Add Speex support to the Ogg muxer.
[FFMpeg-mirror/lagarith.git] / libavcodec / aac.c
blob53877409719a9d95e84ea3123669b1661a58ec08
1 /*
2 * AAC decoder
3 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/aac.c
25 * AAC decoder
26 * @author Oded Shimon ( ods15 ods15 dyndns org )
27 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
31 * supported tools
33 * Support? Name
34 * N (code in SoC repo) gain control
35 * Y block switching
36 * Y window shapes - standard
37 * N window shapes - Low Delay
38 * Y filterbank - standard
39 * N (code in SoC repo) filterbank - Scalable Sample Rate
40 * Y Temporal Noise Shaping
41 * N (code in SoC repo) Long Term Prediction
42 * Y intensity stereo
43 * Y channel coupling
44 * Y frequency domain prediction
45 * Y Perceptual Noise Substitution
46 * Y Mid/Side stereo
47 * N Scalable Inverse AAC Quantization
48 * N Frequency Selective Switch
49 * N upsampling filter
50 * Y quantization & coding - AAC
51 * N quantization & coding - TwinVQ
52 * N quantization & coding - BSAC
53 * N AAC Error Resilience tools
54 * N Error Resilience payload syntax
55 * N Error Protection tool
56 * N CELP
57 * N Silence Compression
58 * N HVXC
59 * N HVXC 4kbits/s VR
60 * N Structured Audio tools
61 * N Structured Audio Sample Bank Format
62 * N MIDI
63 * N Harmonic and Individual Lines plus Noise
64 * N Text-To-Speech Interface
65 * N (in progress) Spectral Band Replication
66 * Y (not in this code) Layer-1
67 * Y (not in this code) Layer-2
68 * Y (not in this code) Layer-3
69 * N SinuSoidal Coding (Transient, Sinusoid, Noise)
70 * N (planned) Parametric Stereo
71 * N Direct Stream Transfer
73 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
74 * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
75 Parametric Stereo.
79 #include "avcodec.h"
80 #include "internal.h"
81 #include "get_bits.h"
82 #include "dsputil.h"
83 #include "lpc.h"
85 #include "aac.h"
86 #include "aactab.h"
87 #include "aacdectab.h"
88 #include "mpeg4audio.h"
89 #include "aac_parser.h"
91 #include <assert.h>
92 #include <errno.h>
93 #include <math.h>
94 #include <string.h>
96 union float754 {
97 float f;
98 uint32_t i;
101 static VLC vlc_scalefactors;
102 static VLC vlc_spectral[11];
105 static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
107 if (ac->tag_che_map[type][elem_id]) {
108 return ac->tag_che_map[type][elem_id];
110 if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) {
111 return NULL;
113 switch (ac->m4ac.chan_config) {
114 case 7:
115 if (ac->tags_mapped == 3 && type == TYPE_CPE) {
116 ac->tags_mapped++;
117 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
119 case 6:
120 /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
121 instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
122 encountered such a stream, transfer the LFE[0] element to SCE[1] */
123 if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
124 ac->tags_mapped++;
125 return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
127 case 5:
128 if (ac->tags_mapped == 2 && type == TYPE_CPE) {
129 ac->tags_mapped++;
130 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
132 case 4:
133 if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
134 ac->tags_mapped++;
135 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
137 case 3:
138 case 2:
139 if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
140 ac->tags_mapped++;
141 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
142 } else if (ac->m4ac.chan_config == 2) {
143 return NULL;
145 case 1:
146 if (!ac->tags_mapped && type == TYPE_SCE) {
147 ac->tags_mapped++;
148 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
150 default:
151 return NULL;
156 * Check for the channel element in the current channel position configuration.
157 * If it exists, make sure the appropriate element is allocated and map the
158 * channel order to match the internal FFmpeg channel layout.
160 * @param che_pos current channel position configuration
161 * @param type channel element type
162 * @param id channel element id
163 * @param channels count of the number of channels in the configuration
165 * @return Returns error status. 0 - OK, !0 - error
167 static int che_configure(AACContext *ac,
168 enum ChannelPosition che_pos[4][MAX_ELEM_ID],
169 int type, int id,
170 int *channels)
172 if (che_pos[type][id]) {
173 if (!ac->che[type][id] && !(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
174 return AVERROR(ENOMEM);
175 if (type != TYPE_CCE) {
176 ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
177 if (type == TYPE_CPE) {
178 ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
181 } else
182 av_freep(&ac->che[type][id]);
183 return 0;
187 * Configure output channel order based on the current program configuration element.
189 * @param che_pos current channel position configuration
190 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
192 * @return Returns error status. 0 - OK, !0 - error
194 static int output_configure(AACContext *ac,
195 enum ChannelPosition che_pos[4][MAX_ELEM_ID],
196 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
197 int channel_config)
199 AVCodecContext *avctx = ac->avccontext;
200 int i, type, channels = 0, ret;
202 memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
204 if (channel_config) {
205 for (i = 0; i < tags_per_config[channel_config]; i++) {
206 if ((ret = che_configure(ac, che_pos,
207 aac_channel_layout_map[channel_config - 1][i][0],
208 aac_channel_layout_map[channel_config - 1][i][1],
209 &channels)))
210 return ret;
213 memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
214 ac->tags_mapped = 0;
216 avctx->channel_layout = aac_channel_layout[channel_config - 1];
217 } else {
218 /* Allocate or free elements depending on if they are in the
219 * current program configuration.
221 * Set up default 1:1 output mapping.
223 * For a 5.1 stream the output order will be:
224 * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
227 for (i = 0; i < MAX_ELEM_ID; i++) {
228 for (type = 0; type < 4; type++) {
229 if ((ret = che_configure(ac, che_pos, type, i, &channels)))
230 return ret;
234 memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
235 ac->tags_mapped = 4 * MAX_ELEM_ID;
237 avctx->channel_layout = 0;
240 avctx->channels = channels;
242 ac->output_configured = 1;
244 return 0;
248 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
250 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
251 * @param sce_map mono (Single Channel Element) map
252 * @param type speaker type/position for these channels
254 static void decode_channel_map(enum ChannelPosition *cpe_map,
255 enum ChannelPosition *sce_map,
256 enum ChannelPosition type,
257 GetBitContext *gb, int n)
259 while (n--) {
260 enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
261 map[get_bits(gb, 4)] = type;
266 * Decode program configuration element; reference: table 4.2.
