float;
327 if (!init && !avctx->parse_only) {
328 int offset;
330 /* scale factors table for layer 1/2 */
331 for(i=0;i<64;i++) {
332 int shift, mod;
333 /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
334 shift = (i / 3);
335 mod = i % 3;
336 scale_factor_modshift[i] = mod | (shift << 2);
339 /* scale factor multiply for layer 1 */
340 for(i=0;i<15;i++) {
341 int n, norm;
342 n = i + 2;
343 norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
344 scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm, FRAC_BITS);
345 scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm, FRAC_BITS);
346 scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm, FRAC_BITS);
347 dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
348 i, norm,
349 scale_factor_mult[i][0],
350 scale_factor_mult[i][1],
351 scale_factor_mult[i][2]);
354 ff_mpa_synth_init(window);
356 /* huffman decode tables */
357 offset = 0;
358 for(i=1;i<16;i++) {
359 const HuffTable *h = &mpa_huff_tables[i];
360 int xsize, x, y;
361 uint8_t tmp_bits [512];
362 uint16_t tmp_codes[512];
364 memset(tmp_bits , 0, sizeof(tmp_bits ));
365 memset(tmp_codes, 0, sizeof(tmp_codes));
367 xsize = h->xsize;
369 j = 0;
370 for(x=0;x<xsize;x++) {
371 for(y=0;y<xsize;y++){
372 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
373 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
377 /* XXX: fail test */
378 huff_vlc[i].table = huff_vlc_tables+offset;
379 huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
380 init_vlc(&huff_vlc[i], 7, 512,
381 tmp_bits, 1, 1, tmp_codes, 2, 2,
382 INIT_VLC_USE_NEW_STATIC);
383 offset += huff_vlc_tables_sizes[i];
385 assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
387 offset = 0;
388 for(i=0;i<2;i++) {
389 huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
390 huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
391 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
392 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
393 INIT_VLC_USE_NEW_STATIC);
394 offset += huff_quad_vlc_tables_sizes[i];
396 assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
398 for(i=0;i<9;i++) {
399 k = 0;
400 for(j=0;j<22;j++) {
401 band_index_long[i][j] = k;
402 k += band_size_long[i][j];
404 band_index_long[i][22] = k;
407 /* compute n ^ (4/3) and store it in mantissa/exp format */
409 int_pow_init();
410 for(i=1;i<TABLE_4_3_SIZE;i++) {
411 double f, fm;
412 int e, m;
413 f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
414 fm = frexp(f, &e);
415 m = (uint32_t)(fm*(1LL<<31) + 0.5);
416 e+= FRAC_BITS - 31 + 5 - 100;
418 /* normalized to FRAC_BITS */
419 table_4_3_value[i] = m;
420 table_4_3_exp[i] = -e;
422 for(i=0; i<512*16; i++){
423 int exponent= (i>>4);
424 double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
425 expval_table[exponent][i&15]= llrint(f);
426 if((i&15)==1)
427 exp_table[exponent]= llrint(f);
430 for(i=0;i<7;i++) {
431 float f;
432 int v;
433 if (i != 6) {
434 f = tan((double)i * M_PI / 12.0);
435 v = FIXR(f / (1.0 + f));
436 } else {
437 v = FIXR(1.0);
439 is_table[0][i] = v;
440 is_table[1][6 - i] = v;
442 /* invalid values */
443 for(i=7;i<16;i++)
444 is_table[0][i] = is_table[1][i] = 0.0;
446 for(i=0;i<16;i++) {
447 double f;
448 int e, k;
450 for(j=0;j<2;j++) {
451 e = -(j + 1) * ((i + 1) >> 1);
452 f = pow(2.0, e / 4.0);
453 k = i & 1;
454 is_table_lsf[j][k ^ 1][i] = FIXR(f);
455 is_table_lsf[j][k][i] = FIXR(1.0);
456 dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
457 i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
461 for(i=0;i<8;i++) {
462 float ci, cs, ca;
463 ci = ci_table[i];
464 cs = 1.0 / sqrt(1.0 + ci * ci);
465 ca = cs * ci;
466 csa_table[i][0] = FIXHR(cs/4);
467 csa_table[i][1] = FIXHR(ca/4);
468 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
469 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
470 csa_table_float[i][0] = cs;
471 csa_table_float[i][1] = ca;
472 csa_table_float[i][2] = ca + cs;
473 csa_table_float[i][3] = ca - cs;
476 /* compute mdct windows */
477 for(i=0;i<36;i++) {
478 for(j=0; j<4; j++){
479 double d;
481 if(j==2 && i%3 != 1)
482 continue;
484 d= sin(M_PI * (i + 0.5) / 36.0);
485 if(j==1){
486 if (i>=30) d= 0;
487 else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
488 else if(i>=18) d= 1;
489 }else if(j==3){
490 if (i< 6) d= 0;
491 else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
492 else if(i< 18) d= 1;
494 //merge last stage of imdct into the window coefficients
495 d*= 0.5 / cos(M_PI*(2*i + 19)/72);
497 if(j==2)
498 mdct_win[j][i/3] = FIXHR((d / (1<<5)));
499 else
500 mdct_win[j][i ] = FIXHR((d / (1<<5)));
504 /* NOTE: we do frequency inversion adter the MDCT by changing
505 the sign of the right window coefs */
506 for(j=0;j<4;j++) {
507 for(i=0;i<36;i+=2) {
508 mdct_win[j + 4][i] = mdct_win[j][i];
509 mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
513 init = 1;
516 if (avctx->codec_id == CODEC_ID_MP3ADU)
517 s->adu_mode = 1;
518 return 0;
521 /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
523 /* cos(i*pi/64) */
525 #define COS0_0 FIXHR(0.50060299823519630134/2)
526 #define COS0_1 FIXHR(0.50547095989754365998/2)
527 #define COS0_2 FIXHR(0.51544730992262454697/2)
528 #define COS0_3 FIXHR(0.53104259108978417447/2)
529 #define COS0_4 FIXHR(0.55310389603444452782/2)
530 #define COS0_5 FIXHR(0.58293496820613387367/2)
531 #define COS0_6 FIXHR(0.62250412303566481615/2)
532 #define COS0_7 FIXHR(0.67480834145500574602/2)
533 #define COS0_8 FIXHR(0.74453627100229844977/2)
534 #define COS0_9 FIXHR(0.83934964541552703873/2)
535 #define COS0_10 FIXHR(0.97256823786196069369/2)
536 #define COS0_11 FIXHR(1.16943993343288495515/4)
537 #define COS0_12 FIXHR(1.48416461631416627724/4)
538 #define COS0_13 FIXHR(2.05778100995341155085/8)
539 #define COS0_14 FIXHR(3.40760841846871878570/8)
540 #define COS0_15 FIXHR(10.19000812354805681150/32)
542 #define COS1_0 FIXHR(0.50241928618815570551/2)
543 #define COS1_1 FIXHR(0.52249861493968888062/2)
544 #define COS1_2 FIXHR(0.56694403481635770368/2)
545 #define COS1_3 FIXHR(0.64682178335999012954/2)
546 #define COS1_4 FIXHR(0.78815462345125022473/2)
547 #define COS1_5 FIXHR(1.06067768599034747134/4)
548 #define COS1_6 FIXHR(1.72244709823833392782/4)
549 #define COS1_7 FIXHR(5.10114861868916385802/16)
551 #define COS2_0 FIXHR(0.50979557910415916894/2)
552 #define COS2_1 FIXHR(0.60134488693504528054/2)
553 #define COS2_2 FIXHR(0.89997622313641570463/2)
554 #define COS2_3 FIXHR(2.56291544774150617881/8)
556 #define COS3_0 FIXHR(0.54119610014619698439/2)
557 #define COS3_1 FIXHR(1.30656296487637652785/4)
559 #define COS4_0 FIXHR(0.70710678118654752439/2)
561 /* butterfly operator */
562 #define BF(a, b, c, s)\
564 tmp0 = tab[a] + tab[b];\
565 tmp1 = tab[a] - tab[b];\
566 tab[a] = tmp0;\
567 tab[b] = MULH(tmp1<<(s), c);\
570 #define BF1(a, b, c, d)\
572 BF(a, b, COS4_0, 1);\
573 BF(c, d,-COS4_0, 1);\
574 tab[c] += tab[d];\
577 #define BF2(a, b, c, d)\
579 BF(a, b, COS4_0, 1);\
580 BF(c, d,-COS4_0, 1);\
581 tab[c] += tab[d];\
582 tab[a] += tab[c];\
583 tab[c] += tab[b];\
584 tab[b] += tab[d];\
587 #define ADD(a, b) tab[a] += tab[b]
589 /* DCT32 without 1/sqrt(2) coef zero scaling. */
590 static void dct32(int32_t *out, int32_t *tab)
592 int tmp0, tmp1;
594 /* pass 1 */
595 BF( 0, 31, COS0_0 , 1);
596 BF(15, 16, COS0_15, 5);
597 /* pass 2 */
598 BF( 0, 15, COS1_0 , 1);
599 BF(16, 31,-COS1_0 , 1);
600 /* pass 1 */
601 BF( 7, 24, COS0_7 , 1);
