ac3dec: simplify zero-bit mantissa dithering by calculating it
[FFMpeg-mirror/lagarith.git] / libavcodec / ac3dec.c
blob56024bb7a0f738bbc064a3f0c484d2793df6a0f3
1 /*
2 * AC-3 Audio Decoder
3 * This code was developed as part of Google Summer of Code 2006.
4 * E-AC-3 support was added as part of Google Summer of Code 2007.
6 * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
7 * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
8 * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
10 * This file is part of FFmpeg.
12 * FFmpeg is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
17 * FFmpeg is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with FFmpeg; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <stdio.h>
28 #include <stddef.h>
29 #include <math.h>
30 #include <string.h>
32 #include "libavutil/crc.h"
33 #include "internal.h"
34 #include "aac_ac3_parser.h"
35 #include "ac3_parser.h"
36 #include "ac3dec.h"
37 #include "ac3dec_data.h"
39 /** Large enough for maximum possible frame size when the specification limit is ignored */
40 #define AC3_FRAME_BUFFER_SIZE 32768
42 /**
43 * table for ungrouping 3 values in 7 bits.
44 * used for exponents and bap=2 mantissas
46 static uint8_t ungroup_3_in_7_bits_tab[128][3];
49 /** tables for ungrouping mantissas */
50 static int b1_mantissas[32][3];
51 static int b2_mantissas[128][3];
52 static int b3_mantissas[8];
53 static int b4_mantissas[128][2];
54 static int b5_mantissas[16];
56 /**
57 * Quantization table: levels for symmetric. bits for asymmetric.
58 * reference: Table 7.18 Mapping of bap to Quantizer
60 static const uint8_t quantization_tab[16] = {
61 0, 3, 5, 7, 11, 15,
62 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
65 /** dynamic range table. converts codes to scale factors. */
66 static float dynamic_range_tab[256];
68 /** Adjustments in dB gain */
69 #define LEVEL_PLUS_3DB 1.4142135623730950
70 #define LEVEL_PLUS_1POINT5DB 1.1892071150027209
71 #define LEVEL_MINUS_1POINT5DB 0.8408964152537145
72 #define LEVEL_MINUS_3DB 0.7071067811865476
73 #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
74 #define LEVEL_MINUS_6DB 0.5000000000000000
75 #define LEVEL_MINUS_9DB 0.3535533905932738
76 #define LEVEL_ZERO 0.0000000000000000
77 #define LEVEL_ONE 1.0000000000000000
79 static const float gain_levels[9] = {
80 LEVEL_PLUS_3DB,
81 LEVEL_PLUS_1POINT5DB,
82 LEVEL_ONE,
83 LEVEL_MINUS_1POINT5DB,
84 LEVEL_MINUS_3DB,
85 LEVEL_MINUS_4POINT5DB,
86 LEVEL_MINUS_6DB,
87 LEVEL_ZERO,
88 LEVEL_MINUS_9DB
91 /**
92 * Table for center mix levels
93 * reference: Section 5.4.2.4 cmixlev
95 static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
97 /**
98 * Table for surround mix levels
99 * reference: Section 5.4.2.5 surmixlev
101 static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
104 * Table for default stereo downmixing coefficients
105 * reference: Section 7.8.2 Downmixing Into Two Channels
107 static const uint8_t ac3_default_coeffs[8][5][2] = {
108 { { 2, 7 }, { 7, 2 }, },
109 { { 4, 4 }, },
110 { { 2, 7 }, { 7, 2 }, },
111 { { 2, 7 }, { 5, 5 }, { 7, 2 }, },
112 { { 2, 7 }, { 7, 2 }, { 6, 6 }, },
113 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
114 { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
115 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
119 * Symmetrical Dequantization
120 * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
121 * Tables 7.19 to 7.23
123 static inline int
124 symmetric_dequant(int code, int levels)
126 return ((code - (levels >> 1)) << 24) / levels;
130 * Initialize tables at runtime.