268 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
270 * @return Returns error status. 0 - OK, !0 - error
272 static int decode_pce(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
273 GetBitContext *gb)
275 int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
277 skip_bits(gb, 2); // object_type
279 sampling_index = get_bits(gb, 4);
280 if (ac->m4ac.sampling_index != sampling_index)
281 av_log(ac->avccontext, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
283 num_front = get_bits(gb, 4);
284 num_side = get_bits(gb, 4);
285 num_back = get_bits(gb, 4);
286 num_lfe = get_bits(gb, 2);
287 num_assoc_data = get_bits(gb, 3);
288 num_cc = get_bits(gb, 4);
290 if (get_bits1(gb))
291 skip_bits(gb, 4); // mono_mixdown_tag
292 if (get_bits1(gb))
293 skip_bits(gb, 4); // stereo_mixdown_tag
295 if (get_bits1(gb))
296 skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
298 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
299 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
300 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
301 decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
303 skip_bits_long(gb, 4 * num_assoc_data);
305 decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
307 align_get_bits(gb);
309 /* comment field, first byte is length */
310 skip_bits_long(gb, 8 * get_bits(gb, 8));
311 return 0;
315 * Set up channel positions based on a default channel configuration
316 * as specified in table 1.17.
318 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
320 * @return Returns error status. 0 - OK, !0 - error
322 static int set_default_channel_config(AACContext *ac,
323 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
324 int channel_config)
326 if (channel_config < 1 || channel_config > 7) {
327 av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
328 channel_config);
329 return -1;
332 /* default channel configurations:
334 * 1ch : front center (mono)
335 * 2ch : L + R (stereo)
336 * 3ch : front center + L + R
337 * 4ch : front center + L + R + back center
338 * 5ch : front center + L + R + back stereo
339 * 6ch : front center + L + R + back stereo + LFE
340 * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
343 if (channel_config != 2)
344 new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
345 if (channel_config > 1)
346 new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
347 if (channel_config == 4)
348 new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
349 if (channel_config > 4)
350 new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
351 = AAC_CHANNEL_BACK; // back stereo
352 if (channel_config > 5)
353 new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
354 if (channel_config == 7)
355 new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
357 return 0;
361 * Decode GA "General Audio" specific configuration; reference: table 4.1.
363 * @return Returns error status. 0 - OK, !0 - error
365 static int decode_ga_specific_config(AACContext *ac, GetBitContext *gb,
366 int channel_config)
368 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
369 int extension_flag, ret;
371 if (get_bits1(gb)) { // frameLengthFlag
372 av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
373 return -1;
376 if (get_bits1(gb)) // dependsOnCoreCoder
377 skip_bits(gb, 14); // coreCoderDelay
378 extension_flag = get_bits1(gb);
380 if (ac->m4ac.object_type == AOT_AAC_SCALABLE ||
381 ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
382 skip_bits(gb, 3); // layerNr
384 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
385 if (channel_config == 0) {
386 skip_bits(gb, 4); // element_instance_tag
387 if ((ret = decode_pce(ac, new_che_pos, gb)))
388 return ret;
389 } else {
390 if ((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
391 return ret;
393 if ((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config)))
394 return ret;
396 if (extension_flag) {
397 switch (ac->m4ac.object_type) {
398 case AOT_ER_BSAC:
399 skip_bits(gb, 5); // numOfSubFrame
400 skip_bits(gb, 11); // layer_length
401 break;
402 case AOT_ER_AAC_LC:
403 case AOT_ER_AAC_LTP:
404 case AOT_ER_AAC_SCALABLE:
405 case AOT_ER_AAC_LD:
406 skip_bits(gb, 3); /* aacSectionDataResilienceFlag
407 * aacScalefactorDataResilienceFlag
408 * aacSpectralDataResilienceFlag
410 break;
412 skip_bits1(gb); // extensionFlag3 (TBD in version 3)
414 return 0;
418 * Decode audio specific configuration; reference: table 1.13.
420 * @param data pointer to AVCodecContext extradata
421 * @param data_size size of AVCCodecContext extradata
423 * @return Returns error status. 0 - OK, !0 - error
425 static int decode_audio_specific_config(AACContext *ac, void *data,
426 int data_size)
428 GetBitContext gb;
429 int i;
431 init_get_bits(&gb, data, data_size * 8);
433 if ((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
434 return -1;
435 if (ac->m4ac.sampling_index > 12) {
436 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
437 return -1;
440 skip_bits_long(&gb, i);
442 switch (ac->m4ac.object_type) {
443 case AOT_AAC_MAIN:
444 case AOT_AAC_LC:
445 if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
446 return -1;
447 break;
448 default:
449 av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
450 ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
451 return -1;
453 return 0;
457 * linear congruential pseudorandom number generator
459 * @param previous_val pointer to the current state of the generator
461 * @return Returns a 32-bit pseudorandom integer
463 static av_always_inline int lcg_random(int previous_val)
465 return previous_val * 1664525 + 1013904223;
468 static void reset_predict_state(PredictorState *ps)
470 ps->r0 = 0.0f;
471 ps->r1 = 0.0f;
472 ps->cor0 = 0.0f;
473 ps->cor1 = 0.0f;
474 ps->var0 = 1.0f;
475 ps->var1 = 1.0f;
478 static void reset_all_predictors(PredictorState *ps)
480 int i;
481 for (i = 0; i < MAX_PREDICTORS; i++)
482 reset_predict_state(&ps[i]);
485 static void reset_predictor_group(PredictorState *ps, int group_num)
487 int i;
488 for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
489 reset_predict_state(&ps[i]);
492 static av_cold int aac_decode_init(AVCodecContext *avccontext)
494 AACContext *ac = avccontext->priv_data;
495 int i;
497 ac->avccontext = avccontext;
499 if (avccontext->extradata_size > 0) {
500 if (decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
501 return -1;
502 avccontext->sample_rate = ac->m4ac.sample_rate;
503 } else if (avccontext->channels > 0) {
504 ac->m4ac.sample_rate = avccontext->sample_rate;
507 avccontext->sample_fmt = SAMPLE_FMT_S16;
508 avccontext->frame_size = 1024;
510 AAC_INIT_VLC_STATIC( 0, 144);
511 AAC_INIT_VLC_STATIC( 1, 114);
512 AAC_INIT_VLC_STATIC( 2, 188);
513 AAC_INIT_VLC_STATIC( 3, 180);
514 AAC_INIT_VLC_STATIC( 4, 172);
515 AAC_INIT_VLC_STATIC( 5, 140);
516 AAC_INIT_VLC_STATIC( 6, 168);
517 AAC_INIT_VLC_STATIC( 7, 114);
518 AAC_INIT_VLC_STATIC( 8, 262);
519 AAC_INIT_VLC_STATIC( 9, 248);
520 AAC_INIT_VLC_STATIC(10, 384);
522 dsputil_init(&ac->dsp, avccontext);
524 ac->random_state = 0x1f2e3d4c;
526 // -1024 - Compensate wrong IMDCT method.