602 BF( 8, 23, COS0_8 , 1);
603 /* pass 2 */
604 BF( 7, 8, COS1_7 , 4);
605 BF(23, 24,-COS1_7 , 4);
606 /* pass 3 */
607 BF( 0, 7, COS2_0 , 1);
608 BF( 8, 15,-COS2_0 , 1);
609 BF(16, 23, COS2_0 , 1);
610 BF(24, 31,-COS2_0 , 1);
611 /* pass 1 */
612 BF( 3, 28, COS0_3 , 1);
613 BF(12, 19, COS0_12, 2);
614 /* pass 2 */
615 BF( 3, 12, COS1_3 , 1);
616 BF(19, 28,-COS1_3 , 1);
617 /* pass 1 */
618 BF( 4, 27, COS0_4 , 1);
619 BF(11, 20, COS0_11, 2);
620 /* pass 2 */
621 BF( 4, 11, COS1_4 , 1);
622 BF(20, 27,-COS1_4 , 1);
623 /* pass 3 */
624 BF( 3, 4, COS2_3 , 3);
625 BF(11, 12,-COS2_3 , 3);
626 BF(19, 20, COS2_3 , 3);
627 BF(27, 28,-COS2_3 , 3);
628 /* pass 4 */
629 BF( 0, 3, COS3_0 , 1);
630 BF( 4, 7,-COS3_0 , 1);
631 BF( 8, 11, COS3_0 , 1);
632 BF(12, 15,-COS3_0 , 1);
633 BF(16, 19, COS3_0 , 1);
634 BF(20, 23,-COS3_0 , 1);
635 BF(24, 27, COS3_0 , 1);
636 BF(28, 31,-COS3_0 , 1);
640 /* pass 1 */
641 BF( 1, 30, COS0_1 , 1);
642 BF(14, 17, COS0_14, 3);
643 /* pass 2 */
644 BF( 1, 14, COS1_1 , 1);
645 BF(17, 30,-COS1_1 , 1);
646 /* pass 1 */
647 BF( 6, 25, COS0_6 , 1);
648 BF( 9, 22, COS0_9 , 1);
649 /* pass 2 */
650 BF( 6, 9, COS1_6 , 2);
651 BF(22, 25,-COS1_6 , 2);
652 /* pass 3 */
653 BF( 1, 6, COS2_1 , 1);
654 BF( 9, 14,-COS2_1 , 1);
655 BF(17, 22, COS2_1 , 1);
656 BF(25, 30,-COS2_1 , 1);
658 /* pass 1 */
659 BF( 2, 29, COS0_2 , 1);
660 BF(13, 18, COS0_13, 3);
661 /* pass 2 */
662 BF( 2, 13, COS1_2 , 1);
663 BF(18, 29,-COS1_2 , 1);
664 /* pass 1 */
665 BF( 5, 26, COS0_5 , 1);
666 BF(10, 21, COS0_10, 1);
667 /* pass 2 */
668 BF( 5, 10, COS1_5 , 2);
669 BF(21, 26,-COS1_5 , 2);
670 /* pass 3 */
671 BF( 2, 5, COS2_2 , 1);
672 BF(10, 13,-COS2_2 , 1);
673 BF(18, 21, COS2_2 , 1);
674 BF(26, 29,-COS2_2 , 1);
675 /* pass 4 */
676 BF( 1, 2, COS3_1 , 2);
677 BF( 5, 6,-COS3_1 , 2);
678 BF( 9, 10, COS3_1 , 2);
679 BF(13, 14,-COS3_1 , 2);
680 BF(17, 18, COS3_1 , 2);
681 BF(21, 22,-COS3_1 , 2);
682 BF(25, 26, COS3_1 , 2);
683 BF(29, 30,-COS3_1 , 2);
685 /* pass 5 */
686 BF1( 0, 1, 2, 3);
687 BF2( 4, 5, 6, 7);
688 BF1( 8, 9, 10, 11);
689 BF2(12, 13, 14, 15);
690 BF1(16, 17, 18, 19);
691 BF2(20, 21, 22, 23);
692 BF1(24, 25, 26, 27);
693 BF2(28, 29, 30, 31);
695 /* pass 6 */
697 ADD( 8, 12);
698 ADD(12, 10);
699 ADD(10, 14);
700 ADD(14, 9);
701 ADD( 9, 13);
702 ADD(13, 11);
703 ADD(11, 15);
705 out[ 0] = tab[0];
706 out[16] = tab[1];
707 out[ 8] = tab[2];
708 out[24] = tab[3];
709 out[ 4] = tab[4];
710 out[20] = tab[5];
711 out[12] = tab[6];
712 out[28] = tab[7];
713 out[ 2] = tab[8];
714 out[18] = tab[9];
715 out[10] = tab[10];
716 out[26] = tab[11];
717 out[ 6] = tab[12];
718 out[22] = tab[13];
719 out[14] = tab[14];
720 out[30] = tab[15];
722 ADD(24, 28);
723 ADD(28, 26);
724 ADD(26, 30);
725 ADD(30, 25);
726 ADD(25, 29);
727 ADD(29, 27);
728 ADD(27, 31);
730 out[ 1] = tab[16] + tab[24];
731 out[17] = tab[17] + tab[25];
732 out[ 9] = tab[18] + tab[26];
733 out[25] = tab[19] + tab[27];
734 out[ 5] = tab[20] + tab[28];
735 out[21] = tab[21] + tab[29];
736 out[13] = tab[22] + tab[30];
737 out[29] = tab[23] + tab[31];
738 out[ 3] = tab[24] + tab[20];
739 out[19] = tab[25] + tab[21];
740 out[11] = tab[26] + tab[22];
741 out[27] = tab[27] + tab[23];
742 out[ 7] = tab[28] + tab[18];
743 out[23] = tab[29] + tab[19];
744 out[15] = tab[30] + tab[17];
745 out[31] = tab[31];
748 #if FRAC_BITS <= 15
750 static inline int round_sample(int *sum)
752 int sum1;
753 sum1 = (*sum) >> OUT_SHIFT;
754 *sum &= (1<<OUT_SHIFT)-1;
755 return av_clip(sum1, OUT_MIN, OUT_MAX);
758 /* signed 16x16 -> 32 multiply add accumulate */
759 #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
761 /* signed 16x16 -> 32 multiply */
762 #define MULS(ra, rb) MUL16(ra, rb)
764 #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
766 #else
768 static inline int round_sample(int64_t *sum)
770 int sum1;
771 sum1 = (int)((*sum) >> OUT_SHIFT);
772 *sum &= (1<<OUT_SHIFT)-1;
773 return av_clip(sum1, OUT_MIN, OUT_MAX);
776 # define MULS(ra, rb) MUL64(ra, rb)
777 # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
778 # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
779 #endif
781 #define SUM8(op, sum, w, p) \
783 op(sum, (w)[0 * 64], (p)[0 * 64]); \
784 op(sum, (w)[1 * 64], (p)[1 * 64]); \
785 op(sum, (w)[2 * 64], (p)[2 * 64]); \
786 op(sum, (w)[3 * 64], (p)[3 * 64]); \
787 op(sum, (w)[4 * 64], (p)[4 * 64]); \
788 op(sum, (w)[5 * 64], (p)[5 * 64]); \
789 op(sum, (w)[6 * 64], (p)[6 * 64]); \
790 op(sum, (w)[7 * 64], (p)[7 * 64]); \
793 #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
795 int tmp;\
796 tmp = p[0 * 64];\
797 op1(sum1, (w1)[0 * 64], tmp);\
798 op2(sum2, (w2)[0 * 64], tmp);\
799 tmp = p[1 * 64];\
800 op1(sum1, (w1)[1 * 64], tmp);\
801 op2(sum2, (w2)[1 * 64], tmp);\
802 tmp = p[2 * 64];\
803 op1(sum1, (w1)[2 * 64], tmp);\
804 op2(sum2, (w2)[2 * 64], tmp);\
805 tmp = p[3 * 64];\
806 op1(sum1, (w1)[3 * 64], tmp);\
807 op2(sum2, (w2)[3 * 64], tmp);\
808 tmp = p[4 * 64];\
809 op1(sum1, (w1)[4 * 64], tmp);\
810 op2(sum2, (w2)[4 * 64], tmp);\
811 tmp = p[5 * 64];\
812 op1(sum1, (w1)[5 * 64], tmp);\
813 op2(sum2, (w2)[5 * 64], tmp);\
814 tmp = p[6 * 64];\
815 op1(sum1, (w1)[6 * 64], tmp);\
816 op2(sum2, (w2)[6 * 64], tmp);\
817 tmp = p[7 * 64];\
818 op1(sum1, (w1)[7 * 64], tmp);\
819 op2(sum2, (w2)[7 * 64], tmp);\
822 void av_cold ff_mpa_synth_init(MPA_INT *window)
824 int i;
826 /* max = 18760, max sum over all 16 coefs : 44736 */
827 for(i=0;i<257;i++) {
828 int v;
829 v = ff_mpa_enwindow[i];
830 #if WFRAC_BITS < 16
831 v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
832 #endif
833 window[i] = v;
834 if ((i & 63) != 0)
835 v = -v;
836 if (i != 0)
837 window[512 - i] = v;
841 /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
842 32 samples. */
843 /* XXX: optimize by avoiding ring buffer usage */
844 void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
845 MPA_INT *window, int *dither_state,
846 OUT_INT *samples, int incr,
847 int32_t sb_samples[SBLIMIT])
849 register MPA_INT *synth_buf;
850 register const MPA_INT *w, *w2, *p;
851 int j, offset;
852 OUT_INT *samples2;
853 #if FRAC_BITS <= 15
854 int32_t tmp[32];
855 int sum, sum2;
856 #else
857 int64_t sum, sum2;
858 #endif
860 offset = *synth_buf_offset;
861 synth_buf = synth_buf_ptr + offset;
863 #if FRAC_BITS <= 15
864 dct32(tmp, sb_samples);
865 for(j=0;j<32;j++) {
866 /* NOTE: can cause a loss in precision if very high amplitude
867 sound */
868 synth_buf[j] = av_clip_int16(tmp[j]);
870 #else
871 dct32(synth_buf, sb_samples);
872 #endif
874 /* copy to avoid wrap */
875 memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
877 samples2 = samples + 31 * incr;
878 w = window;
879 w2 = window + 31;
881 sum = *dither_state;
882 p = synth_buf + 16;
883 SUM8(MACS, sum, w, p);
884 p = synth_buf + 48;
885 SUM8(MLSS, sum, w + 32, p);
886 *samples = round_sample(&sum);
887 samples += incr;
888 w++;
890 /* we calculate two samples at the same time to avoid one memory
891 access per two sample */
892 for(j=1;j<16;j++) {
893 sum2 = 0;
894 p = synth_buf + 16 + j;
895 SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
896 p = synth_buf + 48 - j;
897 SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
899 *samples = round_sample(&sum);
900 samples += incr;
901 sum += sum2;
902 *samples2 = round_sample(&sum);
903 samples2 -= incr;
904 w++;
905 w2--;
908 p = synth_buf + 32;
909 SUM8(MLSS, sum, w + 32, p);
910 *samples = round_sample(&sum);
