ac3dec: simplify zero-bit mantissa dithering by calculating it
[FFMpeg-mirror/lagarith.git] / libavcodec / dsputil.h
blob2d15bd35389a78ed3c857d87c7ddbc6509cf7f46
1 /*
2 * DSP utils
3 * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
4 * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/dsputil.h
25 * DSP utils.
26 * note, many functions in here may use MMX which trashes the FPU state, it is
27 * absolutely necessary to call emms_c() between dsp & float/double code
30 #ifndef AVCODEC_DSPUTIL_H
31 #define AVCODEC_DSPUTIL_H
33 #include "libavutil/intreadwrite.h"
34 #include "avcodec.h"
37 //#define DEBUG
38 /* dct code */
39 typedef short DCTELEM;
40 typedef int DWTELEM;
41 typedef short IDWTELEM;
43 void fdct_ifast (DCTELEM *data);
44 void fdct_ifast248 (DCTELEM *data);
45 void ff_jpeg_fdct_islow (DCTELEM *data);
46 void ff_fdct248_islow (DCTELEM *data);
48 void j_rev_dct (DCTELEM *data);
49 void j_rev_dct4 (DCTELEM *data);
50 void j_rev_dct2 (DCTELEM *data);
51 void j_rev_dct1 (DCTELEM *data);
52 void ff_wmv2_idct_c(DCTELEM *data);
54 void ff_fdct_mmx(DCTELEM *block);
55 void ff_fdct_mmx2(DCTELEM *block);
56 void ff_fdct_sse2(DCTELEM *block);
58 void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
59 void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
60 void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
61 void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
62 void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
63 void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
64 void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
65 void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
66 void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
67 void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
69 void ff_vector_fmul_add_add_c(float *dst, const float *src0, const float *src1,
70 const float *src2, int src3, int blocksize, int step);
71 void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
72 const float *win, float add_bias, int len);
73 void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
74 void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
76 /* encoding scans */
77 extern const uint8_t ff_alternate_horizontal_scan[64];
78 extern const uint8_t ff_alternate_vertical_scan[64];
79 extern const uint8_t ff_zigzag_direct[64];
80 extern const uint8_t ff_zigzag248_direct[64];
82 /* pixel operations */
83 #define MAX_NEG_CROP 1024
85 /* temporary */
86 extern uint32_t ff_squareTbl[512];
87 extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
89 /* VP3 DSP functions */
90 void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
91 void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
92 void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
94 void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
95 void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
97 /* VP6 DSP functions */
98 void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride,
99 const int16_t *h_weights, const int16_t *v_weights);
101 /* 1/2^n downscaling functions from imgconvert.c */
102 void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
103 void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
104 void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
105 void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
107 void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
108 int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
110 /* minimum alignment rules ;)
111 If you notice errors in the align stuff, need more alignment for some ASM code
112 for some CPU or need to use a function with less aligned data then send a mail
113 to the ffmpeg-devel mailing list, ...
115 !warning These alignments might not match reality, (missing attribute((align))
116 stuff somewhere possible).
117 I (Michael) did not check them, these are just the alignments which I think
118 could be reached easily ...
120 !future video codecs might need functions with less strict alignment
124 void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
125 void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
126 void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
127 void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
128 void clear_blocks_c(DCTELEM *blocks);
131 /* add and put pixel (decoding) */
132 // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
133 //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
134 typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
135 typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
136 typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
137 typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
138 typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
139 typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
141 #define DEF_OLD_QPEL(name)\
142 void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
143 void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
144 void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
146 DEF_OLD_QPEL(qpel16_mc11_old_c)
147 DEF_OLD_QPEL(qpel16_mc31_old_c)
148 DEF_OLD_QPEL(qpel16_mc12_old_c)
149 DEF_OLD_QPEL(qpel16_mc32_old_c)
150 DEF_OLD_QPEL(qpel16_mc13_old_c)
151 DEF_OLD_QPEL(qpel16_mc33_old_c)
152 DEF_OLD_QPEL(qpel8_mc11_old_c)
153 DEF_OLD_QPEL(qpel8_mc31_old_c)
154 DEF_OLD_QPEL(qpel8_mc12_old_c)
155 DEF_OLD_QPEL(qpel8_mc32_old_c)
156 DEF_OLD_QPEL(qpel8_mc13_old_c)
157 DEF_OLD_QPEL(qpel8_mc33_old_c)
159 #define CALL_2X_PIXELS(a, b, n)\
160 static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
161 b(block , pixels , line_size, h);\
162 b(block+n, pixels+n, line_size, h);\
165 /* motion estimation */
166 // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
167 // although currently h<4 is not used as functions with width <8 are neither used nor implemented
168 typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
171 // for snow slices
172 typedef struct slice_buffer_s slice_buffer;
175 * Scantable.