132 static av_cold void ac3_tables_init(void)
134 int i;
136 /* generate table for ungrouping 3 values in 7 bits
137 reference: Section 7.1.3 Exponent Decoding */
138 for(i=0; i<128; i++) {
139 ungroup_3_in_7_bits_tab[i][0] = i / 25;
140 ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
141 ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
144 /* generate grouped mantissa tables
145 reference: Section 7.3.5 Ungrouping of Mantissas */
146 for(i=0; i<32; i++) {
147 /* bap=1 mantissas */
148 b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
149 b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
150 b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
152 for(i=0; i<128; i++) {
153 /* bap=2 mantissas */
154 b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
155 b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
156 b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
158 /* bap=4 mantissas */
159 b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
160 b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
162 /* generate ungrouped mantissa tables
163 reference: Tables 7.21 and 7.23 */
164 for(i=0; i<7; i++) {
165 /* bap=3 mantissas */
166 b3_mantissas[i] = symmetric_dequant(i, 7);
168 for(i=0; i<15; i++) {
169 /* bap=5 mantissas */
170 b5_mantissas[i] = symmetric_dequant(i, 15);
173 /* generate dynamic range table
174 reference: Section 7.7.1 Dynamic Range Control */
175 for(i=0; i<256; i++) {
176 int v = (i >> 5) - ((i >> 7) << 3) - 5;
177 dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
183 * AVCodec initialization
185 static av_cold int ac3_decode_init(AVCodecContext *avctx)
187 AC3DecodeContext *s = avctx->priv_data;
188 s->avctx = avctx;
190 ac3_common_init();
191 ac3_tables_init();
192 ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
193 ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
194 ff_kbd_window_init(s->window, 5.0, 256);
195 dsputil_init(&s->dsp, avctx);
196 av_lfg_init(&s->dith_state, 0);
198 /* set bias values for float to int16 conversion */
199 if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
200 s->add_bias = 385.0f;
201 s->mul_bias = 1.0f;
202 } else {
203 s->add_bias = 0.0f;
204 s->mul_bias = 32767.0f;
207 /* allow downmixing to stereo or mono */
208 if (avctx->channels > 0 && avctx->request_channels > 0 &&
209 avctx->request_channels < avctx->channels &&
210 avctx->request_channels <= 2) {
211 avctx->channels = avctx->request_channels;
213 s->downmixed = 1;
215 /* allocate context input buffer */
216 if (avctx->error_recognition >= FF_ER_CAREFUL) {
217 s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
218 if (!s->input_buffer)
219 return AVERROR_NOMEM;
222 avctx->sample_fmt = SAMPLE_FMT_S16;
223 return 0;
227 * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
228 * GetBitContext within AC3DecodeContext must point to
229 * the start of the synchronized AC-3 bitstream.
231 static int ac3_parse_header(AC3DecodeContext *s)
233 GetBitContext *gbc = &s->gbc;
234 int i;
236 /* read the rest of the bsi. read twice for dual mono mode. */
237 i = !(s->channel_mode);
238 do {
239 skip_bits(gbc, 5); // skip dialog normalization
240 if (get_bits1(gbc))
241 skip_bits(gbc, 8); //skip compression
242 if (get_bits1(gbc))
243 skip_bits(gbc, 8); //skip language code
244 if (get_bits1(gbc))
245 skip_bits(gbc, 7); //skip audio production information
246 } while (i--);
248 skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
250 /* skip the timecodes (or extra bitstream information for Alternate Syntax)
251 TODO: read & use the xbsi1 downmix levels */
252 if (get_bits1(gbc))
253 skip_bits(gbc, 14); //skip timecode1 / xbsi1
254 if (get_bits1(gbc))
255 skip_bits(gbc, 14); //skip timecode2 / xbsi2
257 /* skip additional bitstream info */
258 if (get_bits1(gbc)) {
259 i = get_bits(gbc, 6);
260 do {
261 skip_bits(gbc, 8);
262 } while(i--);
265 return 0;
269 * Common function to parse AC-3 or E-AC-3 frame header
271 static int parse_frame_header(AC3DecodeContext *s)
273 AC3HeaderInfo hdr;
274 int err;
276 err = ff_ac3_parse_header(&s->gbc, &hdr);
277 if(err)
278 return err;
280 /* get decoding parameters from header info */
281 s->bit_alloc_params.sr_code = hdr.sr_code;
282 s->channel_mode = hdr.channel_mode;
283 s->channel_layout = hdr.channel_layout;
284 s->lfe_on = hdr.lfe_on;
285 s->bit_alloc_params.sr_shift = hdr.sr_shift;
286 s->sample_rate = hdr.sample_rate;
287 s->bit_rate = hdr.bit_rate;
288 s->channels = hdr.channels;
289 s->fbw_channels = s->channels - s->lfe_on;
290 s->lfe_ch = s->fbw_channels + 1;
291 s->frame_size = hdr.frame_size;
292 s->center_mix_level = hdr.center_mix_level;
293 s->surround_mix_level = hdr.surround_mix_level;
294 s->num_blocks = hdr.num_blocks;
295 s->frame_type = hdr.frame_type;
296 s->substreamid = hdr.substreamid;
298 if(s->lfe_on) {
299 s->start_freq[s->lfe_ch] = 0;
300 s->end_freq[s->lfe_ch] = 7;
301 s->num_exp_groups[s->lfe_ch] = 2;
302 s->channel_in_cpl[s->lfe_ch] = 0;
305 if (hdr.bitstream_id <= 10) {
306 s->eac3 = 0;
307 s->snr_offset_strategy = 2;
308 s->block_switch_syntax = 1;
309 s->dither_flag_syntax = 1;
310 s->bit_allocation_syntax = 1;
311 s->fast_gain_syntax = 0;
312 s->first_cpl_leak = 0;
313 s->dba_syntax = 1;
314 s->skip_syntax = 1;
315 memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
316 return ac3_parse_header(s);
317 } else if (CONFIG_EAC3_DECODER) {
318 s->eac3 = 1;
319 return ff_eac3_parse_header(s);
320 } else {
321 av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
322 return -1;
327 * Set stereo downmixing coefficients based on frame header info.