911 *dither_state= sum;
913 offset = (offset - 32) & 511;
914 *synth_buf_offset = offset;
917 #define C3 FIXHR(0.86602540378443864676/2)
919 /* 0.5 / cos(pi*(2*i+1)/36) */
920 static const int icos36[9] = {
921 FIXR(0.50190991877167369479),
922 FIXR(0.51763809020504152469), //0
923 FIXR(0.55168895948124587824),
924 FIXR(0.61038729438072803416),
925 FIXR(0.70710678118654752439), //1
926 FIXR(0.87172339781054900991),
927 FIXR(1.18310079157624925896),
928 FIXR(1.93185165257813657349), //2
929 FIXR(5.73685662283492756461),
932 /* 0.5 / cos(pi*(2*i+1)/36) */
933 static const int icos36h[9] = {
934 FIXHR(0.50190991877167369479/2),
935 FIXHR(0.51763809020504152469/2), //0
936 FIXHR(0.55168895948124587824/2),
937 FIXHR(0.61038729438072803416/2),
938 FIXHR(0.70710678118654752439/2), //1
939 FIXHR(0.87172339781054900991/2),
940 FIXHR(1.18310079157624925896/4),
941 FIXHR(1.93185165257813657349/4), //2
942 // FIXHR(5.73685662283492756461),
945 /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
946 cases. */
947 static void imdct12(int *out, int *in)
949 int in0, in1, in2, in3, in4, in5, t1, t2;
951 in0= in[0*3];
952 in1= in[1*3] + in[0*3];
953 in2= in[2*3] + in[1*3];
954 in3= in[3*3] + in[2*3];
955 in4= in[4*3] + in[3*3];
956 in5= in[5*3] + in[4*3];
957 in5 += in3;
958 in3 += in1;
960 in2= MULH(2*in2, C3);
961 in3= MULH(4*in3, C3);
963 t1 = in0 - in4;
964 t2 = MULH(2*(in1 - in5), icos36h[4]);
966 out[ 7]=
967 out[10]= t1 + t2;
968 out[ 1]=
969 out[ 4]= t1 - t2;
971 in0 += in4>>1;
972 in4 = in0 + in2;
973 in5 += 2*in1;
974 in1 = MULH(in5 + in3, icos36h[1]);
975 out[ 8]=
976 out[ 9]= in4 + in1;
977 out[ 2]=
978 out[ 3]= in4 - in1;
980 in0 -= in2;
981 in5 = MULH(2*(in5 - in3), icos36h[7]);
982 out[ 0]=
983 out[ 5]= in0 - in5;
984 out[ 6]=
985 out[11]= in0 + in5;
988 /* cos(pi*i/18) */
989 #define C1 FIXHR(0.98480775301220805936/2)
990 #define C2 FIXHR(0.93969262078590838405/2)
991 #define C3 FIXHR(0.86602540378443864676/2)
992 #define C4 FIXHR(0.76604444311897803520/2)
993 #define C5 FIXHR(0.64278760968653932632/2)
994 #define C6 FIXHR(0.5/2)
995 #define C7 FIXHR(0.34202014332566873304/2)
996 #define C8 FIXHR(0.17364817766693034885/2)
999 /* using Lee like decomposition followed by hand coded 9 points DCT */
1000 static void imdct36(int *out, int *buf, int *in, int *win)
1002 int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
1003 int tmp[18], *tmp1, *in1;
1005 for(i=17;i>=1;i--)
1006 in[i] += in[i-1];
1007 for(i=17;i>=3;i-=2)
1008 in[i] += in[i-2];
1010 for(j=0;j<2;j++) {
1011 tmp1 = tmp + j;
1012 in1 = in + j;
1013 #if 0
1014 //more accurate but slower
1015 int64_t t0, t1, t2, t3;
1016 t2 = in1[2*4] + in1[2*8] - in1[2*2];
1018 t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
1019 t1 = in1[2*0] - in1[2*6];
1020 tmp1[ 6] = t1 - (t2>>1);
1021 tmp1[16] = t1 + t2;
1023 t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
1024 t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
1025 t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
1027 tmp1[10] = (t3 - t0 - t2) >> 32;
1028 tmp1[ 2] = (t3 + t0 + t1) >> 32;
1029 tmp1[14] = (t3 + t2 - t1) >> 32;
1031 tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1032 t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
1033 t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
1034 t0 = MUL64(2*in1[2*3], C3);
1036 t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
1038 tmp1[ 0] = (t2 + t3 + t0) >> 32;
1039 tmp1[12] = (t2 + t1 - t0) >> 32;
1040 tmp1[ 8] = (t3 - t1 - t0) >> 32;
1041 #else
1042 t2 = in1[2*4] + in1[2*8] - in1[2*2];
1044 t3 = in1[2*0] + (in1[2*6]>>1);
1045 t1 = in1[2*0] - in1[2*6];
1046 tmp1[ 6] = t1 - (t2>>1);
1047 tmp1[16] = t1 + t2;
1049 t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
1050 t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
1051 t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
1053 tmp1[10] = t3 - t0 - t2;
1054 tmp1[ 2] = t3 + t0 + t1;
1055 tmp1[14] = t3 + t2 - t1;
1057 tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
1058 t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
1059 t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
1060 t0 = MULH(2*in1[2*3], C3);
1062 t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
1064 tmp1[ 0] = t2 + t3 + t0;
1065 tmp1[12] = t2 + t1 - t0;
1066 tmp1[ 8] = t3 - t1 - t0;
1067 #endif
1070 i = 0;
1071 for(j=0;j<4;j++) {
1072 t0 = tmp[i];
1073 t1 = tmp[i + 2];
1074 s0 = t1 + t0;
1075 s2 = t1 - t0;
1077 t2 = tmp[i + 1];
1078 t3 = tmp[i + 3];
1079 s1 = MULH(2*(t3 + t2), icos36h[j]);
1080 s3 = MULL(t3 - t2, icos36[8 - j], FRAC_BITS);
1082 t0 = s0 + s1;
1083 t1 = s0 - s1;
1084 out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
1085 out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
1086 buf[9 + j] = MULH(t0, win[18 + 9 + j]);
1087 buf[8 - j] = MULH(t0, win[18 + 8 - j]);
1089 t0 = s2 + s3;
1090 t1 = s2 - s3;
1091 out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
1092 out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
1093 buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
1094 buf[ + j] = MULH(t0, win[18 + j]);
1095 i += 4;
1098 s0 = tmp[16];
1099 s1 = MULH(2*tmp[17], icos36h[4]);
1100 t0 = s0 + s1;
1101 t1 = s0 - s1;
1102 out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
1103 out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
1104 buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
1105 buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
1108 /* return the number of decoded frames */
1109 static int mp_decode_layer1(MPADecodeContext *s)
1111 int bound, i, v, n, ch, j, mant;
1112 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
1113 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
1115 if (s->mode == MPA_JSTEREO)
1116 bound = (s->mode_ext + 1) * 4;
1117 else
1118 bound = SBLIMIT;
1120 /* allocation bits */
1121 for(i=0;i<bound;i++) {
1122 for(ch=0;ch<s->nb_channels;ch++) {
1123 allocation[ch][i] = get_bits(&s->gb, 4);
1126 for(i=bound;i<SBLIMIT;i++) {
1127 allocation[0][i] = get_bits(&s->gb, 4);
1130 /* scale factors */
1131 for(i=0;i<bound;i++) {
1132 for(ch=0;ch<s->nb_channels;ch++) {
1133 if (allocation[ch][i])
1134 scale_factors[ch][i] = get_bits(&s->gb, 6);
1137 for(i=bound;i<SBLIMIT;i++) {
1138 if (allocation[0][i]) {
1139 scale_factors[0][i] = get_bits(&s->gb, 6);
1140 scale_factors[1][i] = get_bits(&s->gb, 6);
1144 /* compute samples */
1145 for(j=0;j<12;j++) {
1146 for(i=0;i<bound;i++) {
1147 for(ch=0;ch<s->nb_channels;ch++) {
1148 n = allocation[ch][i];
1149 if (n) {
1150 mant = get_bits(&s->gb, n + 1);
1151 v = l1_unscale(n, mant, scale_factors[ch][i]);
1152 } else {
1153 v = 0;
1155 s->sb_samples[ch][j][i] = v;
1158 for(i=bound;i<SBLIMIT;i++) {
1159 n = allocation[0][i];
1160 if (n) {
1161 mant = get_bits(&s->gb, n + 1);
1162 v = l1_unscale(n, mant, scale_factors[0][i]);
1163 s->sb_samples[0][j][i] = v;
1164 v = l1_unscale(n, mant, scale_factors[1][i]);
1165 s->sb_samples[1][j][i] = v;
1166 } else {
1167 s->sb_samples[0][j][i] = 0;
1168 s->sb_samples[1][j][i] = 0;
1172 return 12;
1175 static int mp_decode_layer2(MPADecodeContext *s)
1177 int sblimit; /* number of used subbands */
1178 const unsigned char *alloc_table;
1179 int table, bit_alloc_bits, i, j, ch, bound, v;
1180 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
1181 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
1182 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