177 typedef struct ScanTable{
178 const uint8_t *scantable;
179 uint8_t permutated[64];
180 uint8_t raster_end[64];
181 #if ARCH_PPC
182 /** Used by dct_quantize_altivec to find last-non-zero */
183 DECLARE_ALIGNED(16, uint8_t, inverse[64]);
184 #endif
185 } ScanTable;
187 void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
189 void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
190 int block_w, int block_h,
191 int src_x, int src_y, int w, int h);
194 * DSPContext.
196 typedef struct DSPContext {
197 /* pixel ops : interface with DCT */
198 void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
199 void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
200 void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
201 void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
202 void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
203 void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
204 void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
205 int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
207 * translational global motion compensation.
209 void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
211 * global motion compensation.
213 void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
214 int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
215 void (*clear_block)(DCTELEM *block/*align 16*/);
216 void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
217 int (*pix_sum)(uint8_t * pix, int line_size);
218 int (*pix_norm1)(uint8_t * pix, int line_size);
219 // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
221 me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */
222 me_cmp_func sse[6];
223 me_cmp_func hadamard8_diff[6];
224 me_cmp_func dct_sad[6];
225 me_cmp_func quant_psnr[6];
226 me_cmp_func bit[6];
227 me_cmp_func rd[6];
228 me_cmp_func vsad[6];
229 me_cmp_func vsse[6];
230 me_cmp_func nsse[6];
231 me_cmp_func w53[6];
232 me_cmp_func w97[6];
233 me_cmp_func dct_max[6];
234 me_cmp_func dct264_sad[6];
236 me_cmp_func me_pre_cmp[6];
237 me_cmp_func me_cmp[6];
238 me_cmp_func me_sub_cmp[6];
239 me_cmp_func mb_cmp[6];
240 me_cmp_func ildct_cmp[6]; //only width 16 used
241 me_cmp_func frame_skip_cmp[6]; //only width 8 used
243 int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
244 int size);
247 * Halfpel motion compensation with rounding (a+b+1)>>1.
248 * this is an array[4][4] of motion compensation functions for 4
249 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
250 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
251 * @param block destination where the result is stored
252 * @param pixels source
253 * @param line_size number of bytes in a horizontal line of block
254 * @param h height
256 op_pixels_func put_pixels_tab[4][4];
259 * Halfpel motion compensation with rounding (a+b+1)>>1.
260 * This is an array[4][4] of motion compensation functions for 4
261 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
262 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
263 * @param block destination into which the result is averaged (a+b+1)>>1
264 * @param pixels source
265 * @param line_size number of bytes in a horizontal line of block
266 * @param h height
268 op_pixels_func avg_pixels_tab[4][4];
271 * Halfpel motion compensation with no rounding (a+b)>>1.
272 * this is an array[2][4] of motion compensation functions for 2
273 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
274 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
275 * @param block destination where the result is stored
276 * @param pixels source
277 * @param line_size number of bytes in a horizontal line of block
278 * @param h height
280 op_pixels_func put_no_rnd_pixels_tab[4][4];
283 * Halfpel motion compensation with no rounding (a+b)>>1.
284 * this is an array[2][4] of motion compensation functions for 2
285 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
286 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
287 * @param block destination into which the result is averaged (a+b)>>1
288 * @param pixels source
289 * @param line_size number of bytes in a horizontal line of block
290 * @param h height
292 op_pixels_func avg_no_rnd_pixels_tab[4][4];
294 void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
297 * Thirdpel motion compensation with rounding (a+b+1)>>1.