328 * reference: Section 7.8.2 Downmixing Into Two Channels
330 static void set_downmix_coeffs(AC3DecodeContext *s)
332 int i;
333 float cmix = gain_levels[center_levels[s->center_mix_level]];
334 float smix = gain_levels[surround_levels[s->surround_mix_level]];
335 float norm0, norm1;
337 for(i=0; i<s->fbw_channels; i++) {
338 s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
339 s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
341 if(s->channel_mode > 1 && s->channel_mode & 1) {
342 s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
344 if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
345 int nf = s->channel_mode - 2;
346 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
348 if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
349 int nf = s->channel_mode - 4;
350 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
353 /* renormalize */
354 norm0 = norm1 = 0.0;
355 for(i=0; i<s->fbw_channels; i++) {
356 norm0 += s->downmix_coeffs[i][0];
357 norm1 += s->downmix_coeffs[i][1];
359 norm0 = 1.0f / norm0;
360 norm1 = 1.0f / norm1;
361 for(i=0; i<s->fbw_channels; i++) {
362 s->downmix_coeffs[i][0] *= norm0;
363 s->downmix_coeffs[i][1] *= norm1;
366 if(s->output_mode == AC3_CHMODE_MONO) {
367 for(i=0; i<s->fbw_channels; i++)
368 s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
373 * Decode the grouped exponents according to exponent strategy.
374 * reference: Section 7.1.3 Exponent Decoding
376 static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
377 uint8_t absexp, int8_t *dexps)
379 int i, j, grp, group_size;
380 int dexp[256];
381 int expacc, prevexp;
383 /* unpack groups */
384 group_size = exp_strategy + (exp_strategy == EXP_D45);
385 for(grp=0,i=0; grp<ngrps; grp++) {
386 expacc = get_bits(gbc, 7);
387 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
388 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
389 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
392 /* convert to absolute exps and expand groups */
393 prevexp = absexp;
394 for(i=0,j=0; i<ngrps*3; i++) {
395 prevexp += dexp[i] - 2;
396 if (prevexp > 24U)
397 return -1;
398 switch (group_size) {
399 case 4: dexps[j++] = prevexp;
400 dexps[j++] = prevexp;
401 case 2: dexps[j++] = prevexp;
402 case 1: dexps[j++] = prevexp;
405 return 0;
409 * Generate transform coefficients for each coupled channel in the coupling
410 * range using the coupling coefficients and coupling coordinates.
411 * reference: Section 7.4.3 Coupling Coordinate Format
413 static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
415 int i, j, ch, bnd;
417 i = s->start_freq[CPL_CH];
418 for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
419 for (j = 0; j < s->cpl_band_sizes[bnd]; j++,i++) {
420 for(ch=1; ch<=s->fbw_channels; ch++) {
421 if(s->channel_in_cpl[ch]) {
422 s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] *
423 (int64_t)s->cpl_coords[ch][bnd]) >> 23;
424 if (ch == 2 && s->phase_flags[bnd])
425 s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
433 * Grouped mantissas for 3-level 5-level and 11-level quantization
435 typedef struct {
436 int b1_mant[2];
437 int b2_mant[2];
438 int b4_mant;
439 int b1;
440 int b2;
441 int b4;
442 } mant_groups;
445 * Decode the transform coefficients for a particular channel
446 * reference: Section 7.3 Quantization and Decoding of Mantissas
448 static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
450 int start_freq = s->start_freq[ch_index];
451 int end_freq = s->end_freq[ch_index];
452 uint8_t *baps = s->bap[ch_index];
453 int8_t *exps = s->dexps[ch_index];
454 int *coeffs = s->fixed_coeffs[ch_index];
455 int dither = (ch_index == CPL_CH) || s->dither_flag[ch_index];
456 GetBitContext *gbc = &s->gbc;
457 int freq;
459 for(freq = start_freq; freq < end_freq; freq++){
460 int bap = baps[freq];
461 int mantissa;
462 switch(bap){
463 case 0:
464 if (dither)
465 mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
466 else
467 mantissa = 0;
468 break;
469 case 1:
470 if(m->b1){
471 m->b1--;
472 mantissa = m->b1_mant[m->b1];
474 else{
475 int bits = get_bits(gbc, 5);
476 mantissa = b1_mantissas[bits][0];
477 m->b1_mant[1] = b1_mantissas[bits][1];
478 m->b1_mant[0] = b1_mantissas[bits][2];
479 m->b1 = 2;
481 break;
482 case 2:
483 if(m->b2){
484 m->b2--;
485 mantissa = m->b2_mant[m->b2];
487 else{
488 int bits = get_bits(gbc, 7);
489 mantissa = b2_mantissas[bits][0];
490 m->b2_mant[1] = b2_mantissas[bits][1];
491 m->b2_mant[0] = b2_mantissas[bits][2];
492 m->b2 = 2;
494 break;
495 case 3:
496 mantissa = b3_mantissas[get_bits(gbc, 3)];
497 break;
498 case 4:
499 if(m->b4){
500 m->b4 = 0;
501 mantissa = m->b4_mant;
503 else{
504 int bits = get_bits(gbc, 7);
505 mantissa = b4_mantissas[bits][0];
506 m->b4_mant = b4_mantissas[bits][1];
507 m->b4 = 1;
509 break;
510 case 5:
511 mantissa = b5_mantissas[get_bits(gbc, 4)];
512 break;
513 default: /* 6 to 15 */
514 mantissa = get_bits(gbc, quantization_tab[bap]);
515 /* Shift mantissa and sign-extend it. */
516 mantissa = (mantissa << (32-quantization_tab[bap]))>>8;
517 break;
519 coeffs[freq] = mantissa >> exps[freq];
524 * Remove random dithering from coupling range coefficients with zero-bit
525 * mantissas for coupled channels which do not use dithering.