1183 int scale, qindex, bits, steps, k, l, m, b;
1185 /* select decoding table */
1186 table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
1187 s->sample_rate, s->lsf);
1188 sblimit = ff_mpa_sblimit_table[table];
1189 alloc_table = ff_mpa_alloc_tables[table];
1191 if (s->mode == MPA_JSTEREO)
1192 bound = (s->mode_ext + 1) * 4;
1193 else
1194 bound = sblimit;
1196 dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
1198 /* sanity check */
1199 if( bound > sblimit ) bound = sblimit;
1201 /* parse bit allocation */
1202 j = 0;
1203 for(i=0;i<bound;i++) {
1204 bit_alloc_bits = alloc_table[j];
1205 for(ch=0;ch<s->nb_channels;ch++) {
1206 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
1208 j += 1 << bit_alloc_bits;
1210 for(i=bound;i<sblimit;i++) {
1211 bit_alloc_bits = alloc_table[j];
1212 v = get_bits(&s->gb, bit_alloc_bits);
1213 bit_alloc[0][i] = v;
1214 bit_alloc[1][i] = v;
1215 j += 1 << bit_alloc_bits;
1218 /* scale codes */
1219 for(i=0;i<sblimit;i++) {
1220 for(ch=0;ch<s->nb_channels;ch++) {
1221 if (bit_alloc[ch][i])
1222 scale_code[ch][i] = get_bits(&s->gb, 2);
1226 /* scale factors */
1227 for(i=0;i<sblimit;i++) {
1228 for(ch=0;ch<s->nb_channels;ch++) {
1229 if (bit_alloc[ch][i]) {
1230 sf = scale_factors[ch][i];
1231 switch(scale_code[ch][i]) {
1232 default:
1233 case 0:
1234 sf[0] = get_bits(&s->gb, 6);
1235 sf[1] = get_bits(&s->gb, 6);
1236 sf[2] = get_bits(&s->gb, 6);
1237 break;
1238 case 2:
1239 sf[0] = get_bits(&s->gb, 6);
1240 sf[1] = sf[0];
1241 sf[2] = sf[0];
1242 break;
1243 case 1:
1244 sf[0] = get_bits(&s->gb, 6);
1245 sf[2] = get_bits(&s->gb, 6);
1246 sf[1] = sf[0];
1247 break;
1248 case 3:
1249 sf[0] = get_bits(&s->gb, 6);
1250 sf[2] = get_bits(&s->gb, 6);
1251 sf[1] = sf[2];
1252 break;
1258 /* samples */
1259 for(k=0;k<3;k++) {
1260 for(l=0;l<12;l+=3) {
1261 j = 0;
1262 for(i=0;i<bound;i++) {
1263 bit_alloc_bits = alloc_table[j];
1264 for(ch=0;ch<s->nb_channels;ch++) {
1265 b = bit_alloc[ch][i];
1266 if (b) {
1267 scale = scale_factors[ch][i][k];
1268 qindex = alloc_table[j+b];
1269 bits = ff_mpa_quant_bits[qindex];
1270 if (bits < 0) {
1271 /* 3 values at the same time */
1272 v = get_bits(&s->gb, -bits);
1273 steps = ff_mpa_quant_steps[qindex];
1274 s->sb_samples[ch][k * 12 + l + 0][i] =
1275 l2_unscale_group(steps, v % steps, scale);
1276 v = v / steps;
1277 s->sb_samples[ch][k * 12 + l + 1][i] =
1278 l2_unscale_group(steps, v % steps, scale);
1279 v = v / steps;
1280 s->sb_samples[ch][k * 12 + l + 2][i] =
1281 l2_unscale_group(steps, v, scale);
1282 } else {
1283 for(m=0;m<3;m++) {
1284 v = get_bits(&s->gb, bits);
1285 v = l1_unscale(bits - 1, v, scale);
1286 s->sb_samples[ch][k * 12 + l + m][i] = v;
1289 } else {
1290 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1291 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1292 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1295 /* next subband in alloc table */
1296 j += 1 << bit_alloc_bits;
1298 /* XXX: find a way to avoid this duplication of code */
1299 for(i=bound;i<sblimit;i++) {
1300 bit_alloc_bits = alloc_table[j];
1301 b = bit_alloc[0][i];
1302 if (b) {
1303 int mant, scale0, scale1;
1304 scale0 = scale_factors[0][i][k];
1305 scale1 = scale_factors[1][i][k];
1306 qindex = alloc_table[j+b];
1307 bits = ff_mpa_quant_bits[qindex];
1308 if (bits < 0) {
1309 /* 3 values at the same time */
1310 v = get_bits(&s->gb, -bits);
1311 steps = ff_mpa_quant_steps[qindex];
1312 mant = v % steps;
1313 v = v / steps;
1314 s->sb_samples[0][k * 12 + l + 0][i] =
1315 l2_unscale_group(steps, mant, scale0);
1316 s->sb_samples[1][k * 12 + l + 0][i] =
1317 l2_unscale_group(steps, mant, scale1);
1318 mant = v % steps;
1319 v = v / steps;
1320 s->sb_samples[0][k * 12 + l + 1][i] =
1321 l2_unscale_group(steps, mant, scale0);
1322 s->sb_samples[1][k * 12 + l + 1][i] =
1323 l2_unscale_group(steps, mant, scale1);
1324 s->sb_samples[0][k * 12 + l + 2][i] =
1325 l2_unscale_group(steps, v, scale0);
1326 s->sb_samples[1][k * 12 + l + 2][i] =
1327 l2_unscale_group(steps, v, scale1);
1328 } else {
1329 for(m=0;m<3;m++) {
1330 mant = get_bits(&s->gb, bits);
1331 s->sb_samples[0][k * 12 + l + m][i] =
1332 l1_unscale(bits - 1, mant, scale0);
1333 s->sb_samples[1][k * 12 + l + m][i] =
1334 l1_unscale(bits - 1, mant, scale1);
1337 } else {
1338 s->sb_samples[0][k * 12 + l + 0][i] = 0;
1339 s->sb_samples[0][k * 12 + l + 1][i] = 0;
1340 s->sb_samples[0][k * 12 + l + 2][i] = 0;
1341 s->sb_samples[1][k * 12 + l + 0][i] = 0;
1342 s->sb_samples[1][k * 12 + l + 1][i] = 0;
1343 s->sb_samples[1][k * 12 + l + 2][i] = 0;
1345 /* next subband in alloc table */
1346 j += 1 << bit_alloc_bits;
1348 /* fill remaining samples to zero */
1349 for(i=sblimit;i<SBLIMIT;i++) {
1350 for(ch=0;ch<s->nb_channels;ch++) {
1351 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
1352 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
1353 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
1358 return 3 * 12;
1361 static inline void lsf_sf_expand(int *slen,
1362 int sf, int n1, int n2, int n3)
1364 if (n3) {
1365 slen[3] = sf % n3;
1366 sf /= n3;
1367 } else {
1368 slen[3] = 0;
1370 if (n2) {
1371 slen[2] = sf % n2;
1372 sf /= n2;
1373 } else {
1374 slen[2] = 0;
1376 slen[1] = sf % n1;
1377 sf /= n1;
1378 slen[0] = sf;
1381 static void exponents_from_scale_factors(MPADecodeContext *s,
1382 GranuleDef *g,
1383 int16_t *exponents)
1385 const uint8_t *bstab, *pretab;
1386 int len, i, j, k, l, v0, shift, gain, gains[3];
1387 int16_t *exp_ptr;
1389 exp_ptr = exponents;
1390 gain = g->global_gain - 210;
1391 shift = g->scalefac_scale + 1;
1393 bstab = band_size_long[s->sample_rate_index];
1394 pretab = mpa_pretab[g->preflag];
1395 for(i=0;i<g->long_end;i++) {
1396 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
1397 len = bstab[i];
1398 for(j=len;j>0;j--)
1399 *exp_ptr++ = v0;
1402 if (g->short_start < 13) {
1403 bstab = band_size_short[s->sample_rate_index];
1404 gains[0] = gain - (g->subblock_gain[0] << 3);
1405 gains[1] = gain - (g->subblock_gain[1] << 3);
1406 gains[2] = gain - (g->subblock_gain[2] << 3);
1407 k = g->long_end;
1408 for(i=g->short_start;i<13;i++) {
1409 len = bstab[i];
1410 for(l=0;l<3;l++) {
1411 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
1412 for(j=len;j>0;j--)
1413 *exp_ptr++ = v0;
1419 /* handle n = 0 too */
1420 static inline int get_bitsz(GetBitContext *s, int n)
1422 if (n == 0)
1423 return 0;
1424 else
1425 return get_bits(s, n);
1429 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
1430 if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
1431 s->gb= s->in_gb;
1432 s->in_gb.buffer=NULL;
1433 assert((get_bits_count(&s->gb) & 7) == 0);
1434 skip_bits_long(&s->gb, *pos - *end_pos);
1435 *end_pos2=
1436 *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
1437 *pos= get_bits_count(&s->gb);
1441 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
1442 int16_t *exponents, int end_pos2)
1444 int s_index;
1445 int i;
1446 int last_pos, bits_left;
1447 VLC *vlc;
1448 int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
1450 /* low frequencies (called big values) */
1451 s_index = 0;
1452 for(i=0;i<3;i++) {
1453 int j, k, l, linbits;
1454 j = g->region_size[i];
1455 if (j == 0)
1456 continue;
1457 /* select vlc table */
1458 k = g->table_select[i];
1459 l = mpa_huff_data[k][0];
1460 linbits = mpa_huff_data[k][1];
1461 vlc = &huff_vlc[l];
1463 if(!l){
1464 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