298 * this is an array[12] of motion compensation functions for the 9 thirdpe
299 * positions<br>
300 * *pixels_tab[ xthirdpel + 4*ythirdpel ]
301 * @param block destination where the result is stored
302 * @param pixels source
303 * @param line_size number of bytes in a horizontal line of block
304 * @param h height
306 tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
307 tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
309 qpel_mc_func put_qpel_pixels_tab[2][16];
310 qpel_mc_func avg_qpel_pixels_tab[2][16];
311 qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
312 qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
313 qpel_mc_func put_mspel_pixels_tab[8];
316 * h264 Chroma MC
318 h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
319 h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
320 /* This is really one func used in VC-1 decoding */
321 h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3];
322 h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3];
324 qpel_mc_func put_h264_qpel_pixels_tab[4][16];
325 qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
327 qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
328 qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
330 h264_weight_func weight_h264_pixels_tab[10];
331 h264_biweight_func biweight_h264_pixels_tab[10];
333 /* AVS specific */
334 qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
335 qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
336 void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
337 void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
338 void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
339 void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
340 void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
342 me_cmp_func pix_abs[2][4];
344 /* huffyuv specific */
345 void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
346 void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
347 void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
349 * subtract huffyuv's variant of median prediction
350 * note, this might read from src1[-1], src2[-1]
352 void (*sub_hfyu_median_prediction)(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top);
353 void (*add_hfyu_median_prediction)(uint8_t *dst, uint8_t *top, uint8_t *diff, int w, int *left, int *left_top);
354 /* this might write to dst[w] */
355 void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
356 void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
358 void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0);
359 void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0);
360 /* v/h_loop_filter_luma_intra: align 16 */
361 void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
362 void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
363 void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0);
364 void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0);
365 void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
366 void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
367 // h264_loop_filter_strength: simd only. the C version is inlined in h264.c
368 void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
369 int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
371 void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
372 void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
374 void (*h261_loop_filter)(uint8_t *src, int stride);
376 void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
377 void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
379 void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
380 void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
382 void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride,
383 const int16_t *h_weights,const int16_t *v_weights);
385 /* assume len is a multiple of 4, and arrays are 16-byte aligned */
386 void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
387 void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
388 /* no alignment needed */
389 void (*flac_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
390 /* assume len is a multiple of 8, and arrays are 16-byte aligned */
391 void (*vector_fmul)(float *dst, const float *src, int len);
392 void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
393 /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
394 void (*vector_fmul_add_add)(float *dst, const float *src0, const float *src1, const float *src2, int src3, int len, int step);
395 /* assume len is a multiple of 4, and arrays are 16-byte aligned */
396 void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
397 /* assume len is a multiple of 8, and arrays are 16-byte aligned */
398 void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
400 /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
401 * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
402 void (*float_to_int16)(int16_t *dst, const float *src, long len);
403 void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
405 /* (I)DCT */
406 void (*fdct)(DCTELEM *block/* align 16*/);
407 void (*fdct248)(DCTELEM *block/* align 16*/);
409 /* IDCT really*/
410 void (*idct)(DCTELEM *block/* align 16*/);
413 * block -> idct -> clip to unsigned 8 bit -> dest.
414 * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
415 * @param line_size size in bytes of a horizontal line of dest
417 void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
420 * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
421 * @param line_size size in bytes of a horizontal line of dest
423 void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
426 * idct input permutation.
427 * several optimized IDCTs need a permutated input (relative to the normal order of the reference
428 * IDCT)
429 * this permutation must be performed before the idct_put/add, note, normally this can be merged
430 * with the zigzag/alternate scan<br>
431 * an example to avoid confusion:
432 * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
433 * - (x -> referece dct -> reference idct -> x)
434 * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
435 * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
437 uint8_t idct_permutation[64];
438 int idct_permutation_type;