527 // 32768 - Required to scale values to the correct range for the bias method
528 // for float to int16 conversion.
530 if (ac->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
531 ac->add_bias = 385.0f;
532 ac->sf_scale = 1. / (-1024. * 32768.);
533 ac->sf_offset = 0;
534 } else {
535 ac->add_bias = 0.0f;
536 ac->sf_scale = 1. / -1024.;
537 ac->sf_offset = 60;
540 #if !CONFIG_HARDCODED_TABLES
541 for (i = 0; i < 428; i++)
542 ff_aac_pow2sf_tab[i] = pow(2, (i - 200) / 4.);
543 #endif /* CONFIG_HARDCODED_TABLES */
545 INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
546 ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
547 ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
548 352);
550 ff_mdct_init(&ac->mdct, 11, 1, 1.0);
551 ff_mdct_init(&ac->mdct_small, 8, 1, 1.0);
552 // window initialization
553 ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
554 ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
555 ff_sine_window_init(ff_sine_1024, 1024);
556 ff_sine_window_init(ff_sine_128, 128);
558 return 0;
562 * Skip data_stream_element; reference: table 4.10.
564 static void skip_data_stream_element(GetBitContext *gb)
566 int byte_align = get_bits1(gb);
567 int count = get_bits(gb, 8);
568 if (count == 255)
569 count += get_bits(gb, 8);
570 if (byte_align)
571 align_get_bits(gb);
572 skip_bits_long(gb, 8 * count);
575 static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
576 GetBitContext *gb)
578 int sfb;
579 if (get_bits1(gb)) {
580 ics->predictor_reset_group = get_bits(gb, 5);
581 if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
582 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
583 return -1;
586 for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
587 ics->prediction_used[sfb] = get_bits1(gb);
589 return 0;
593 * Decode Individual Channel Stream info; reference: table 4.6.
595 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
597 static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
598 GetBitContext *gb, int common_window)
600 if (get_bits1(gb)) {
601 av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
602 memset(ics, 0, sizeof(IndividualChannelStream));
603 return -1;
605 ics->window_sequence[1] = ics->window_sequence[0];
606 ics->window_sequence[0] = get_bits(gb, 2);
607 ics->use_kb_window[1] = ics->use_kb_window[0];
608 ics->use_kb_window[0] = get_bits1(gb);
609 ics->num_window_groups = 1;
610 ics->group_len[0] = 1;
611 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
612 int i;
613 ics->max_sfb = get_bits(gb, 4);
614 for (i = 0; i < 7; i++) {
615 if (get_bits1(gb)) {
616 ics->group_len[ics->num_window_groups - 1]++;
617 } else {
618 ics->num_window_groups++;
619 ics->group_len[ics->num_window_groups - 1] = 1;
622 ics->num_windows = 8;
623 ics->swb_offset = ff_swb_offset_128[ac->m4ac.sampling_index];
624 ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
625 ics->tns_max_bands = ff_tns_max_bands_128[ac->m4ac.sampling_index];
626 ics->predictor_present = 0;
627 } else {
628 ics->max_sfb = get_bits(gb, 6);
629 ics->num_windows = 1;
630 ics->swb_offset = ff_swb_offset_1024[ac->m4ac.sampling_index];
631 ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
632 ics->tns_max_bands = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
633 ics->predictor_present = get_bits1(gb);
634 ics->predictor_reset_group = 0;
635 if (ics->predictor_present) {
636 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
637 if (decode_prediction(ac, ics, gb)) {
638 memset(ics, 0, sizeof(IndividualChannelStream));
639 return -1;
641 } else if (ac->m4ac.object_type == AOT_AAC_LC) {
642 av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
643 memset(ics, 0, sizeof(IndividualChannelStream));
644 return -1;
645 } else {
646 av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
647 memset(ics, 0, sizeof(IndividualChannelStream));
648 return -1;
653 if (ics->max_sfb > ics->num_swb) {
654 av_log(ac->avccontext, AV_LOG_ERROR,
655 "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
656 ics->max_sfb, ics->num_swb);
657 memset(ics, 0, sizeof(IndividualChannelStream));
658 return -1;
661 return 0;
665 * Decode band types (section_data payload); reference: table 4.46.
667 * @param band_type array of the used band type
668 * @param band_type_run_end array of the last scalefactor band of a band type run
670 * @return Returns error status. 0 - OK, !0 - error
672 static int decode_band_types(AACContext *ac, enum BandType band_type[120],
673 int band_type_run_end[120], GetBitContext *gb,
674 IndividualChannelStream *ics)
676 int g, idx = 0;
677 const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
678 for (g = 0; g < ics->num_window_groups; g++) {
679 int k = 0;
680 while (k < ics->max_sfb) {
681 uint8_t sect_len = k;
682 int sect_len_incr;
683 int sect_band_type = get_bits(gb, 4);
684 if (sect_band_type == 12) {
685 av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
686 return -1;
688 while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1)
689 sect_len += sect_len_incr;
690 sect_len += sect_len_incr;
691 if (sect_len > ics->max_sfb) {
692 av_log(ac->avccontext, AV_LOG_ERROR,
693 "Number of bands (%d) exceeds limit (%d).\n",
694 sect_len, ics->max_sfb);
695 return -1;
697 for (; k < sect_len; k++) {
698 band_type [idx] = sect_band_type;
699 band_type_run_end[idx++] = sect_len;
703 return 0;
707 * Decode scalefactors; reference: table 4.47.