1465 s_index += 2*j;
1466 continue;
1469 /* read huffcode and compute each couple */
1470 for(;j>0;j--) {
1471 int exponent, x, y, v;
1472 int pos= get_bits_count(&s->gb);
1474 if (pos >= end_pos){
1475 // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1476 switch_buffer(s, &pos, &end_pos, &end_pos2);
1477 // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
1478 if(pos >= end_pos)
1479 break;
1481 y = get_vlc2(&s->gb, vlc->table, 7, 3);
1483 if(!y){
1484 g->sb_hybrid[s_index ] =
1485 g->sb_hybrid[s_index+1] = 0;
1486 s_index += 2;
1487 continue;
1490 exponent= exponents[s_index];
1492 dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
1493 i, g->region_size[i] - j, x, y, exponent);
1494 if(y&16){
1495 x = y >> 5;
1496 y = y & 0x0f;
1497 if (x < 15){
1498 v = expval_table[ exponent ][ x ];
1499 // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
1500 }else{
1501 x += get_bitsz(&s->gb, linbits);
1502 v = l3_unscale(x, exponent);
1504 if (get_bits1(&s->gb))
1505 v = -v;
1506 g->sb_hybrid[s_index] = v;
1507 if (y < 15){
1508 v = expval_table[ exponent ][ y ];
1509 }else{
1510 y += get_bitsz(&s->gb, linbits);
1511 v = l3_unscale(y, exponent);
1513 if (get_bits1(&s->gb))
1514 v = -v;
1515 g->sb_hybrid[s_index+1] = v;
1516 }else{
1517 x = y >> 5;
1518 y = y & 0x0f;
1519 x += y;
1520 if (x < 15){
1521 v = expval_table[ exponent ][ x ];
1522 }else{
1523 x += get_bitsz(&s->gb, linbits);
1524 v = l3_unscale(x, exponent);
1526 if (get_bits1(&s->gb))
1527 v = -v;
1528 g->sb_hybrid[s_index+!!y] = v;
1529 g->sb_hybrid[s_index+ !y] = 0;
1531 s_index+=2;
1535 /* high frequencies */
1536 vlc = &huff_quad_vlc[g->count1table_select];
1537 last_pos=0;
1538 while (s_index <= 572) {
1539 int pos, code;
1540 pos = get_bits_count(&s->gb);
1541 if (pos >= end_pos) {
1542 if (pos > end_pos2 && last_pos){
1543 /* some encoders generate an incorrect size for this
1544 part. We must go back into the data */
1545 s_index -= 4;
1546 skip_bits_long(&s->gb, last_pos - pos);
1547 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
1548 if(s->error_recognition >= FF_ER_COMPLIANT)
1549 s_index=0;
1550 break;
1552 // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
1553 switch_buffer(s, &pos, &end_pos, &end_pos2);
1554 // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
1555 if(pos >= end_pos)
1556 break;
1558 last_pos= pos;
1560 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
1561 dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
1562 g->sb_hybrid[s_index+0]=
1563 g->sb_hybrid[s_index+1]=
1564 g->sb_hybrid[s_index+2]=
1565 g->sb_hybrid[s_index+3]= 0;
1566 while(code){
1567 static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
1568 int v;
1569 int pos= s_index+idxtab[code];
1570 code ^= 8>>idxtab[code];
1571 v = exp_table[ exponents[pos] ];
1572 // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
1573 if(get_bits1(&s->gb))
1574 v = -v;
1575 g->sb_hybrid[pos] = v;
1577 s_index+=4;
1579 /* skip extension bits */
1580 bits_left = end_pos2 - get_bits_count(&s->gb);
1581 //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
1582 if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
1583 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1584 s_index=0;
1585 }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
1586 av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
1587 s_index=0;
1589 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
1590 skip_bits_long(&s->gb, bits_left);
1592 i= get_bits_count(&s->gb);
1593 switch_buffer(s, &i, &end_pos, &end_pos2);
1595 return 0;
1598 /* Reorder short blocks from bitstream order to interleaved order. It
1599 would be faster to do it in parsing, but the code would be far more
1600 complicated */
1601 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
1603 int i, j, len;
1604 int32_t *ptr, *dst, *ptr1;
1605 int32_t tmp[576];
1607 if (g->block_type != 2)
1608 return;
1610 if (g->switch_point) {
1611 if (s->sample_rate_index != 8) {
1612 ptr = g->sb_hybrid + 36;
1613 } else {
1614 ptr = g->sb_hybrid + 48;
1616 } else {
1617 ptr = g->sb_hybrid;
1620 for(i=g->short_start;i<13;i++) {
1621 len = band_size_short[s->sample_rate_index][i];
1622 ptr1 = ptr;
1623 dst = tmp;
1624 for(j=len;j>0;j--) {
1625 *dst++ = ptr[0*len];
1626 *dst++ = ptr[1*len];
1627 *dst++ = ptr[2*len];
1628 ptr++;
1630 ptr+=2*len;
1631 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1635 #define ISQRT2 FIXR(0.70710678118654752440)
1637 static void compute_stereo(MPADecodeContext *s,
1638 GranuleDef *g0, GranuleDef *g1)
1640 int i, j, k, l;
1641 int32_t v1, v2;
1642 int sf_max, tmp0, tmp1, sf, len, non_zero_found;
1643 int32_t (*is_tab)[16];
1644 int32_t *tab0, *tab1;
1645 int non_zero_found_short[3];
1647 /* intensity stereo */
1648 if (s->mode_ext & MODE_EXT_I_STEREO) {
1649 if (!s->lsf) {
1650 is_tab = is_table;
1651 sf_max = 7;
1652 } else {
1653 is_tab = is_table_lsf[g1->scalefac_compress & 1];
1654 sf_max = 16;
1657 tab0 = g0->sb_hybrid + 576;
1658 tab1 = g1->sb_hybrid + 576;
1660 non_zero_found_short[0] = 0;
1661 non_zero_found_short[1] = 0;
1662 non_zero_found_short[2] = 0;
1663 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1664 for(i = 12;i >= g1->short_start;i--) {
1665 /* for last band, use previous scale factor */
1666 if (i != 11)
1667 k -= 3;
1668 len = band_size_short[s->sample_rate_index][i];
1669 for(l=2;l>=0;l--) {
1670 tab0 -= len;
1671 tab1 -= len;
1672 if (!non_zero_found_short[l]) {
1673 /* test if non zero band. if so, stop doing i-stereo */
1674 for(j=0;j<len;j++) {
1675 if (tab1[j] != 0) {
1676 non_zero_found_short[l] = 1;
1677 goto found1;
1680 sf = g1->scale_factors[k + l];
1681 if (sf >= sf_max)
1682 goto found1;
1684 v1 = is_tab[0][sf];
1685 v2 = is_tab[1][sf];
1686 for(j=0;j<len;j++) {
1687 tmp0 = tab0[j];
1688 tab0[j] = MULL(tmp0, v1, FRAC_BITS);
1689 tab1[j] = MULL(tmp0, v2, FRAC_BITS);
1691 } else {
1692 found1:
1693 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1694 /* lower part of the spectrum : do ms stereo
1695 if enabled */
1696 for(j=0;j<len;j++) {
1697 tmp0 = tab0[j];
1698 tmp1 = tab1[j];
1699 tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1700 tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1707 non_zero_found = non_zero_found_short[0] |
1708 non_zero_found_short[1] |
1709 non_zero_found_short[2];
1711 for(i = g1->long_end - 1;i >= 0;i--) {
1712 len = band_size_long[s->sample_rate_index][i];
1713 tab0 -= len;
1714 tab1 -= len;
1715 /* test if non zero band. if so, stop doing i-stereo */
1716 if (!non_zero_found) {
1717 for(j=0;j<len;j++) {
1718 if (tab1[j] != 0) {
1719 non_zero_found = 1;
1720 goto found2;
1723 /* for last band, use previous scale factor */
1724 k = (i == 21) ? 20 : i;
1725 sf = g1->scale_factors[k];
1726 if (sf >= sf_max)
1727 goto found2;
1728 v1 = is_tab[0][sf];
1729 v2 = is_tab[1][sf];
1730 for(j=0;j<len;j++) {
1731 tmp0 = tab0[j];
1732 tab0[j] = MULL(tmp0, v1, FRAC_BITS);
1733 tab1[j] = MULL(tmp0, v2, FRAC_BITS);
1735 } else {
1736 found2:
1737 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1738 /* lower part of the spectrum : do ms stereo
1739 if enabled */
1740 for(j=0;j<len;j++) {
1741 tmp0 = tab0[j];
1742 tmp1 = tab1[j];
1743 tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1744 tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1749 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1750 /* ms stereo ONLY */