439 #define FF_NO_IDCT_PERM 1
440 #define FF_LIBMPEG2_IDCT_PERM 2
441 #define FF_SIMPLE_IDCT_PERM 3
442 #define FF_TRANSPOSE_IDCT_PERM 4
443 #define FF_PARTTRANS_IDCT_PERM 5
444 #define FF_SSE2_IDCT_PERM 6
446 int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
447 void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
448 #define BASIS_SHIFT 16
449 #define RECON_SHIFT 6
451 void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
452 #define EDGE_WIDTH 16
454 /* h264 functions */
455 /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
456 NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
457 The reason for above, is that no 2 out of one list may use a different permutation.
459 void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
460 void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
461 void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
462 void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
463 void (*h264_dct)(DCTELEM block[4][4]);
464 void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
465 void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
466 void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
467 void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
469 /* snow wavelet */
470 void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width);
471 void (*horizontal_compose97i)(IDWTELEM *b, int width);
472 void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
474 void (*prefetch)(void *mem, int stride, int h);
476 void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
478 /* mlp/truehd functions */
479 void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff,
480 int firorder, int iirorder,
481 unsigned int filter_shift, int32_t mask, int blocksize,
482 int32_t *sample_buffer);
484 /* vc1 functions */
485 void (*vc1_inv_trans_8x8)(DCTELEM *b);
486 void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
487 void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
488 void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
489 void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
490 void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
491 void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
492 void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
493 void (*vc1_v_overlap)(uint8_t* src, int stride);
494 void (*vc1_h_overlap)(uint8_t* src, int stride);
495 void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq);
496 void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq);
497 void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq);
498 void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq);
499 void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq);
500 void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq);
501 /* put 8x8 block with bicubic interpolation and quarterpel precision
502 * last argument is actually round value instead of height
504 op_pixels_func put_vc1_mspel_pixels_tab[16];
505 op_pixels_func avg_vc1_mspel_pixels_tab[16];
507 /* intrax8 functions */
508 void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
509 void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
510 int * range, int * sum, int edges);
512 /* ape functions */
514 * Add contents of the second vector to the first one.
515 * @param len length of vectors, should be multiple of 16
517 void (*add_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
519 * Add contents of the second vector to the first one.
520 * @param len length of vectors, should be multiple of 16
522 void (*sub_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
524 * Calculate scalar product of two vectors.
525 * @param len length of vectors, should be multiple of 16
526 * @param shift number of bits to discard from product
528 int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
530 /* rv30 functions */
531 qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
532 qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
534 /* rv40 functions */
535 qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
536 qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
537 h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
538 h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
539 } DSPContext;
541 void dsputil_static_init(void);
542 void dsputil_init(DSPContext* p, AVCodecContext *avctx);
544 int ff_check_alignment(void);
547 * permute block according to permuatation.
548 * @param last last non zero element in scantable order
550 void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
552 void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
554 #define BYTE_VEC32(c) ((c)*0x01010101UL)
556 static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
558 return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
561 static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
563 return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
566 static inline int get_penalty_factor(int lambda, int lambda2, int type){
567 switch(type&0xFF){
568 default:
569 case FF_CMP_SAD:
570 return lambda>>FF_LAMBDA_SHIFT;
571 case FF_CMP_DCT:
572 return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
573 case FF_CMP_W53:
574 return (4*lambda)>>(FF_LAMBDA_SHIFT);
575 case FF_CMP_W97:
576 return (2*lambda)>>(FF_LAMBDA_SHIFT);
577 case FF_CMP_SATD:
578 case FF_CMP_DCT264:
579 return (2*lambda)>>FF_LAMBDA_SHIFT;
580 case FF_CMP_RD:
581 case FF_CMP_PSNR:
582 case FF_CMP_SSE:
583 case FF_CMP_NSSE:
584 return lambda2>>FF_LAMBDA_SHIFT;
585 case FF_CMP_BIT:
586 return 1;
591 * Empty mmx state.
592 * this must be called between any dsp function and float/double code.