526 * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
528 static void remove_dithering(AC3DecodeContext *s) {
529 int ch, i;
531 for(ch=1; ch<=s->fbw_channels; ch++) {
532 if(!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
533 for(i = s->start_freq[CPL_CH]; i<s->end_freq[CPL_CH]; i++) {
534 if(!s->bap[CPL_CH][i])
535 s->fixed_coeffs[ch][i] = 0;
541 static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
542 mant_groups *m)
544 if (!s->channel_uses_aht[ch]) {
545 ac3_decode_transform_coeffs_ch(s, ch, m);
546 } else {
547 /* if AHT is used, mantissas for all blocks are encoded in the first
548 block of the frame. */
549 int bin;
550 if (!blk && CONFIG_EAC3_DECODER)
551 ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
552 for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
553 s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
559 * Decode the transform coefficients.
561 static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
563 int ch, end;
564 int got_cplchan = 0;
565 mant_groups m;
567 m.b1 = m.b2 = m.b4 = 0;
569 for (ch = 1; ch <= s->channels; ch++) {
570 /* transform coefficients for full-bandwidth channel */
571 decode_transform_coeffs_ch(s, blk, ch, &m);
572 /* tranform coefficients for coupling channel come right after the
573 coefficients for the first coupled channel*/
574 if (s->channel_in_cpl[ch]) {
575 if (!got_cplchan) {
576 decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
577 calc_transform_coeffs_cpl(s);
578 got_cplchan = 1;
580 end = s->end_freq[CPL_CH];
581 } else {
582 end = s->end_freq[ch];
585 s->fixed_coeffs[ch][end] = 0;
586 while(++end < 256);
589 /* zero the dithered coefficients for appropriate channels */
590 remove_dithering(s);
594 * Stereo rematrixing.
595 * reference: Section 7.5.4 Rematrixing : Decoding Technique
597 static void do_rematrixing(AC3DecodeContext *s)
599 int bnd, i;
600 int end, bndend;
601 int tmp0, tmp1;
603 end = FFMIN(s->end_freq[1], s->end_freq[2]);
605 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
606 if(s->rematrixing_flags[bnd]) {
607 bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
608 for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
609 tmp0 = s->fixed_coeffs[1][i];
610 tmp1 = s->fixed_coeffs[2][i];
611 s->fixed_coeffs[1][i] = tmp0 + tmp1;
612 s->fixed_coeffs[2][i] = tmp0 - tmp1;
619 * Inverse MDCT Transform.
620 * Convert frequency domain coefficients to time-domain audio samples.
621 * reference: Section 7.9.4 Transformation Equations
623 static inline void do_imdct(AC3DecodeContext *s, int channels)
625 int ch;
626 float add_bias = s->add_bias;
627 if(s->out_channels==1 && channels>1)
628 add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
630 for (ch=1; ch<=channels; ch++) {
631 if (s->block_switch[ch]) {
632 int i;
633 float *x = s->tmp_output+128;
634 for(i=0; i<128; i++)
635 x[i] = s->transform_coeffs[ch][2*i];
636 ff_imdct_half(&s->imdct_256, s->tmp_output, x);
637 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
638 for(i=0; i<128; i++)
639 x[i] = s->transform_coeffs[ch][2*i+1];
640 ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
641 } else {
642 ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
643 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
644 memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
650 * Downmix the output to mono or stereo.
652 void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
654 int i, j;
655 float v0, v1;
656 if(out_ch == 2) {
657 for(i=0; i<len; i++) {
658 v0 = v1 = 0.0f;
659 for(j=0; j<in_ch; j++) {
660 v0 += samples[j][i] * matrix[j][0];
661 v1 += samples[j][i] * matrix[j][1];
663 samples[0][i] = v0;
664 samples[1][i] = v1;
666 } else if(out_ch == 1) {
667 for(i=0; i<len; i++) {
668 v0 = 0.0f;
669 for(j=0; j<in_ch; j++)
670 v0 += samples[j][i] * matrix[j][0];
671 samples[0][i] = v0;
677 * Upmix delay samples from stereo to original channel layout.
679 static void ac3_upmix_delay(AC3DecodeContext *s)
681 int channel_data_size = sizeof(s->delay[0]);
682 switch(s->channel_mode) {
683 case AC3_CHMODE_DUALMONO:
684 case AC3_CHMODE_STEREO:
685 /* upmix mono to stereo */
686 memcpy(s->delay[1], s->delay[0], channel_data_size);
687 break;
688 case AC3_CHMODE_2F2R:
689 memset(s->delay[3], 0, channel_data_size);
690 case AC3_CHMODE_2F1R:
691 memset(s->delay[2], 0, channel_data_size);
692 break;
693 case AC3_CHMODE_3F2R:
694 memset(s->delay[4], 0, channel_data_size);
695 case AC3_CHMODE_3F1R:
696 memset(s->delay[3], 0, channel_data_size);
697 case AC3_CHMODE_3F:
698 memcpy(s->delay[2], s->delay[1], channel_data_size);
699 memset(s->delay[1], 0, channel_data_size);
700 break;
705 * Decode band structure for coupling, spectral extension, or enhanced coupling.