709 * @param global_gain first scalefactor value as scalefactors are differentially coded
710 * @param band_type array of the used band type
711 * @param band_type_run_end array of the last scalefactor band of a band type run
712 * @param sf array of scalefactors or intensity stereo positions
714 * @return Returns error status. 0 - OK, !0 - error
716 static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
717 unsigned int global_gain,
718 IndividualChannelStream *ics,
719 enum BandType band_type[120],
720 int band_type_run_end[120])
722 const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
723 int g, i, idx = 0;
724 int offset[3] = { global_gain, global_gain - 90, 100 };
725 int noise_flag = 1;
726 static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
727 for (g = 0; g < ics->num_window_groups; g++) {
728 for (i = 0; i < ics->max_sfb;) {
729 int run_end = band_type_run_end[idx];
730 if (band_type[idx] == ZERO_BT) {
731 for (; i < run_end; i++, idx++)
732 sf[idx] = 0.;
733 } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
734 for (; i < run_end; i++, idx++) {
735 offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
736 if (offset[2] > 255U) {
737 av_log(ac->avccontext, AV_LOG_ERROR,
738 "%s (%d) out of range.\n", sf_str[2], offset[2]);
739 return -1;
741 sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
743 } else if (band_type[idx] == NOISE_BT) {
744 for (; i < run_end; i++, idx++) {
745 if (noise_flag-- > 0)
746 offset[1] += get_bits(gb, 9) - 256;
747 else
748 offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
749 if (offset[1] > 255U) {
750 av_log(ac->avccontext, AV_LOG_ERROR,
751 "%s (%d) out of range.\n", sf_str[1], offset[1]);
752 return -1;
754 sf[idx] = -ff_aac_pow2sf_tab[offset[1] + sf_offset + 100];
756 } else {
757 for (; i < run_end; i++, idx++) {
758 offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
759 if (offset[0] > 255U) {
760 av_log(ac->avccontext, AV_LOG_ERROR,
761 "%s (%d) out of range.\n", sf_str[0], offset[0]);
762 return -1;
764 sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
769 return 0;
773 * Decode pulse data; reference: table 4.7.
775 static int decode_pulses(Pulse *pulse, GetBitContext *gb,
776 const uint16_t *swb_offset, int num_swb)
778 int i, pulse_swb;
779 pulse->num_pulse = get_bits(gb, 2) + 1;
780 pulse_swb = get_bits(gb, 6);
781 if (pulse_swb >= num_swb)
782 return -1;
783 pulse->pos[0] = swb_offset[pulse_swb];
784 pulse->pos[0] += get_bits(gb, 5);
785 if (pulse->pos[0] > 1023)
786 return -1;
787 pulse->amp[0] = get_bits(gb, 4);
788 for (i = 1; i < pulse->num_pulse; i++) {
789 pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
790 if (pulse->pos[i] > 1023)
791 return -1;
792 pulse->amp[i] = get_bits(gb, 4);
794 return 0;
798 * Decode Temporal Noise Shaping data; reference: table 4.48.
800 * @return Returns error status. 0 - OK, !0 - error
802 static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
803 GetBitContext *gb, const IndividualChannelStream *ics)
805 int w, filt, i, coef_len, coef_res, coef_compress;
806 const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
807 const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
808 for (w = 0; w < ics->num_windows; w++) {
809 if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
810 coef_res = get_bits1(gb);
812 for (filt = 0; filt < tns->n_filt[w]; filt++) {
813 int tmp2_idx;
814 tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
816 if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
817 av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
818 tns->order[w][filt], tns_max_order);
819 tns->order[w][filt] = 0;
820 return -1;
822 if (tns->order[w][filt]) {
823 tns->direction[w][filt] = get_bits1(gb);
824 coef_compress = get_bits1(gb);
825 coef_len = coef_res + 3 - coef_compress;
826 tmp2_idx = 2 * coef_compress + coef_res;
828 for (i = 0; i < tns->order[w][filt]; i++)
829 tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
834 return 0;
838 * Decode Mid/Side data; reference: table 4.54.
840 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
841 * [1] mask is decoded from bitstream; [2] mask is all 1s;
842 * [3] reserved for scalable AAC
844 static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
845 int ms_present)
847 int idx;
848 if (ms_present == 1) {
849 for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
850 cpe->ms_mask[idx] = get_bits1(gb);
851 } else if (ms_present == 2) {
852 memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
857 * Decode spectral data; reference: table 4.50.
858 * Dequantize and scale spectral data; reference: 4.6.3.3.
860 * @param coef array of dequantized, scaled spectral data
861 * @param sf array of scalefactors or intensity stereo positions
862 * @param pulse_present set if pulses are present
863 * @param pulse pointer to pulse data struct
864 * @param band_type array of the used band type
866 * @return Returns error status. 0 - OK, !0 - error
868 static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
869 GetBitContext *gb, float sf[120],
870 int pulse_present, const Pulse *pulse,
871 const IndividualChannelStream *ics,
872 enum BandType band_type[120])
874 int i, k, g, idx = 0;
875 const int c = 1024 / ics->num_windows;
876 const uint16_t *offsets = ics->swb_offset;
877 float *coef_base = coef;
878 static const float sign_lookup[] = { 1.0f, -1.0f };
880 for (g = 0; g < ics->num_windows; g++)
881 memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
883 for (g = 0; g < ics->num_window_groups; g++) {
884 for (i = 0; i < ics->max_sfb; i++, idx++) {
885 const int cur_band_type = band_type[idx];
886 const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
887 const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
888 int group;
889 if (cur_band_type == ZERO_BT || cur_band_type == INTENSITY_BT2 || cur_band_type == INTENSITY_BT) {
890 for (group = 0; group < ics->group_len[g]; group++) {
891 memset(coef + group * 128 + offsets[i], 0, (offsets[i + 1] - offsets[i]) * sizeof(float));
893 } else if (cur_band_type == NOISE_BT) {
894 for (group = 0; group < ics->group_len[g]; group++) {
895 float scale;
896 float band_energy;
897 float *cf = coef + group * 128 + offsets[i];
898 int len = offsets[i+1] - offsets[i];
900 for (k = 0; k < len; k++) {
901 ac->random_state = lcg_random(ac->random_state);
902 cf[k] = ac->random_state;
905 band_energy = ac->dsp.scalarproduct_float(cf, cf, len);
906 scale = sf[idx] / sqrtf(band_energy);
907 ac->dsp.vector_fmul_scalar(cf, cf, scale, len);
909 } else {
910 for (group = 0; group < ics->group_len[g]; group++) {
911 const float *vq[96];
912 const float **vqp = vq;
913 float *cf = coef + (group << 7) + offsets[i];
914 int len = offsets[i + 1] - offsets[i];
916 for (k = offsets[i]; k < offsets[i + 1]; k += dim) {
917 const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
918 const int coef_tmp_idx = (group << 7) + k;
919 const float *vq_ptr;
920 int j;
921 if (index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
922 av_log(ac->avccontext, AV_LOG_ERROR,
923 "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
924 cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
925 return -1;
927 vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
928 *vqp++ = vq_ptr;
929 if (is_cb_unsigned) {
930 if (vq_ptr[0])
931 coef[coef_tmp_idx ] = sign_lookup[get_bits1(gb)];
932 if (vq_ptr[1])
933 coef[coef_tmp_idx + 1] = sign_lookup[get_bits1(gb)];
934 if (dim == 4) {
