ac3dec: simplify zero-bit mantissa dithering by calculating it
[FFMpeg-mirror/lagarith.git] / tests / audiogen.c
blob38ca5dd22a1a78456a2841a461f67b73c5bc5354
1 /*
2 * Generates a synthetic stereo sound
3 * NOTE: No floats are used to guarantee a bit exact output.
5 * Copyright (c) 2002 Fabrice Bellard
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <stdlib.h>
25 #include <stdio.h>
27 #define NB_CHANNELS 2
28 #define FE 44100
30 static unsigned int myrnd(unsigned int *seed_ptr, int n)
32 unsigned int seed, val;
34 seed = *seed_ptr;
35 seed = (seed * 314159) + 1;
36 if (n == 256) {
37 val = seed >> 24;
38 } else {
39 val = seed % n;
41 *seed_ptr = seed;
42 return val;
45 #define FRAC_BITS 16
46 #define FRAC_ONE (1 << FRAC_BITS)
48 #define COS_TABLE_BITS 7
50 /* integer cosinus */
51 static const unsigned short cos_table[(1 << COS_TABLE_BITS) + 2] = {
52 0x8000, 0x7ffe, 0x7ff6, 0x7fea, 0x7fd9, 0x7fc2, 0x7fa7, 0x7f87,
53 0x7f62, 0x7f38, 0x7f0a, 0x7ed6, 0x7e9d, 0x7e60, 0x7e1e, 0x7dd6,
54 0x7d8a, 0x7d3a, 0x7ce4, 0x7c89, 0x7c2a, 0x7bc6, 0x7b5d, 0x7aef,
55 0x7a7d, 0x7a06, 0x798a, 0x790a, 0x7885, 0x77fb, 0x776c, 0x76d9,
56 0x7642, 0x75a6, 0x7505, 0x7460, 0x73b6, 0x7308, 0x7255, 0x719e,
57 0x70e3, 0x7023, 0x6f5f, 0x6e97, 0x6dca, 0x6cf9, 0x6c24, 0x6b4b,
58 0x6a6e, 0x698c, 0x68a7, 0x67bd, 0x66d0, 0x65de, 0x64e9, 0x63ef,
59 0x62f2, 0x61f1, 0x60ec, 0x5fe4, 0x5ed7, 0x5dc8, 0x5cb4, 0x5b9d,
60 0x5a82, 0x5964, 0x5843, 0x571e, 0x55f6, 0x54ca, 0x539b, 0x5269,
61 0x5134, 0x4ffb, 0x4ec0, 0x4d81, 0x4c40, 0x4afb, 0x49b4, 0x486a,
62 0x471d, 0x45cd, 0x447b, 0x4326, 0x41ce, 0x4074, 0x3f17, 0x3db8,
63 0x3c57, 0x3af3, 0x398d, 0x3825, 0x36ba, 0x354e, 0x33df, 0x326e,
64 0x30fc, 0x2f87, 0x2e11, 0x2c99, 0x2b1f, 0x29a4, 0x2827, 0x26a8,
65 0x2528, 0x23a7, 0x2224, 0x209f, 0x1f1a, 0x1d93, 0x1c0c, 0x1a83,
66 0x18f9, 0x176e, 0x15e2, 0x1455, 0x12c8, 0x113a, 0x0fab, 0x0e1c,
67 0x0c8c, 0x0afb, 0x096b, 0x07d9, 0x0648, 0x04b6, 0x0324, 0x0192,
68 0x0000, 0x0000,
71 #define CSHIFT (FRAC_BITS - COS_TABLE_BITS - 2)
73 static int int_cos(int a)
75 int neg, v, f;
76 const unsigned short *p;
78 a = a & (FRAC_ONE - 1); /* modulo 2 * pi */
79 if (a >= (FRAC_ONE / 2))
80 a = FRAC_ONE - a;
81 neg = 0;
82 if (a > (FRAC_ONE / 4)) {
83 neg = -1;
84 a = (FRAC_ONE / 2) - a;
86 p = cos_table + (a >> CSHIFT);
87 /* linear interpolation */
88 f = a & ((1 << CSHIFT) - 1);
89 v = p[0] + (((p[1] - p[0]) * f + (1 << (CSHIFT - 1))) >> CSHIFT);
90 v = (v ^ neg) - neg;
91 v = v << (FRAC_BITS - 15);
92 return v;
95 FILE *outfile;
97 static void put_sample(int v)
99 fputc(v & 0xff, outfile);
100 fputc((v >> 8) & 0xff, outfile);
103 int main(int argc, char **argv)
105 int i, a, v, j, f, amp, ampa;
106 unsigned int seed = 1;
107 int tabf1[NB_CHANNELS], tabf2[NB_CHANNELS];
108 int taba[NB_CHANNELS];
110 if (argc != 2) {
111 printf("usage: %s file\n"
112 "generate a test raw 16 bit stereo audio stream\n", argv[0]);
113 exit(1);
116 outfile = fopen(argv[1], "wb");
117 if (!outfile) {
118 perror(argv[1]);
119 return 1;
122 /* 1 second of single freq sinus at 1000 Hz */
123 a = 0;
124 for(i=0;i<1 * FE;i++) {
125 v = (int_cos(a) * 10000) >> FRAC_BITS;
126 for(j=0;j<NB_CHANNELS;j++)
127 put_sample(v);
128 a += (1000 * FRAC_ONE) / FE;
131 /* 1 second of varing frequency between 100 and 10000 Hz */
132 a = 0;
133 for(i=0;i<1 * FE;i++) {
134 v = (int_cos(a) * 10000) >> FRAC_BITS;
135 for(j=0;j<NB_CHANNELS;j++)
136 put_sample(v);
137 f = 100 + (((10000 - 100) * i) / FE);
138 a += (f * FRAC_ONE) / FE;
141 /* 0.5 second of low amplitude white noise */
142 for(i=0;i<FE / 2;i++) {
143 v = myrnd(&seed, 20000) - 10000;
144 for(j=0;j<NB_CHANNELS;j++)
145 put_sample(v);
148 /* 0.5 second of high amplitude white noise */
149 for(i=0;i<FE / 2;i++) {
150 v = myrnd(&seed, 65535) - 32768;
151 for(j=0;j<NB_CHANNELS;j++)
152 put_sample(v);
155 /* stereo : 2 unrelated ramps */
156 for(j=0;j<NB_CHANNELS;j++) {
157 taba[j] = 0;
158 tabf1[j] = 100 + myrnd(&seed, 5000);
159 tabf2[j] = 100 + myrnd(&seed, 5000);
161 for(i=0;i<1 * FE;i++) {
162 for(j=0;j<NB_CHANNELS;j++) {
163 v = (int_cos(taba[j]) * 10000) >> FRAC_BITS;
164 put_sample(v);
165 f = tabf1[j] + (((tabf2[j] - tabf1[j]) * i) / FE);
166 taba[j] += (f * FRAC_ONE) / FE;
170 /* stereo 500 Hz with varying volume */
171 a = 0;
172 ampa = 0;
173 for(i=0;i<2 * FE;i++) {
174 for(j=0;j<NB_CHANNELS;j++) {
175 amp = ((FRAC_ONE + int_cos(ampa)) * 5000) >> FRAC_BITS;
176 if (j & 1)
177 amp = 10000 - amp;
178 v = (int_cos(a) * amp) >> FRAC_BITS;
179 put_sample(v);
180 a += (500 * FRAC_ONE) / FE;
181 ampa += (2 * FRAC_ONE) / FE;
185 fclose(outfile);
186 return 0;