706 * The band structure defines how many subbands are in each band. For each
707 * subband in the range, 1 means it is combined with the previous band, and 0
708 * means that it starts a new band.
710 * @param[in] gbc bit reader context
711 * @param[in] blk block number
712 * @param[in] eac3 flag to indicate E-AC-3
713 * @param[in] ecpl flag to indicate enhanced coupling
714 * @param[in] start_subband subband number for start of range
715 * @param[in] end_subband subband number for end of range
716 * @param[in] default_band_struct default band structure table
717 * @param[out] num_bands number of bands (optionally NULL)
718 * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
720 static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
721 int ecpl, int start_subband, int end_subband,
722 const uint8_t *default_band_struct,
723 int *num_bands, uint8_t *band_sizes)
725 int subbnd, bnd, n_subbands, n_bands=0;
726 uint8_t bnd_sz[22];
727 uint8_t coded_band_struct[22];
728 const uint8_t *band_struct;
730 n_subbands = end_subband - start_subband;
732 /* decode band structure from bitstream or use default */
733 if (!eac3 || get_bits1(gbc)) {
734 for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
735 coded_band_struct[subbnd] = get_bits1(gbc);
737 band_struct = coded_band_struct;
738 } else if (!blk) {
739 band_struct = &default_band_struct[start_subband+1];
740 } else {
741 /* no change in band structure */
742 return;
745 /* calculate number of bands and band sizes based on band structure.
746 note that the first 4 subbands in enhanced coupling span only 6 bins
747 instead of 12. */
748 if (num_bands || band_sizes ) {
749 n_bands = n_subbands;
750 bnd_sz[0] = ecpl ? 6 : 12;
751 for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
752 int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
753 if (band_struct[subbnd-1]) {
754 n_bands--;
755 bnd_sz[bnd] += subbnd_size;
756 } else {
757 bnd_sz[++bnd] = subbnd_size;
762 /* set optional output params */
763 if (num_bands)
764 *num_bands = n_bands;
765 if (band_sizes)
766 memcpy(band_sizes, bnd_sz, n_bands);
770 * Decode a single audio block from the AC-3 bitstream.
772 static int decode_audio_block(AC3DecodeContext *s, int blk)
774 int fbw_channels = s->fbw_channels;
775 int channel_mode = s->channel_mode;
776 int i, bnd, seg, ch;
777 int different_transforms;
778 int downmix_output;
779 int cpl_in_use;
780 GetBitContext *gbc = &s->gbc;
781 uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
783 memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
785 /* block switch flags */
786 different_transforms = 0;
787 if (s->block_switch_syntax) {
788 for (ch = 1; ch <= fbw_channels; ch++) {
789 s->block_switch[ch] = get_bits1(gbc);
790 if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
791 different_transforms = 1;
795 /* dithering flags */
796 if (s->dither_flag_syntax) {
797 for (ch = 1; ch <= fbw_channels; ch++) {
798 s->dither_flag[ch] = get_bits1(gbc);
802 /* dynamic range */
803 i = !(s->channel_mode);
804 do {
805 if(get_bits1(gbc)) {
806 s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
807 s->avctx->drc_scale)+1.0;
808 } else if(blk == 0) {
809 s->dynamic_range[i] = 1.0f;
811 } while(i--);
813 /* spectral extension strategy */
814 if (s->eac3 && (!blk || get_bits1(gbc))) {
815 if (get_bits1(gbc)) {
816 av_log_missing_feature(s->avctx, "Spectral extension", 1);
817 return -1;
819 /* TODO: parse spectral extension strategy info */
822 /* TODO: spectral extension coordinates */
824 /* coupling strategy */
825 if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
826 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
827 if (!s->eac3)
828 s->cpl_in_use[blk] = get_bits1(gbc);
829 if (s->cpl_in_use[blk]) {
830 /* coupling in use */
831 int cpl_start_subband, cpl_end_subband;
833 if (channel_mode < AC3_CHMODE_STEREO) {
834 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
835 return -1;
838 /* check for enhanced coupling */
839 if (s->eac3 && get_bits1(gbc)) {
840 /* TODO: parse enhanced coupling strategy info */
841 av_log_missing_feature(s->avctx, "Enhanced coupling", 1);
842 return -1;
845 /* determine which channels are coupled */
846 if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
847 s->channel_in_cpl[1] = 1;
848 s->channel_in_cpl[2] = 1;
849 } else {
850 for (ch = 1; ch <= fbw_channels; ch++)
851 s->channel_in_cpl[ch] = get_bits1(gbc);
854 /* phase flags in use */
855 if (channel_mode == AC3_CHMODE_STEREO)
856 s->phase_flags_in_use = get_bits1(gbc);
858 /* coupling frequency range */
859 /* TODO: modify coupling end freq if spectral extension is used */
860 cpl_start_subband = get_bits(gbc, 4);
861 cpl_end_subband = get_bits(gbc, 4) + 3;
862 if (cpl_start_subband >= cpl_end_subband) {
863 av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
864 cpl_start_subband, cpl_end_subband);
865 return -1;
867 s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
868 s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37;
870 decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
871 cpl_end_subband,
872 ff_eac3_default_cpl_band_struct,
873 &s->num_cpl_bands, s->cpl_band_sizes);
874 } else {
875 /* coupling not in use */
876 for (ch = 1; ch <= fbw_channels; ch++) {
877 s->channel_in_cpl[ch] = 0;
878 s->first_cpl_coords[ch] = 1;