935 if (vq_ptr[2])
936 coef[coef_tmp_idx + 2] = sign_lookup[get_bits1(gb)];
937 if (vq_ptr[3])
938 coef[coef_tmp_idx + 3] = sign_lookup[get_bits1(gb)];
940 if (cur_band_type == ESC_BT) {
941 for (j = 0; j < 2; j++) {
942 if (vq_ptr[j] == 64.0f) {
943 int n = 4;
944 /* The total length of escape_sequence must be < 22 bits according
945 to the specification (i.e. max is 11111111110xxxxxxxxxx). */
946 while (get_bits1(gb) && n < 15) n++;
947 if (n == 15) {
948 av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
949 return -1;
951 n = (1 << n) + get_bits(gb, n);
952 coef[coef_tmp_idx + j] *= cbrtf(n) * n;
953 } else
954 coef[coef_tmp_idx + j] *= vq_ptr[j];
960 if (is_cb_unsigned && cur_band_type != ESC_BT) {
961 ac->dsp.vector_fmul_sv_scalar[dim>>2](
962 cf, cf, vq, sf[idx], len);
963 } else if (cur_band_type == ESC_BT) {
964 ac->dsp.vector_fmul_scalar(cf, cf, sf[idx], len);
965 } else { /* !is_cb_unsigned */
966 ac->dsp.sv_fmul_scalar[dim>>2](cf, vq, sf[idx], len);
971 coef += ics->group_len[g] << 7;
974 if (pulse_present) {
975 idx = 0;
976 for (i = 0; i < pulse->num_pulse; i++) {
977 float co = coef_base[ pulse->pos[i] ];
978 while (offsets[idx + 1] <= pulse->pos[i])
979 idx++;
980 if (band_type[idx] != NOISE_BT && sf[idx]) {
981 float ico = -pulse->amp[i];
982 if (co) {
983 co /= sf[idx];
984 ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
986 coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
990 return 0;
993 static av_always_inline float flt16_round(float pf)
995 union float754 tmp;
996 tmp.f = pf;
997 tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
998 return tmp.f;
1001 static av_always_inline float flt16_even(float pf)
1003 union float754 tmp;
1004 tmp.f = pf;
1005 tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
1006 return tmp.f;
1009 static av_always_inline float flt16_trunc(float pf)
1011 union float754 pun;
1012 pun.f = pf;
1013 pun.i &= 0xFFFF0000U;
1014 return pun.f;
1017 static void predict(AACContext *ac, PredictorState *ps, float *coef,
1018 int output_enable)
1020 const float a = 0.953125; // 61.0 / 64
1021 const float alpha = 0.90625; // 29.0 / 32
1022 float e0, e1;
1023 float pv;
1024 float k1, k2;
1026 k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
1027 k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
1029 pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
1030 if (output_enable)
1031 *coef += pv * ac->sf_scale;
1033 e0 = *coef / ac->sf_scale;
1034 e1 = e0 - k1 * ps->r0;
1036 ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
1037 ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
1038 ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
1039 ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));
1041 ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
1042 ps->r0 = flt16_trunc(a * e0);
1046 * Apply AAC-Main style frequency domain prediction.
1048 static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
1050 int sfb, k;
1052 if (!sce->ics.predictor_initialized) {
1053 reset_all_predictors(sce->predictor_state);
1054 sce->ics.predictor_initialized = 1;
1057 if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
1058 for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
1059 for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
1060 predict(ac, &sce->predictor_state[k], &sce->coeffs[k],
1061 sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
1064 if (sce->ics.predictor_reset_group)
1065 reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
1066 } else
1067 reset_all_predictors(sce->predictor_state);
1071 * Decode an individual_channel_stream payload; reference: table 4.44.
1073 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
1074 * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
1076 * @return Returns error status. 0 - OK, !0 - error
1078 static int decode_ics(AACContext *ac, SingleChannelElement *sce,
1079 GetBitContext *gb, int common_window, int scale_flag)
1081 Pulse pulse;
1082 TemporalNoiseShaping *tns = &sce->tns;
1083 IndividualChannelStream *ics = &sce->ics;
1084 float *out = sce->coeffs;
1085 int global_gain, pulse_present = 0;
1087 /* This assignment is to silence a GCC warning about the variable being used
1088 * uninitialized when in fact it always is.
1090 pulse.num_pulse = 0;
1092 global_gain = get_bits(gb, 8);
1094 if (!common_window && !scale_flag) {
1095 if (decode_ics_info(ac, ics, gb, 0) < 0)
1096 return -1;
1099 if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
1100 return -1;
1101 if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
1102 return -1;
1104 pulse_present = 0;
1105 if (!scale_flag) {
1106 if ((pulse_present = get_bits1(gb))) {
1107 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1108 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
1109 return -1;
1111 if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
1112 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
1113 return -1;
1116 if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
1117 return -1;
1118 if (get_bits1(gb)) {
1119 av_log_missing_feature(ac->avccontext, "SSR", 1);
1120 return -1;
1124 if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
1125 return -1;
1127 if (ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
1128 apply_prediction(ac, sce);
1130 return 0;
1134 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
1136 static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
1138 const IndividualChannelStream *ics = &cpe->ch[0].ics;
1139 float *ch0 = cpe->ch[0].coeffs;
1140 float *ch1 = cpe->ch[1].coeffs;
1141 int g, i, group, idx = 0;
1142 const uint16_t *offsets = ics->swb_offset;
1143 for (g = 0; g < ics->num_window_groups; g++) {
1144 for (i = 0; i < ics->max_sfb; i++, idx++) {
1145 if (cpe->ms_mask[idx] &&
1146 cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
1147 for (group = 0; group < ics->group_len[g]; group++) {
1148 ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
1149 ch1 + group * 128 + offsets[i],
1150 offsets[i+1] - offsets[i]);
1154 ch0 += ics->group_len[g] * 128;
1155 ch1 += ics->group_len[g] * 128;
1160 * intensity stereo decoding; reference: 4.6.8.2.3
1162 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
1163 * [1] mask is decoded from bitstream; [2] mask is all 1s;
1164 * [3] reserved for scalable AAC
1166 static void apply_intensity_stereo(ChannelElement *cpe, int ms_present)
1168 const IndividualChannelStream *ics = &cpe->ch[1].ics;
1169 SingleChannelElement *sce1 = &cpe->ch[1];
1170 float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
1171 const uint16_t *offsets = ics->swb_offset;
1172 int g, group, i, k, idx = 0;
1173 int c;
1174 float scale;
1175 for (g = 0; g < ics->num_window_groups; g++) {
1176 for (i = 0; i < ics->max_sfb;) {
1177 if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
1178 const int bt_run_end = sce1->band_type_run_end[idx];
1179 for (; i < bt_run_end; i++, idx++) {
1180 c = -1 + 2 * (sce1->band_type[idx] - 14);
1181 if (ms_present)
1182 c *= 1 - 2 * cpe->ms_mask[idx];
1183 scale = c * sce1->sf[idx];
1184 for (group = 0; group < ics->group_len[g]; group++)
1185 for (k = offsets[i]; k < offsets[i + 1]; k++)
1186 coef1[group * 128 + k] = scale * coef0[group * 128 + k];
1188 } else {
1189 int bt_run_end = sce1->band_type_run_end[idx];
1190 idx += bt_run_end - i;
1191 i = bt_run_end;
1194 coef0 += ics->group_len[g] * 128;
1195 coef1 += ics->group_len[g] * 128;
1200 * Decode a channel_pair_element; reference: table 4.4.