593 * for example sin(); dsp->idct_put(); emms_c(); cos()
595 #define emms_c()
597 /* should be defined by architectures supporting
598 one or more MultiMedia extension */
599 int mm_support(void);
601 void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
602 void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
603 void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
604 void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
605 void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
606 void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
607 void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
608 void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
609 void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
611 #define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v)
613 #if HAVE_MMX
615 #undef emms_c
617 extern int mm_flags;
619 void add_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
620 void put_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
621 void put_signed_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size);
623 static inline void emms(void)
625 __asm__ volatile ("emms;":::"memory");
629 #define emms_c() \
631 if (mm_flags & FF_MM_MMX)\
632 emms();\
635 void dsputil_init_pix_mmx(DSPContext* c, AVCodecContext *avctx);
637 #elif ARCH_ARM
639 extern int mm_flags;
641 #if HAVE_NEON
642 # define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v)
643 # define STRIDE_ALIGN 16
644 #endif
646 #elif ARCH_PPC
648 extern int mm_flags;
650 #define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v)
651 #define STRIDE_ALIGN 16
653 #elif HAVE_MMI
655 #define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v)
656 #define STRIDE_ALIGN 16
658 #else
660 #define mm_flags 0
661 #define mm_support() 0
663 #endif
665 #ifndef DECLARE_ALIGNED_8
666 # define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(8, t, v)
667 #endif
669 #ifndef STRIDE_ALIGN
670 # define STRIDE_ALIGN 8
671 #endif
673 /* PSNR */
674 void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
675 int orig_linesize[3], int coded_linesize,
676 AVCodecContext *avctx);
678 /* FFT computation */
680 /* NOTE: soon integer code will be added, so you must use the
681 FFTSample type */
682 typedef float FFTSample;
684 struct MDCTContext;
686 typedef struct FFTComplex {
687 FFTSample re, im;
688 } FFTComplex;
690 typedef struct FFTContext {
691 int nbits;
692 int inverse;
693 uint16_t *revtab;
694 FFTComplex *exptab;
695 FFTComplex *exptab1; /* only used by SSE code */
696 FFTComplex *tmp_buf;
697 void (*fft_permute)(struct FFTContext *s, FFTComplex *z);
698 void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
699 void (*imdct_calc)(struct MDCTContext *s, FFTSample *output, const FFTSample *input);
700 void (*imdct_half)(struct MDCTContext *s, FFTSample *output, const FFTSample *input);
701 } FFTContext;
703 extern FFTSample* ff_cos_tabs[13];
706 * Sets up a complex FFT.
707 * @param nbits log2 of the length of the input array
708 * @param inverse if 0 perform the forward transform, if 1 perform the inverse
710 int ff_fft_init(FFTContext *s, int nbits, int inverse);
711 void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
712 void ff_fft_permute_sse(FFTContext *s, FFTComplex *z);
713 void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
714 void ff_fft_calc_sse(FFTContext *s, FFTComplex *z);
715 void ff_fft_calc_3dn(FFTContext *s, FFTComplex *z);
716 void ff_fft_calc_3dn2(FFTContext *s, FFTComplex *z);
717 void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
720 * Do the permutation needed BEFORE calling ff_fft_calc().
722 static inline void ff_fft_permute(FFTContext *s, FFTComplex *z)
724 s->fft_permute(s, z);
727 * Do a complex FFT with the parameters defined in ff_fft_init(). The
728 * input data must be permuted before. No 1.0/sqrt(n) normalization is done.
730 static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
732 s->fft_calc(s, z);
734 void ff_fft_end(FFTContext *s);
736 /* MDCT computation */
738 typedef struct MDCTContext {
739 int n; /* size of MDCT (i.e. number of input data * 2) */
740 int nbits; /* n = 2^nbits */
741 /* pre/post rotation tables */
742 FFTSample *tcos;
743 FFTSample *tsin;
744 FFTContext fft;
745 } MDCTContext;
747 static inline void ff_imdct_calc(MDCTContext *s, FFTSample *output, const FFTSample *input)
749 s->fft.imdct_calc(s, output, input);
751 static inline void ff_imdct_half(MDCTContext *s, FFTSample *output, const FFTSample *input)
753 s->fft.imdct_half(s, output, input);
757 * Generate a Kaiser-Bessel Derived Window.
758 * @param window pointer to half window
759 * @param alpha determines window shape
760 * @param n size of half window
762 void ff_kbd_window_init(float *window, float alpha, int n);
765 * Generate a sine window.