880 s->first_cpl_leak = s->eac3;
881 s->phase_flags_in_use = 0;
883 } else if (!s->eac3) {
884 if(!blk) {
885 av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
886 return -1;
887 } else {
888 s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
891 cpl_in_use = s->cpl_in_use[blk];
893 /* coupling coordinates */
894 if (cpl_in_use) {
895 int cpl_coords_exist = 0;
897 for (ch = 1; ch <= fbw_channels; ch++) {
898 if (s->channel_in_cpl[ch]) {
899 if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
900 int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
901 s->first_cpl_coords[ch] = 0;
902 cpl_coords_exist = 1;
903 master_cpl_coord = 3 * get_bits(gbc, 2);
904 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
905 cpl_coord_exp = get_bits(gbc, 4);
906 cpl_coord_mant = get_bits(gbc, 4);
907 if (cpl_coord_exp == 15)
908 s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
909 else
910 s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
911 s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
913 } else if (!blk) {
914 av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
915 return -1;
917 } else {
918 /* channel not in coupling */
919 s->first_cpl_coords[ch] = 1;
922 /* phase flags */
923 if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
924 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
925 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
930 /* stereo rematrixing strategy and band structure */
931 if (channel_mode == AC3_CHMODE_STEREO) {
932 if ((s->eac3 && !blk) || get_bits1(gbc)) {
933 s->num_rematrixing_bands = 4;
934 if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
935 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
936 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
937 s->rematrixing_flags[bnd] = get_bits1(gbc);
938 } else if (!blk) {
939 av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
940 return -1;
944 /* exponent strategies for each channel */
945 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
946 if (!s->eac3)
947 s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
948 if(s->exp_strategy[blk][ch] != EXP_REUSE)
949 bit_alloc_stages[ch] = 3;
952 /* channel bandwidth */
953 for (ch = 1; ch <= fbw_channels; ch++) {
954 s->start_freq[ch] = 0;
955 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
956 int group_size;
957 int prev = s->end_freq[ch];
958 if (s->channel_in_cpl[ch])
959 s->end_freq[ch] = s->start_freq[CPL_CH];
960 else {
961 int bandwidth_code = get_bits(gbc, 6);
962 if (bandwidth_code > 60) {
963 av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
964 return -1;
966 s->end_freq[ch] = bandwidth_code * 3 + 73;
968 group_size = 3 << (s->exp_strategy[blk][ch] - 1);
969 s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
970 if(blk > 0 && s->end_freq[ch] != prev)
971 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
974 if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
975 s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
976 (3 << (s->exp_strategy[blk][CPL_CH] - 1));
979 /* decode exponents for each channel */
980 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
981 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
982 s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
983 if (decode_exponents(gbc, s->exp_strategy[blk][ch],
984 s->num_exp_groups[ch], s->dexps[ch][0],
985 &s->dexps[ch][s->start_freq[ch]+!!ch])) {
986 av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
987 return -1;
989 if(ch != CPL_CH && ch != s->lfe_ch)
990 skip_bits(gbc, 2); /* skip gainrng */
994 /* bit allocation information */
995 if (s->bit_allocation_syntax) {
996 if (get_bits1(gbc)) {
997 s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
998 s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
999 s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
1000 s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
1001 s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
1002 for(ch=!cpl_in_use; ch<=s->channels; ch++)
1003 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1004 } else if (!blk) {
1005 av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
1006 return -1;
1010 /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
1011 if(!s->eac3 || !blk){
1012 if(s->snr_offset_strategy && get_bits1(gbc)) {
1013 int snr = 0;
1014 int csnr;
1015 csnr = (get_bits(gbc, 6) - 15) << 4;
1016 for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
1017 /* snr offset */
1018 if (ch == i || s->snr_offset_strategy == 2)
1019 snr = (csnr + get_bits(gbc, 4)) << 2;
1020 /* run at least last bit allocation stage if snr offset changes */
1021 if(blk && s->snr_offset[ch] != snr) {
1022 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
1024 s->snr_offset[ch] = snr;
1026 /* fast gain (normal AC-3 only) */
1027 if (!s->eac3) {
1028 int prev = s->fast_gain[ch];
1029 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1030 /* run last 2 bit allocation stages if fast gain changes */
1031 if(blk && prev != s->fast_gain[ch])
1032 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1035 } else if (!s->eac3 && !blk) {
1036 av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
1037 return -1;
1041 /* fast gain (E-AC-3 only) */
1042 if (s->fast_gain_syntax && get_bits1(gbc)) {
1043 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