1202 * @param elem_id Identifies the instance of a syntax element.
1204 * @return Returns error status. 0 - OK, !0 - error
1206 static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
1208 int i, ret, common_window, ms_present = 0;
1210 common_window = get_bits1(gb);
1211 if (common_window) {
1212 if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
1213 return -1;
1214 i = cpe->ch[1].ics.use_kb_window[0];
1215 cpe->ch[1].ics = cpe->ch[0].ics;
1216 cpe->ch[1].ics.use_kb_window[1] = i;
1217 ms_present = get_bits(gb, 2);
1218 if (ms_present == 3) {
1219 av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
1220 return -1;
1221 } else if (ms_present)
1222 decode_mid_side_stereo(cpe, gb, ms_present);
1224 if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
1225 return ret;
1226 if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
1227 return ret;
1229 if (common_window) {
1230 if (ms_present)
1231 apply_mid_side_stereo(ac, cpe);
1232 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
1233 apply_prediction(ac, &cpe->ch[0]);
1234 apply_prediction(ac, &cpe->ch[1]);
1238 apply_intensity_stereo(cpe, ms_present);
1239 return 0;
1243 * Decode coupling_channel_element; reference: table 4.8.
1245 * @param elem_id Identifies the instance of a syntax element.
1247 * @return Returns error status. 0 - OK, !0 - error
1249 static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
1251 int num_gain = 0;
1252 int c, g, sfb, ret;
1253 int sign;
1254 float scale;
1255 SingleChannelElement *sce = &che->ch[0];
1256 ChannelCoupling *coup = &che->coup;
1258 coup->coupling_point = 2 * get_bits1(gb);
1259 coup->num_coupled = get_bits(gb, 3);
1260 for (c = 0; c <= coup->num_coupled; c++) {
1261 num_gain++;
1262 coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
1263 coup->id_select[c] = get_bits(gb, 4);
1264 if (coup->type[c] == TYPE_CPE) {
1265 coup->ch_select[c] = get_bits(gb, 2);
1266 if (coup->ch_select[c] == 3)
1267 num_gain++;
1268 } else
1269 coup->ch_select[c] = 2;
1271 coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
1273 sign = get_bits(gb, 1);
1274 scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
1276 if ((ret = decode_ics(ac, sce, gb, 0, 0)))
1277 return ret;
1279 for (c = 0; c < num_gain; c++) {
1280 int idx = 0;
1281 int cge = 1;
1282 int gain = 0;
1283 float gain_cache = 1.;
1284 if (c) {
1285 cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
1286 gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
1287 gain_cache = pow(scale, -gain);
1289 if (coup->coupling_point == AFTER_IMDCT) {
1290 coup->gain[c][0] = gain_cache;
1291 } else {
1292 for (g = 0; g < sce->ics.num_window_groups; g++) {
1293 for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
1294 if (sce->band_type[idx] != ZERO_BT) {
1295 if (!cge) {
1296 int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1297 if (t) {
1298 int s = 1;
1299 t = gain += t;
1300 if (sign) {
1301 s -= 2 * (t & 0x1);
1302 t >>= 1;
1304 gain_cache = pow(scale, -t) * s;
1307 coup->gain[c][idx] = gain_cache;
1313 return 0;
1317 * Decode Spectral Band Replication extension data; reference: table 4.55.
1319 * @param crc flag indicating the presence of CRC checksum
1320 * @param cnt length of TYPE_FIL syntactic element in bytes
1322 * @return Returns number of bytes consumed from the TYPE_FIL element.
1324 static int decode_sbr_extension(AACContext *ac, GetBitContext *gb,
1325 int crc, int cnt)
1327 // TODO : sbr_extension implementation
1328 av_log_missing_feature(ac->avccontext, "SBR", 0);
1329 skip_bits_long(gb, 8 * cnt - 4); // -4 due to reading extension type
1330 return cnt;
1334 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
1336 * @return Returns number of bytes consumed.
1338 static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
1339 GetBitContext *gb)
1341 int i;
1342 int num_excl_chan = 0;
1344 do {
1345 for (i = 0; i < 7; i++)
1346 che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
1347 } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
1349 return num_excl_chan / 7;
1353 * Decode dynamic range information; reference: table 4.52.
1355 * @param cnt length of TYPE_FIL syntactic element in bytes
1357 * @return Returns number of bytes consumed.
1359 static int decode_dynamic_range(DynamicRangeControl *che_drc,
1360 GetBitContext *gb, int cnt)
1362 int n = 1;
1363 int drc_num_bands = 1;
1364 int i;
1366 /* pce_tag_present? */
1367 if (get_bits1(gb)) {
1368 che_drc->pce_instance_tag = get_bits(gb, 4);
1369 skip_bits(gb, 4); // tag_reserved_bits
1370 n++;
1373 /* excluded_chns_present? */
1374 if (get_bits1(gb)) {
1375 n += decode_drc_channel_exclusions(che_drc, gb);
1378 /* drc_bands_present? */
1379 if (get_bits1(gb)) {
1380 che_drc->band_incr = get_bits(gb, 4);
1381 che_drc->interpolation_scheme = get_bits(gb, 4);
1382 n++;
1383 drc_num_bands += che_drc->band_incr;
1384 for (i = 0; i < drc_num_bands; i++) {
1385 che_drc->band_top[i] = get_bits(gb, 8);
1386 n++;
1390 /* prog_ref_level_present? */
1391 if (get_bits1(gb)) {
1392 che_drc->prog_ref_level = get_bits(gb, 7);
1393 skip_bits1(gb); // prog_ref_level_reserved_bits
1394 n++;
1397 for (i = 0; i < drc_num_bands; i++) {
1398 che_drc->dyn_rng_sgn[i] = get_bits1(gb);
1399 che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
1400 n++;
1403 return n;
1407 * Decode extension data (incomplete); reference: table 4.51.