1751 /* NOTE: the 1/sqrt(2) normalization factor is included in the
1752 global gain */
1753 tab0 = g0->sb_hybrid;
1754 tab1 = g1->sb_hybrid;
1755 for(i=0;i<576;i++) {
1756 tmp0 = tab0[i];
1757 tmp1 = tab1[i];
1758 tab0[i] = tmp0 + tmp1;
1759 tab1[i] = tmp0 - tmp1;
1764 static void compute_antialias_integer(MPADecodeContext *s,
1765 GranuleDef *g)
1767 int32_t *ptr, *csa;
1768 int n, i;
1770 /* we antialias only "long" bands */
1771 if (g->block_type == 2) {
1772 if (!g->switch_point)
1773 return;
1774 /* XXX: check this for 8000Hz case */
1775 n = 1;
1776 } else {
1777 n = SBLIMIT - 1;
1780 ptr = g->sb_hybrid + 18;
1781 for(i = n;i > 0;i--) {
1782 int tmp0, tmp1, tmp2;
1783 csa = &csa_table[0][0];
1784 #define INT_AA(j) \
1785 tmp0 = ptr[-1-j];\
1786 tmp1 = ptr[ j];\
1787 tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
1788 ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
1789 ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
1791 INT_AA(0)
1792 INT_AA(1)
1793 INT_AA(2)
1794 INT_AA(3)
1795 INT_AA(4)
1796 INT_AA(5)
1797 INT_AA(6)
1798 INT_AA(7)
1800 ptr += 18;
1804 static void compute_antialias_float(MPADecodeContext *s,
1805 GranuleDef *g)
1807 int32_t *ptr;
1808 int n, i;
1810 /* we antialias only "long" bands */
1811 if (g->block_type == 2) {
1812 if (!g->switch_point)
1813 return;
1814 /* XXX: check this for 8000Hz case */
1815 n = 1;
1816 } else {
1817 n = SBLIMIT - 1;
1820 ptr = g->sb_hybrid + 18;
1821 for(i = n;i > 0;i--) {
1822 float tmp0, tmp1;
1823 float *csa = &csa_table_float[0][0];
1824 #define FLOAT_AA(j)\
1825 tmp0= ptr[-1-j];\
1826 tmp1= ptr[ j];\
1827 ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
1828 ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
1830 FLOAT_AA(0)
1831 FLOAT_AA(1)
1832 FLOAT_AA(2)
1833 FLOAT_AA(3)
1834 FLOAT_AA(4)
1835 FLOAT_AA(5)
1836 FLOAT_AA(6)
1837 FLOAT_AA(7)
1839 ptr += 18;
1843 static void compute_imdct(MPADecodeContext *s,
1844 GranuleDef *g,
1845 int32_t *sb_samples,
1846 int32_t *mdct_buf)
1848 int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
1849 int32_t out2[12];
1850 int i, j, mdct_long_end, v, sblimit;
1852 /* find last non zero block */
1853 ptr = g->sb_hybrid + 576;
1854 ptr1 = g->sb_hybrid + 2 * 18;
1855 while (ptr >= ptr1) {
1856 ptr -= 6;
1857 v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
1858 if (v != 0)
1859 break;
1861 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1863 if (g->block_type == 2) {
1864 /* XXX: check for 8000 Hz */
1865 if (g->switch_point)
1866 mdct_long_end = 2;
1867 else
1868 mdct_long_end = 0;
1869 } else {
1870 mdct_long_end = sblimit;
1873 buf = mdct_buf;
1874 ptr = g->sb_hybrid;
1875 for(j=0;j<mdct_long_end;j++) {
1876 /* apply window & overlap with previous buffer */
1877 out_ptr = sb_samples + j;
1878 /* select window */
1879 if (g->switch_point && j < 2)
1880 win1 = mdct_win[0];
1881 else
1882 win1 = mdct_win[g->block_type];
1883 /* select frequency inversion */
1884 win = win1 + ((4 * 36) & -(j & 1));
1885 imdct36(out_ptr, buf, ptr, win);
1886 out_ptr += 18*SBLIMIT;
1887 ptr += 18;
1888 buf += 18;
1890 for(j=mdct_long_end;j<sblimit;j++) {
1891 /* select frequency inversion */
1892 win = mdct_win[2] + ((4 * 36) & -(j & 1));
1893 out_ptr = sb_samples + j;
1895 for(i=0; i<6; i++){
1896 *out_ptr = buf[i];
1897 out_ptr += SBLIMIT;
1899 imdct12(out2, ptr + 0);
1900 for(i=0;i<6;i++) {
1901 *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
1902 buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
1903 out_ptr += SBLIMIT;
1905 imdct12(out2, ptr + 1);
1906 for(i=0;i<6;i++) {
1907 *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
1908 buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
1909 out_ptr += SBLIMIT;
1911 imdct12(out2, ptr + 2);
1912 for(i=0;i<6;i++) {
1913 buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
1914 buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
1915 buf[i + 6*2] = 0;
1917 ptr += 18;
1918 buf += 18;
1920 /* zero bands */
1921 for(j=sblimit;j<SBLIMIT;j++) {
1922 /* overlap */
1923 out_ptr = sb_samples + j;
1924 for(i=0;i<18;i++) {
1925 *out_ptr = buf[i];
1926 buf[i] = 0;
1927 out_ptr += SBLIMIT;
1929 buf += 18;
1933 /* main layer3 decoding function */
1934 static int mp_decode_layer3(MPADecodeContext *s)
1936 int nb_granules, main_data_begin, private_bits;
1937 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1938 GranuleDef granules[2][2], *g;
1939 int16_t exponents[576];
1941 /* read side info */
1942 if (s->lsf) {
1943 main_data_begin = get_bits(&s->gb, 8);
1944 private_bits = get_bits(&s->gb, s->nb_channels);
1945 nb_granules = 1;
1946 } else {
1947 main_data_begin = get_bits(&s->gb, 9);
1948 if (s->nb_channels == 2)
1949 private_bits = get_bits(&s->gb, 3);
1950 else
1951 private_bits = get_bits(&s->gb, 5);
1952 nb_granules = 2;
1953 for(ch=0;ch<s->nb_channels;ch++) {
1954 granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
1955 granules[ch][1].scfsi = get_bits(&s->gb, 4);
1959 for(gr=0;gr<nb_granules;gr++) {
1960 for(ch=0;ch<s->nb_channels;ch++) {
1961 dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
1962 g = &granules[ch][gr];
1963 g->part2_3_length = get_bits(&s->gb, 12);
1964 g->big_values = get_bits(&s->gb, 9);
1965 if(g->big_values > 288){
1966 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
1967 return -1;
1970 g->global_gain = get_bits(&s->gb, 8);
1971 /* if MS stereo only is selected, we precompute the
1972 1/sqrt(2) renormalization factor */
1973 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
1974 MODE_EXT_MS_STEREO)
1975 g->global_gain -= 2;
1976 if (s->lsf)
1977 g->scalefac_compress = get_bits(&s->gb, 9);
1978 else
1979 g->scalefac_compress = get_bits(&s->gb, 4);
1980 blocksplit_flag = get_bits1(&s->gb);
1981 if (blocksplit_flag) {
1982 g->block_type = get_bits(&s->gb, 2);
1983 if (g->block_type == 0){
1984 av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
1985 return -1;
1987 g->switch_point = get_bits1(&s->gb);
1988 for(i=0;i<2;i++)
1989 g->table_select[i] = get_bits(&s->gb, 5);
1990 for(i=0;i<3;i++)
1991 g->subblock_gain[i] = get_bits(&s->gb, 3);
1992 ff_init_short_region(s, g);
1993 } else {
1994 int region_address1, region_address2;
1995 g->block_type = 0;
1996 g->switch_point = 0;
1997 for(i=0;i<3;i++)
1998 g->table_select[i] = get_bits(&s->gb, 5);
1999 /* compute huffman coded region sizes */
2000 region_address1 = get_bits(&s->gb, 4);
2001 region_address2 = get_bits(&s->gb, 3);
2002 dprintf(s->avctx, "region1=%d region2=%d\n",
2003 region_address1, region_address2);
2004 ff_init_long_region(s, g, region_address1, region_address2);
2006 ff_region_offset2size(g);
2007 ff_compute_band_indexes(s, g);
2009 g->preflag = 0;
2010 if (!s->lsf)
2011 g->preflag = get_bits1(&s->gb);
2012 g->scalefac_scale = get_bits1(&s->gb);
2013 g->count1table_select = get_bits1(&s->gb);
2014 dprintf(s->avctx, "block_type=%d switch_point=%d\n",
2015 g->block_type, g->switch_point);
2019 if (!s->adu_mode) {
2020 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
2021 assert((get_bits_count(&s->gb) & 7) == 0);
2022 /* now we get bits from the main_data_begin offset */
2023 dprintf(s->avctx, "seekback: %d\n", main_data_begin);
2024 //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
2026 memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
2027 s->in_gb= s->gb;
2028 init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
2029 skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