766 * @param window pointer to half window
767 * @param n size of half window
769 void ff_sine_window_init(float *window, int n);
770 extern float ff_sine_128 [ 128];
771 extern float ff_sine_256 [ 256];
772 extern float ff_sine_512 [ 512];
773 extern float ff_sine_1024[1024];
774 extern float ff_sine_2048[2048];
775 extern float ff_sine_4096[4096];
776 extern float *ff_sine_windows[6];
778 int ff_mdct_init(MDCTContext *s, int nbits, int inverse, double scale);
779 void ff_imdct_calc_c(MDCTContext *s, FFTSample *output, const FFTSample *input);
780 void ff_imdct_half_c(MDCTContext *s, FFTSample *output, const FFTSample *input);
781 void ff_imdct_calc_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input);
782 void ff_imdct_half_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input);
783 void ff_imdct_calc_3dn2(MDCTContext *s, FFTSample *output, const FFTSample *input);
784 void ff_imdct_half_3dn2(MDCTContext *s, FFTSample *output, const FFTSample *input);
785 void ff_imdct_calc_sse(MDCTContext *s, FFTSample *output, const FFTSample *input);
786 void ff_imdct_half_sse(MDCTContext *s, FFTSample *output, const FFTSample *input);
787 void ff_mdct_calc(MDCTContext *s, FFTSample *out, const FFTSample *input);
788 void ff_mdct_end(MDCTContext *s);
790 /* Real Discrete Fourier Transform */
792 enum RDFTransformType {
793 RDFT,
794 IRDFT,
795 RIDFT,
796 IRIDFT,
799 typedef struct {
800 int nbits;
801 int inverse;
802 int sign_convention;
804 /* pre/post rotation tables */
805 FFTSample *tcos;
806 FFTSample *tsin;
807 FFTContext fft;
808 } RDFTContext;
811 * Sets up a real FFT.
812 * @param nbits log2 of the length of the input array
813 * @param trans the type of transform
815 int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans);
816 void ff_rdft_calc(RDFTContext *s, FFTSample *data);
817 void ff_rdft_end(RDFTContext *s);
819 #define WRAPPER8_16(name8, name16)\
820 static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
821 return name8(s, dst , src , stride, h)\
822 +name8(s, dst+8 , src+8 , stride, h);\
825 #define WRAPPER8_16_SQ(name8, name16)\
826 static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
827 int score=0;\
828 score +=name8(s, dst , src , stride, 8);\
829 score +=name8(s, dst+8 , src+8 , stride, 8);\
830 if(h==16){\
831 dst += 8*stride;\
832 src += 8*stride;\
833 score +=name8(s, dst , src , stride, 8);\
834 score +=name8(s, dst+8 , src+8 , stride, 8);\
836 return score;\
840 static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
842 int i;
843 for(i=0; i<h; i++)
845 AV_WN16(dst , AV_RN16(src ));
846 dst+=dstStride;
847 src+=srcStride;
851 static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
853 int i;
854 for(i=0; i<h; i++)
856 AV_WN32(dst , AV_RN32(src ));
857 dst+=dstStride;
858 src+=srcStride;
862 static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
864 int i;
865 for(i=0; i<h; i++)
867 AV_WN32(dst , AV_RN32(src ));
868 AV_WN32(dst+4 , AV_RN32(src+4 ));
869 dst+=dstStride;
870 src+=srcStride;
874 static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
876 int i;
877 for(i=0; i<h; i++)
879 AV_WN32(dst , AV_RN32(src ));
880 AV_WN32(dst+4 , AV_RN32(src+4 ));
881 dst[8]= src[8];
882 dst+=dstStride;
883 src+=srcStride;
887 static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
889 int i;
890 for(i=0; i<h; i++)
892 AV_WN32(dst , AV_RN32(src ));
893 AV_WN32(dst+4 , AV_RN32(src+4 ));
894 AV_WN32(dst+8 , AV_RN32(src+8 ));
895 AV_WN32(dst+12, AV_RN32(src+12));
896 dst+=dstStride;
897 src+=srcStride;
901 static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
903 int i;
904 for(i=0; i<h; i++)
906 AV_WN32(dst , AV_RN32(src ));
907 AV_WN32(dst+4 , AV_RN32(src+4 ));
908 AV_WN32(dst+8 , AV_RN32(src+8 ));
909 AV_WN32(dst+12, AV_RN32(src+12));
910 dst[16]= src[16];
911 dst+=dstStride;
912 src+=srcStride;
916 #endif /* AVCODEC_DSPUTIL_H */