1044 int prev = s->fast_gain[ch];
1045 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1046 /* run last 2 bit allocation stages if fast gain changes */
1047 if(blk && prev != s->fast_gain[ch])
1048 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1050 } else if (s->eac3 && !blk) {
1051 for (ch = !cpl_in_use; ch <= s->channels; ch++)
1052 s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
1055 /* E-AC-3 to AC-3 converter SNR offset */
1056 if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
1057 skip_bits(gbc, 10); // skip converter snr offset
1060 /* coupling leak information */
1061 if (cpl_in_use) {
1062 if (s->first_cpl_leak || get_bits1(gbc)) {
1063 int fl = get_bits(gbc, 3);
1064 int sl = get_bits(gbc, 3);
1065 /* run last 2 bit allocation stages for coupling channel if
1066 coupling leak changes */
1067 if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
1068 sl != s->bit_alloc_params.cpl_slow_leak)) {
1069 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
1071 s->bit_alloc_params.cpl_fast_leak = fl;
1072 s->bit_alloc_params.cpl_slow_leak = sl;
1073 } else if (!s->eac3 && !blk) {
1074 av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
1075 return -1;
1077 s->first_cpl_leak = 0;
1080 /* delta bit allocation information */
1081 if (s->dba_syntax && get_bits1(gbc)) {
1082 /* delta bit allocation exists (strategy) */
1083 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1084 s->dba_mode[ch] = get_bits(gbc, 2);
1085 if (s->dba_mode[ch] == DBA_RESERVED) {
1086 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
1087 return -1;
1089 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1091 /* channel delta offset, len and bit allocation */
1092 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1093 if (s->dba_mode[ch] == DBA_NEW) {
1094 s->dba_nsegs[ch] = get_bits(gbc, 3);
1095 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
1096 s->dba_offsets[ch][seg] = get_bits(gbc, 5);
1097 s->dba_lengths[ch][seg] = get_bits(gbc, 4);
1098 s->dba_values[ch][seg] = get_bits(gbc, 3);
1100 /* run last 2 bit allocation stages if new dba values */
1101 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1104 } else if(blk == 0) {
1105 for(ch=0; ch<=s->channels; ch++) {
1106 s->dba_mode[ch] = DBA_NONE;
1110 /* Bit allocation */
1111 for(ch=!cpl_in_use; ch<=s->channels; ch++) {
1112 if(bit_alloc_stages[ch] > 2) {
1113 /* Exponent mapping into PSD and PSD integration */
1114 ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
1115 s->start_freq[ch], s->end_freq[ch],
1116 s->psd[ch], s->band_psd[ch]);
1118 if(bit_alloc_stages[ch] > 1) {
1119 /* Compute excitation function, Compute masking curve, and
1120 Apply delta bit allocation */
1121 if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
1122 s->start_freq[ch], s->end_freq[ch],
1123 s->fast_gain[ch], (ch == s->lfe_ch),
1124 s->dba_mode[ch], s->dba_nsegs[ch],
1125 s->dba_offsets[ch], s->dba_lengths[ch],
1126 s->dba_values[ch], s->mask[ch])) {
1127 av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
1128 return -1;
1131 if(bit_alloc_stages[ch] > 0) {
1132 /* Compute bit allocation */
1133 const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
1134 ff_eac3_hebap_tab : ff_ac3_bap_tab;
1135 ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
1136 s->start_freq[ch], s->end_freq[ch],
1137 s->snr_offset[ch],
1138 s->bit_alloc_params.floor,
1139 bap_tab, s->bap[ch]);
1143 /* unused dummy data */
1144 if (s->skip_syntax && get_bits1(gbc)) {
1145 int skipl = get_bits(gbc, 9);
1146 while(skipl--)
1147 skip_bits(gbc, 8);
1150 /* unpack the transform coefficients
1151 this also uncouples channels if coupling is in use. */
1152 decode_transform_coeffs(s, blk);
1154 /* TODO: generate enhanced coupling coordinates and uncouple */
1156 /* TODO: apply spectral extension */
1158 /* recover coefficients if rematrixing is in use */
1159 if(s->channel_mode == AC3_CHMODE_STEREO)
1160 do_rematrixing(s);
1162 /* apply scaling to coefficients (headroom, dynrng) */
1163 for(ch=1; ch<=s->channels; ch++) {
1164 float gain = s->mul_bias / 4194304.0f;
1165 if(s->channel_mode == AC3_CHMODE_DUALMONO) {
1166 gain *= s->dynamic_range[ch-1];
1167 } else {
1168 gain *= s->dynamic_range[0];
1170 s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
1173 /* downmix and MDCT. order depends on whether block switching is used for
1174 any channel in this block. this is because coefficients for the long
1175 and short transforms cannot be mixed. */
1176 downmix_output = s->channels != s->out_channels &&
1177 !((s->output_mode & AC3_OUTPUT_LFEON) &&
1178 s->fbw_channels == s->out_channels);
1179 if(different_transforms) {
1180 /* the delay samples have already been downmixed, so we upmix the delay
1181 samples in order to reconstruct all channels before downmixing. */
1182 if(s->downmixed) {
1183 s->downmixed = 0;
1184 ac3_upmix_delay(s);
1187 do_imdct(s, s->channels);
1189 if(downmix_output) {
1190 s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1192 } else {
1193 if(downmix_output) {
1194 s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1197 if(downmix_output && !s->downmixed) {
1198 s->downmixed = 1;
1199 s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
1202 do_imdct(s, s->out_channels);
1205 return 0;
1209 * Decode a single AC-3 frame.