2032 for(gr=0;gr<nb_granules;gr++) {
2033 for(ch=0;ch<s->nb_channels;ch++) {
2034 g = &granules[ch][gr];
2035 if(get_bits_count(&s->gb)<0){
2036 av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
2037 main_data_begin, s->last_buf_size, gr);
2038 skip_bits_long(&s->gb, g->part2_3_length);
2039 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
2040 if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
2041 skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
2042 s->gb= s->in_gb;
2043 s->in_gb.buffer=NULL;
2045 continue;
2048 bits_pos = get_bits_count(&s->gb);
2050 if (!s->lsf) {
2051 uint8_t *sc;
2052 int slen, slen1, slen2;
2054 /* MPEG1 scale factors */
2055 slen1 = slen_table[0][g->scalefac_compress];
2056 slen2 = slen_table[1][g->scalefac_compress];
2057 dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
2058 if (g->block_type == 2) {
2059 n = g->switch_point ? 17 : 18;
2060 j = 0;
2061 if(slen1){
2062 for(i=0;i<n;i++)
2063 g->scale_factors[j++] = get_bits(&s->gb, slen1);
2064 }else{
2065 for(i=0;i<n;i++)
2066 g->scale_factors[j++] = 0;
2068 if(slen2){
2069 for(i=0;i<18;i++)
2070 g->scale_factors[j++] = get_bits(&s->gb, slen2);
2071 for(i=0;i<3;i++)
2072 g->scale_factors[j++] = 0;
2073 }else{
2074 for(i=0;i<21;i++)
2075 g->scale_factors[j++] = 0;
2077 } else {
2078 sc = granules[ch][0].scale_factors;
2079 j = 0;
2080 for(k=0;k<4;k++) {
2081 n = (k == 0 ? 6 : 5);
2082 if ((g->scfsi & (0x8 >> k)) == 0) {
2083 slen = (k < 2) ? slen1 : slen2;
2084 if(slen){
2085 for(i=0;i<n;i++)
2086 g->scale_factors[j++] = get_bits(&s->gb, slen);
2087 }else{
2088 for(i=0;i<n;i++)
2089 g->scale_factors[j++] = 0;
2091 } else {
2092 /* simply copy from last granule */
2093 for(i=0;i<n;i++) {
2094 g->scale_factors[j] = sc[j];
2095 j++;
2099 g->scale_factors[j++] = 0;
2101 } else {
2102 int tindex, tindex2, slen[4], sl, sf;
2104 /* LSF scale factors */
2105 if (g->block_type == 2) {
2106 tindex = g->switch_point ? 2 : 1;
2107 } else {
2108 tindex = 0;
2110 sf = g->scalefac_compress;
2111 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
2112 /* intensity stereo case */
2113 sf >>= 1;
2114 if (sf < 180) {
2115 lsf_sf_expand(slen, sf, 6, 6, 0);
2116 tindex2 = 3;
2117 } else if (sf < 244) {
2118 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
2119 tindex2 = 4;
2120 } else {
2121 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
2122 tindex2 = 5;
2124 } else {
2125 /* normal case */
2126 if (sf < 400) {
2127 lsf_sf_expand(slen, sf, 5, 4, 4);
2128 tindex2 = 0;
2129 } else if (sf < 500) {
2130 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
2131 tindex2 = 1;
2132 } else {
2133 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
2134 tindex2 = 2;
2135 g->preflag = 1;
2139 j = 0;
2140 for(k=0;k<4;k++) {
2141 n = lsf_nsf_table[tindex2][tindex][k];
2142 sl = slen[k];
2143 if(sl){
2144 for(i=0;i<n;i++)
2145 g->scale_factors[j++] = get_bits(&s->gb, sl);
2146 }else{
2147 for(i=0;i<n;i++)
2148 g->scale_factors[j++] = 0;
2151 /* XXX: should compute exact size */
2152 for(;j<40;j++)
2153 g->scale_factors[j] = 0;
2156 exponents_from_scale_factors(s, g, exponents);
2158 /* read Huffman coded residue */
2159 huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
2160 } /* ch */
2162 if (s->nb_channels == 2)
2163 compute_stereo(s, &granules[0][gr], &granules[1][gr]);
2165 for(ch=0;ch<s->nb_channels;ch++) {
2166 g = &granules[ch][gr];
2168 reorder_block(s, g);
2169 s->compute_antialias(s, g);
2170 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
2172 } /* gr */
2173 if(get_bits_count(&s->gb)<0)
2174 skip_bits_long(&s->gb, -get_bits_count(&s->gb));
2175 return nb_granules * 18;
2178 static int mp_decode_frame(MPADecodeContext *s,
2179 OUT_INT *samples, const uint8_t *buf, int buf_size)
2181 int i, nb_frames, ch;
2182 OUT_INT *samples_ptr;
2184 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
2186 /* skip error protection field */
2187 if (s->error_protection)
2188 skip_bits(&s->gb, 16);
2190 dprintf(s->avctx, "frame %d:\n", s->frame_count);
2191 switch(s->layer) {
2192 case 1:
2193 s->avctx->frame_size = 384;
2194 nb_frames = mp_decode_layer1(s);
2195 break;
2196 case 2:
2197 s->avctx->frame_size = 1152;
2198 nb_frames = mp_decode_layer2(s);
2199 break;
2200 case 3:
2201 s->avctx->frame_size = s->lsf ? 576 : 1152;
2202 default:
2203 nb_frames = mp_decode_layer3(s);
2205 s->last_buf_size=0;
2206 if(s->in_gb.buffer){
2207 align_get_bits(&s->gb);
2208 i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
2209 if(i >= 0 && i <= BACKSTEP_SIZE){
2210 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
2211 s->last_buf_size=i;
2212 }else
2213 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
2214 s->gb= s->in_gb;
2215 s->in_gb.buffer= NULL;
2218 align_get_bits(&s->gb);
2219 assert((get_bits_count(&s->gb) & 7) == 0);
2220 i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
2222 if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
2223 if(i<0)
2224 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
2225 i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
2227 assert(i <= buf_size - HEADER_SIZE && i>= 0);
2228 memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
2229 s->last_buf_size += i;
2231 break;
2234 /* apply the synthesis filter */
2235 for(ch=0;ch<s->nb_channels;ch++) {
2236 samples_ptr = samples + ch;
2237 for(i=0;i<nb_frames;i++) {
2238 ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
2239 window, &s->dither_state,
2240 samples_ptr, s->nb_channels,
2241 s->sb_samples[ch][i]);
2242 samples_ptr += 32 * s->nb_channels;
2246 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
2249 static int decode_frame(AVCodecContext * avctx,
2250 void *data, int *data_size,
2251 AVPacket *avpkt)
2253 const uint8_t *buf = avpkt->data;
2254 int buf_size = avpkt->size;
2255 MPADecodeContext *s = avctx->priv_data;
2256 uint32_t header;
2257 int out_size;
2258 OUT_INT *out_samples = data;
2260 if(buf_size < HEADER_SIZE)
2261 return -1;
2263 header = AV_RB32(buf);
2264 if(ff_mpa_check_header(header) < 0){
2265 av_log(avctx, AV_LOG_ERROR, "Header missing\n");
2266 return -1;
2269 if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
2270 /* free format: prepare to compute frame size */
2271 s->frame_size = -1;
2272 return -1;
2274 /* update codec info */
2275 avctx->channels = s->nb_channels;
2276 avctx->bit_rate = s->bit_rate;
2277 avctx->sub_id = s->layer;
2279 if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
2280 return -1;
2281 *data_size = 0;
2283 if(s->frame_size<=0 || s->frame_size > buf_size){
2284 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
2285 return -1;
2286 }else if(s->frame_size < buf_size){
2287 av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
2288 buf_size= s->frame_size;
2291 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2292 if(out_size>=0){
2293 *data_size = out_size;
2294 avctx->sample_rate = s->sample_rate;
2295 //FIXME maybe move the other codec info stuff from above here too
2296 }else
2297 av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
2298 s->frame_size = 0;
2299 return buf_size;
2302 static void flush(AVCodecContext *avctx){
2303 MPADecodeContext *s = avctx->priv_data;
2304 memset(s->synth_buf, 0, sizeof(s->synth_buf));
2305 s->last_buf_size= 0;
2308 #if CONFIG_MP3ADU_DECODER
2309 static int decode_frame_adu(AVCodecContext * avctx,
2310 void *data, int *data_size,