1409 * @param cnt length of TYPE_FIL syntactic element in bytes
1411 * @return Returns number of bytes consumed
1413 static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt)
1415 int crc_flag = 0;
1416 int res = cnt;
1417 switch (get_bits(gb, 4)) { // extension type
1418 case EXT_SBR_DATA_CRC:
1419 crc_flag++;
1420 case EXT_SBR_DATA:
1421 res = decode_sbr_extension(ac, gb, crc_flag, cnt);
1422 break;
1423 case EXT_DYNAMIC_RANGE:
1424 res = decode_dynamic_range(&ac->che_drc, gb, cnt);
1425 break;
1426 case EXT_FILL:
1427 case EXT_FILL_DATA:
1428 case EXT_DATA_ELEMENT:
1429 default:
1430 skip_bits_long(gb, 8 * cnt - 4);
1431 break;
1433 return res;
1437 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
1439 * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
1440 * @param coef spectral coefficients
1442 static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
1443 IndividualChannelStream *ics, int decode)
1445 const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
1446 int w, filt, m, i;
1447 int bottom, top, order, start, end, size, inc;
1448 float lpc[TNS_MAX_ORDER];
1450 for (w = 0; w < ics->num_windows; w++) {
1451 bottom = ics->num_swb;
1452 for (filt = 0; filt < tns->n_filt[w]; filt++) {
1453 top = bottom;
1454 bottom = FFMAX(0, top - tns->length[w][filt]);
1455 order = tns->order[w][filt];
1456 if (order == 0)
1457 continue;
1459 // tns_decode_coef
1460 compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
1462 start = ics->swb_offset[FFMIN(bottom, mmm)];
1463 end = ics->swb_offset[FFMIN( top, mmm)];
1464 if ((size = end - start) <= 0)
1465 continue;
1466 if (tns->direction[w][filt]) {
1467 inc = -1;
1468 start = end - 1;
1469 } else {
1470 inc = 1;
1472 start += w * 128;
1474 // ar filter
1475 for (m = 0; m < size; m++, start += inc)
1476 for (i = 1; i <= FFMIN(m, order); i++)
1477 coef[start] -= coef[start - i * inc] * lpc[i - 1];
1483 * Conduct IMDCT and windowing.
1485 static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
1487 IndividualChannelStream *ics = &sce->ics;
1488 float *in = sce->coeffs;
1489 float *out = sce->ret;
1490 float *saved = sce->saved;
1491 const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
1492 const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
1493 const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
1494 float *buf = ac->buf_mdct;
1495 float *temp = ac->temp;
1496 int i;
1498 // imdct
1499 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1500 if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
1501 av_log(ac->avccontext, AV_LOG_WARNING,
1502 "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
1503 "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
1504 for (i = 0; i < 1024; i += 128)
1505 ff_imdct_half(&ac->mdct_small, buf + i, in + i);
1506 } else
1507 ff_imdct_half(&ac->mdct, buf, in);
1509 /* window overlapping
1510 * NOTE: To simplify the overlapping code, all 'meaningless' short to long
1511 * and long to short transitions are considered to be short to short
1512 * transitions. This leaves just two cases (long to long and short to short)
1513 * with a little special sauce for EIGHT_SHORT_SEQUENCE.
1515 if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
1516 (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
1517 ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, ac->add_bias, 512);
1518 } else {
1519 for (i = 0; i < 448; i++)
1520 out[i] = saved[i] + ac->add_bias;
1522 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1523 ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, ac->add_bias, 64);
1524 ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, ac->add_bias, 64);
1525 ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, ac->add_bias, 64);
1526 ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, ac->add_bias, 64);
1527 ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, ac->add_bias, 64);
1528 memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
1529 } else {
1530 ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, ac->add_bias, 64);
1531 for (i = 576; i < 1024; i++)
1532 out[i] = buf[i-512] + ac->add_bias;
1536 // buffer update
1537 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1538 for (i = 0; i < 64; i++)
1539 saved[i] = temp[64 + i] - ac->add_bias;
1540 ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
1541 ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
1542 ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
1543 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
1544 } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
1545 memcpy( saved, buf + 512, 448 * sizeof(float));
1546 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
1547 } else { // LONG_STOP or ONLY_LONG
1548 memcpy( saved, buf + 512, 512 * sizeof(float));
1553 * Apply dependent channel coupling (applied before IMDCT).
1555 * @param index index into coupling gain array
1557 static void apply_dependent_coupling(AACContext *ac,
1558 SingleChannelElement *target,
1559 ChannelElement *cce, int index)
1561 IndividualChannelStream *ics = &cce->ch[0].ics;
1562 const uint16_t *offsets = ics->swb_offset;
1563 float *dest = target->coeffs;
1564 const float *src = cce->ch[0].coeffs;
1565 int g, i, group, k, idx = 0;
1566 if (ac->m4ac.object_type == AOT_AAC_LTP) {
1567 av_log(ac->avccontext, AV_LOG_ERROR,
1568 "Dependent coupling is not supported together with LTP\n");
1569 return;
1571 for (g = 0; g < ics->num_window_groups; g++) {
1572 for (i = 0; i < ics->max_sfb; i++, idx++) {
1573 if (cce->ch[0].band_type[idx] != ZERO_BT) {
1574 const float gain = cce->coup.gain[index][idx];
1575 for (group = 0; group < ics->group_len[g]; group++) {
1576 for (k = offsets[i]; k < offsets[i + 1]; k++) {
1577 // XXX dsputil-ize
1578 dest[group * 128 + k] += gain * src[group * 128 + k];
1583 dest += ics->group_len[g] * 128;
1584 src += ics->group_len[g] * 128;
1589 * Apply independent channel coupling (applied after IMDCT).