1211 static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
1212 AVPacket *avpkt)
1214 const uint8_t *buf = avpkt->data;
1215 int buf_size = avpkt->size;
1216 AC3DecodeContext *s = avctx->priv_data;
1217 int16_t *out_samples = (int16_t *)data;
1218 int blk, ch, err;
1219 const uint8_t *channel_map;
1220 const float *output[AC3_MAX_CHANNELS];
1222 /* initialize the GetBitContext with the start of valid AC-3 Frame */
1223 if (s->input_buffer) {
1224 /* copy input buffer to decoder context to avoid reading past the end
1225 of the buffer, which can be caused by a damaged input stream. */
1226 memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
1227 init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
1228 } else {
1229 init_get_bits(&s->gbc, buf, buf_size * 8);
1232 /* parse the syncinfo */
1233 *data_size = 0;
1234 err = parse_frame_header(s);
1236 /* check that reported frame size fits in input buffer */
1237 if(s->frame_size > buf_size) {
1238 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1239 err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
1242 /* check for crc mismatch */
1243 if(err != AAC_AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_recognition >= FF_ER_CAREFUL) {
1244 if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
1245 av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
1246 err = AAC_AC3_PARSE_ERROR_CRC;
1250 if(err && err != AAC_AC3_PARSE_ERROR_CRC) {
1251 switch(err) {
1252 case AAC_AC3_PARSE_ERROR_SYNC:
1253 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
1254 return -1;
1255 case AAC_AC3_PARSE_ERROR_BSID:
1256 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
1257 break;
1258 case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
1259 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
1260 break;
1261 case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
1262 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
1263 break;
1264 case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
1265 /* skip frame if CRC is ok. otherwise use error concealment. */
1266 /* TODO: add support for substreams and dependent frames */
1267 if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
1268 av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
1269 return s->frame_size;
1270 } else {
1271 av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
1273 break;
1274 default:
1275 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
1276 break;
1280 /* if frame is ok, set audio parameters */
1281 if (!err) {
1282 avctx->sample_rate = s->sample_rate;
1283 avctx->bit_rate = s->bit_rate;
1285 /* channel config */
1286 s->out_channels = s->channels;
1287 s->output_mode = s->channel_mode;
1288 if(s->lfe_on)
1289 s->output_mode |= AC3_OUTPUT_LFEON;
1290 if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
1291 avctx->request_channels < s->channels) {
1292 s->out_channels = avctx->request_channels;
1293 s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1294 s->channel_layout = ff_ac3_channel_layout_tab[s->output_mode];
1296 avctx->channels = s->out_channels;
1297 avctx->channel_layout = s->channel_layout;
1299 /* set downmixing coefficients if needed */
1300 if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
1301 s->fbw_channels == s->out_channels)) {
1302 set_downmix_coeffs(s);
1304 } else if (!s->out_channels) {
1305 s->out_channels = avctx->channels;
1306 if(s->out_channels < s->channels)
1307 s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1310 /* decode the audio blocks */
1311 channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
1312 for (ch = 0; ch < s->out_channels; ch++)
1313 output[ch] = s->output[channel_map[ch]];
1314 for (blk = 0; blk < s->num_blocks; blk++) {
1315 if (!err && decode_audio_block(s, blk)) {
1316 av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
1317 err = 1;
1319 s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
1320 out_samples += 256 * s->out_channels;
1322 *data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);
1323 return s->frame_size;
1327 * Uninitialize the AC-3 decoder.
1329 static av_cold int ac3_decode_end(AVCodecContext *avctx)
1331 AC3DecodeContext *s = avctx->priv_data;
1332 ff_mdct_end(&s->imdct_512);
1333 ff_mdct_end(&s->imdct_256);
1335 av_freep(&s->input_buffer);
1337 return 0;
1340 AVCodec ac3_decoder = {
1341 .name = "ac3",
1342 .type = CODEC_TYPE_AUDIO,
1343 .id = CODEC_ID_AC3,
1344 .priv_data_size = sizeof (AC3DecodeContext),
1345 .init = ac3_decode_init,
1346 .close = ac3_decode_end,
1347 .decode = ac3_decode_frame,
1348 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
1351 #if CONFIG_EAC3_DECODER
1352 AVCodec eac3_decoder = {
1353 .name = "eac3",
1354 .type = CODEC_TYPE_AUDIO,
1355 .id = CODEC_ID_EAC3,
1356 .priv_data_size = sizeof (AC3DecodeContext),
1357 .init = ac3_decode_init,
1358 .close = ac3_decode_end,
1359 .decode = ac3_decode_frame,
1360 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
1362 #endif