2311 AVPacket *avpkt)
2313 const uint8_t *buf = avpkt->data;
2314 int buf_size = avpkt->size;
2315 MPADecodeContext *s = avctx->priv_data;
2316 uint32_t header;
2317 int len, out_size;
2318 OUT_INT *out_samples = data;
2320 len = buf_size;
2322 // Discard too short frames
2323 if (buf_size < HEADER_SIZE) {
2324 *data_size = 0;
2325 return buf_size;
2329 if (len > MPA_MAX_CODED_FRAME_SIZE)
2330 len = MPA_MAX_CODED_FRAME_SIZE;
2332 // Get header and restore sync word
2333 header = AV_RB32(buf) | 0xffe00000;
2335 if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
2336 *data_size = 0;
2337 return buf_size;
2340 ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
2341 /* update codec info */
2342 avctx->sample_rate = s->sample_rate;
2343 avctx->channels = s->nb_channels;
2344 avctx->bit_rate = s->bit_rate;
2345 avctx->sub_id = s->layer;
2347 s->frame_size = len;
2349 if (avctx->parse_only) {
2350 out_size = buf_size;
2351 } else {
2352 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
2355 *data_size = out_size;
2356 return buf_size;
2358 #endif /* CONFIG_MP3ADU_DECODER */
2360 #if CONFIG_MP3ON4_DECODER
2363 * Context for MP3On4 decoder
2365 typedef struct MP3On4DecodeContext {
2366 int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
2367 int syncword; ///< syncword patch
2368 const uint8_t *coff; ///< channels offsets in output buffer
2369 MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
2370 } MP3On4DecodeContext;
2372 #include "mpeg4audio.h"
2374 /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
2375 static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
2376 /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
2377 static const uint8_t chan_offset[8][5] = {
2378 {0},
2379 {0}, // C
2380 {0}, // FLR
2381 {2,0}, // C FLR
2382 {2,0,3}, // C FLR BS
2383 {4,0,2}, // C FLR BLRS
2384 {4,0,2,5}, // C FLR BLRS LFE
2385 {4,0,2,6,5}, // C FLR BLRS BLR LFE
2389 static int decode_init_mp3on4(AVCodecContext * avctx)
2391 MP3On4DecodeContext *s = avctx->priv_data;
2392 MPEG4AudioConfig cfg;
2393 int i;
2395 if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
2396 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
2397 return -1;
2400 ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
2401 if (!cfg.chan_config || cfg.chan_config > 7) {
2402 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
2403 return -1;
2405 s->frames = mp3Frames[cfg.chan_config];
2406 s->coff = chan_offset[cfg.chan_config];
2407 avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
2409 if (cfg.sample_rate < 16000)
2410 s->syncword = 0xffe00000;
2411 else
2412 s->syncword = 0xfff00000;
2414 /* Init the first mp3 decoder in standard way, so that all tables get builded
2415 * We replace avctx->priv_data with the context of the first decoder so that
2416 * decode_init() does not have to be changed.
2417 * Other decoders will be initialized here copying data from the first context
2419 // Allocate zeroed memory for the first decoder context
2420 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
2421 // Put decoder context in place to make init_decode() happy
2422 avctx->priv_data = s->mp3decctx[0];
2423 decode_init(avctx);
2424 // Restore mp3on4 context pointer
2425 avctx->priv_data = s;
2426 s->mp3decctx[0]->adu_mode = 1; // Set adu mode
2428 /* Create a separate codec/context for each frame (first is already ok).
2429 * Each frame is 1 or 2 channels - up to 5 frames allowed
2431 for (i = 1; i < s->frames; i++) {
2432 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
2433 s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
2434 s->mp3decctx[i]->adu_mode = 1;
2435 s->mp3decctx[i]->avctx = avctx;
2438 return 0;
2442 static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
2444 MP3On4DecodeContext *s = avctx->priv_data;
2445 int i;
2447 for (i = 0; i < s->frames; i++)
2448 if (s->mp3decctx[i])
2449 av_free(s->mp3decctx[i]);
2451 return 0;
2455 static int decode_frame_mp3on4(AVCodecContext * avctx,
2456 void *data, int *data_size,
2457 AVPacket *avpkt)
2459 const uint8_t *buf = avpkt->data;
2460 int buf_size = avpkt->size;
2461 MP3On4DecodeContext *s = avctx->priv_data;
2462 MPADecodeContext *m;
2463 int fsize, len = buf_size, out_size = 0;
2464 uint32_t header;
2465 OUT_INT *out_samples = data;
2466 OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
2467 OUT_INT *outptr, *bp;
2468 int fr, j, n;
2470 if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
2471 return -1;
2473 *data_size = 0;
2474 // Discard too short frames
2475 if (buf_size < HEADER_SIZE)
2476 return -1;
2478 // If only one decoder interleave is not needed
2479 outptr = s->frames == 1 ? out_samples : decoded_buf;
2481 avctx->bit_rate = 0;
2483 for (fr = 0; fr < s->frames; fr++) {
2484 fsize = AV_RB16(buf) >> 4;
2485 fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
2486 m = s->mp3decctx[fr];
2487 assert (m != NULL);
2489 header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
2491 if (ff_mpa_check_header(header) < 0) // Bad header, discard block
2492 break;
2494 ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
2495 out_size += mp_decode_frame(m, outptr, buf, fsize);
2496 buf += fsize;
2497 len -= fsize;
2499 if(s->frames > 1) {
2500 n = m->avctx->frame_size*m->nb_channels;
2501 /* interleave output data */
2502 bp = out_samples + s->coff[fr];
2503 if(m->nb_channels == 1) {
2504 for(j = 0; j < n; j++) {
2505 *bp = decoded_buf[j];
2506 bp += avctx->channels;
2508 } else {
2509 for(j = 0; j < n; j++) {
2510 bp[0] = decoded_buf[j++];
2511 bp[1] = decoded_buf[j];
2512 bp += avctx->channels;
2516 avctx->bit_rate += m->bit_rate;
2519 /* update codec info */
2520 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
2522 *data_size = out_size;
2523 return buf_size;
2525 #endif /* CONFIG_MP3ON4_DECODER */
2527 #if CONFIG_MP1_DECODER
2528 AVCodec mp1_decoder =
2530 "mp1",
2531 CODEC_TYPE_AUDIO,
2532 CODEC_ID_MP1,
2533 sizeof(MPADecodeContext),
2534 decode_init,
2535 NULL,
2536 NULL,
2537 decode_frame,
2538 CODEC_CAP_PARSE_ONLY,
2539 .flush= flush,
2540 .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
2542 #endif
2543 #if CONFIG_MP2_DECODER
2544 AVCodec mp2_decoder =
2546 "mp2",
2547 CODEC_TYPE_AUDIO,
2548 CODEC_ID_MP2,
2549 sizeof(MPADecodeContext),
2550 decode_init,
2551 NULL,
2552 NULL,
2553 decode_frame,
2554 CODEC_CAP_PARSE_ONLY,
2555 .flush= flush,
2556 .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
2558 #endif
2559 #if CONFIG_MP3_DECODER
2560 AVCodec mp3_decoder =
2562 "mp3",
2563 CODEC_TYPE_AUDIO,
2564 CODEC_ID_MP3,
2565 sizeof(MPADecodeContext),
2566 decode_init,
2567 NULL,
2568 NULL,
2569 decode_frame,
2570 CODEC_CAP_PARSE_ONLY,
2571 .flush= flush,
2572 .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
2574 #endif
2575 #if CONFIG_MP3ADU_DECODER
2576 AVCodec mp3adu_decoder =
2578 "mp3adu",
2579 CODEC_TYPE_AUDIO,
2580 CODEC_ID_MP3ADU,
2581 sizeof(MPADecodeContext),
2582 decode_init,
2583 NULL,
2584 NULL,
2585 decode_frame_adu,
2586 CODEC_CAP_PARSE_ONLY,
2587 .flush= flush,
2588 .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
2590 #endif
2591 #if CONFIG_MP3ON4_DECODER
2592 AVCodec mp3on4_decoder =
2594 "mp3on4",
2595 CODEC_TYPE_AUDIO,
2596 CODEC_ID_MP3ON4,
2597 sizeof(MP3On4DecodeContext),
2598 decode_init_mp3on4,
2599 NULL,
2600 decode_close_mp3on4,
2601 decode_frame_mp3on4,
2602 .flush= flush,
2603 .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
2605 #endif