1591 * @param index index into coupling gain array
1593 static void apply_independent_coupling(AACContext *ac,
1594 SingleChannelElement *target,
1595 ChannelElement *cce, int index)
1597 int i;
1598 const float gain = cce->coup.gain[index][0];
1599 const float bias = ac->add_bias;
1600 const float *src = cce->ch[0].ret;
1601 float *dest = target->ret;
1603 for (i = 0; i < 1024; i++)
1604 dest[i] += gain * (src[i] - bias);
1608 * channel coupling transformation interface
1610 * @param index index into coupling gain array
1611 * @param apply_coupling_method pointer to (in)dependent coupling function
1613 static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
1614 enum RawDataBlockType type, int elem_id,
1615 enum CouplingPoint coupling_point,
1616 void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
1618 int i, c;
1620 for (i = 0; i < MAX_ELEM_ID; i++) {
1621 ChannelElement *cce = ac->che[TYPE_CCE][i];
1622 int index = 0;
1624 if (cce && cce->coup.coupling_point == coupling_point) {
1625 ChannelCoupling *coup = &cce->coup;
1627 for (c = 0; c <= coup->num_coupled; c++) {
1628 if (coup->type[c] == type && coup->id_select[c] == elem_id) {
1629 if (coup->ch_select[c] != 1) {
1630 apply_coupling_method(ac, &cc->ch[0], cce, index);
1631 if (coup->ch_select[c] != 0)
1632 index++;
1634 if (coup->ch_select[c] != 2)
1635 apply_coupling_method(ac, &cc->ch[1], cce, index++);
1636 } else
1637 index += 1 + (coup->ch_select[c] == 3);
1644 * Convert spectral data to float samples, applying all supported tools as appropriate.
1646 static void spectral_to_sample(AACContext *ac)
1648 int i, type;
1649 for (type = 3; type >= 0; type--) {
1650 for (i = 0; i < MAX_ELEM_ID; i++) {
1651 ChannelElement *che = ac->che[type][i];
1652 if (che) {
1653 if (type <= TYPE_CPE)
1654 apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
1655 if (che->ch[0].tns.present)
1656 apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
1657 if (che->ch[1].tns.present)
1658 apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
1659 if (type <= TYPE_CPE)
1660 apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
1661 if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
1662 imdct_and_windowing(ac, &che->ch[0]);
1663 if (type == TYPE_CPE)
1664 imdct_and_windowing(ac, &che->ch[1]);
1665 if (type <= TYPE_CCE)
1666 apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
1672 static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
1674 int size;
1675 AACADTSHeaderInfo hdr_info;
1677 size = ff_aac_parse_header(gb, &hdr_info);
1678 if (size > 0) {
1679 if (!ac->output_configured && hdr_info.chan_config) {
1680 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1681 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
1682 ac->m4ac.chan_config = hdr_info.chan_config;
1683 if (set_default_channel_config(ac, new_che_pos, hdr_info.chan_config))
1684 return -7;
1685 if (output_configure(ac, ac->che_pos, new_che_pos, hdr_info.chan_config))
1686 return -7;
1688 ac->m4ac.sample_rate = hdr_info.sample_rate;
1689 ac->m4ac.sampling_index = hdr_info.sampling_index;
1690 ac->m4ac.object_type = hdr_info.object_type;
1691 if (hdr_info.num_aac_frames == 1) {
1692 if (!hdr_info.crc_absent)
1693 skip_bits(gb, 16);
1694 } else {
1695 av_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0);
1696 return -1;
1699 return size;
1702 static int aac_decode_frame(AVCodecContext *avccontext, void *data,
1703 int *data_size, AVPacket *avpkt)
1705 const uint8_t *buf = avpkt->data;
1706 int buf_size = avpkt->size;
1707 AACContext *ac = avccontext->priv_data;
1708 ChannelElement *che = NULL;
1709 GetBitContext gb;
1710 enum RawDataBlockType elem_type;
1711 int err, elem_id, data_size_tmp;
1713 init_get_bits(&gb, buf, buf_size * 8);
1715 if (show_bits(&gb, 12) == 0xfff) {
1716 if (parse_adts_frame_header(ac, &gb) < 0) {
1717 av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
1718 return -1;
1720 if (ac->m4ac.sampling_index > 12) {
1721 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
1722 return -1;
1726 // parse
1727 while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
1728 elem_id = get_bits(&gb, 4);
1730 if (elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) {
1731 av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
1732 return -1;
1735 switch (elem_type) {
1737 case TYPE_SCE:
1738 err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
1739 break;
1741 case TYPE_CPE:
1742 err = decode_cpe(ac, &gb, che);
1743 break;
1745 case TYPE_CCE:
1746 err = decode_cce(ac, &gb, che);
1747 break;
1749 case TYPE_LFE:
1750 err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
1751 break;
1753 case TYPE_DSE:
1754 skip_data_stream_element(&gb);
1755 err = 0;
1756 break;
1758 case TYPE_PCE: {
1759 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1760 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
1761 if ((err = decode_pce(ac, new_che_pos, &gb)))
1762 break;
1763 if (ac->output_configured)
1764 av_log(avccontext, AV_LOG_ERROR,
1765 "Not evaluating a further program_config_element as this construct is dubious at best.\n");
1766 else
1767 err = output_configure(ac, ac->che_pos, new_che_pos, 0);
1768 break;
1771 case TYPE_FIL:
1772 if (elem_id == 15)
1773 elem_id += get_bits(&gb, 8) - 1;
1774 while (elem_id > 0)
1775 elem_id -= decode_extension_payload(ac, &gb, elem_id);
1776 err = 0; /* FIXME */
1777 break;
1779 default:
1780 err = -1; /* should not happen, but keeps compiler happy */
1781 break;
1784 if (err)
1785 return err;
1788 spectral_to_sample(ac);
1790 if (!ac->is_saved) {
1791 ac->is_saved = 1;
1792 *data_size = 0;
1793 return buf_size;
1796 data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
1797 if (*data_size < data_size_tmp) {
1798 av_log(avccontext, AV_LOG_ERROR,
1799 "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
1800 *data_size, data_size_tmp);
1801 return -1;
1803 *data_size = data_size_tmp;
1805 ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
1807 return buf_size;
1810 static av_cold int aac_decode_close(AVCodecContext *avccontext)
1812 AACContext *ac = avccontext->priv_data;
1813 int i, type;
1815 for (i = 0; i < MAX_ELEM_ID; i++) {
1816 for (type = 0; type < 4; type++)
1817 av_freep(&ac->che[type][i]);
1820 ff_mdct_end(&ac->mdct);
1821 ff_mdct_end(&ac->mdct_small);
1822 return 0;
1825 AVCodec aac_decoder = {
1826 "aac",
1827 CODEC_TYPE_AUDIO,
1828 CODEC_ID_AAC,
1829 sizeof(AACContext),
1830 aac_decode_init,
1831 NULL,
1832 aac_decode_close,
1833 aac_decode_frame,
1834 .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
1835 .sample_fmts = (const enum SampleFormat[]) {
1836 SAMPLE_FMT_S16,SAMPLE_FMT_NONE
1838 .channel_layouts = aac_channel_layout,