2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * @file libavcodec/cook.c
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
49 #include "libavutil/lfg.h"
50 #include "libavutil/random_seed.h"
54 #include "bytestream.h"
58 /* the different Cook versions */
59 #define MONO 0x1000001
60 #define STEREO 0x1000002
61 #define JOINT_STEREO 0x1000003
62 #define MC_COOK 0x2000000 //multichannel Cook, not supported
64 #define SUBBAND_SIZE 20
65 #define MAX_SUBPACKETS 5
78 int samples_per_frame
;
82 int samples_per_channel
;
83 int log2_numvector_size
;
84 unsigned int channel_mask
;
85 VLC ccpl
; ///< channel coupling
87 int bits_per_subpacket
;
90 int numvector_size
; ///< 1 << log2_numvector_size;
92 float mono_previous_buffer1
[1024];
93 float mono_previous_buffer2
[1024];
103 typedef struct cook
{
105 * The following 5 functions provide the lowlevel arithmetic on
106 * the internal audio buffers.
108 void (* scalar_dequant
)(struct cook
*q
, int index
, int quant_index
,
109 int* subband_coef_index
, int* subband_coef_sign
,
112 void (* decouple
) (struct cook
*q
,
116 float *decode_buffer
,
117 float *mlt_buffer1
, float *mlt_buffer2
);
119 void (* imlt_window
) (struct cook
*q
, float *buffer1
,
120 cook_gains
*gains_ptr
, float *previous_buffer
);
122 void (* interpolate
) (struct cook
*q
, float* buffer
,
123 int gain_index
, int gain_index_next
);
125 void (* saturate_output
) (struct cook
*q
, int chan
, int16_t *out
);
127 AVCodecContext
* avctx
;
134 int samples_per_channel
;
143 VLC envelope_quant_index
[13];
144 VLC sqvh
[7]; //scalar quantization
146 /* generatable tables and related variables */
147 int gain_size_factor
;
148 float gain_table
[23];
152 uint8_t* decoded_bytes_buffer
;
153 DECLARE_ALIGNED_16(float,mono_mdct_output
[2048]);
154 float decode_buffer_1
[1024];
155 float decode_buffer_2
[1024];
156 float decode_buffer_0
[1060]; /* static allocation for joint decode */
158 const float *cplscales
[5];
160 COOKSubpacket subpacket
[MAX_SUBPACKETS
];
163 static float pow2tab
[127];
164 static float rootpow2tab
[127];
166 /* debug functions */
169 static void dump_float_table(float* table
, int size
, int delimiter
) {
171 av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
);
172 for (i
=0 ; i
<size
; i
++) {
173 av_log(NULL
, AV_LOG_ERROR
, "%5.1f, ", table
[i
]);
174 if ((i
+1)%delimiter
== 0) av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
+1);
178 static void dump_int_table(int* table
, int size
, int delimiter
) {
180 av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
);
181 for (i
=0 ; i
<size
; i
++) {
182 av_log(NULL
, AV_LOG_ERROR
, "%d, ", table
[i
]);
183 if ((i
+1)%delimiter
== 0) av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
+1);
187 static void dump_short_table(short* table
, int size
, int delimiter
) {
189 av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
);
190 for (i
=0 ; i
<size
; i
++) {
191 av_log(NULL
, AV_LOG_ERROR
, "%d, ", table
[i
]);
192 if ((i
+1)%delimiter
== 0) av_log(NULL
,AV_LOG_ERROR
,"\n[%d]: ",i
+1);
198 /*************** init functions ***************/
200 /* table generator */
201 static av_cold
void init_pow2table(void){
203 for (i
=-63 ; i
<64 ; i
++){
204 pow2tab
[63+i
]= pow(2, i
);
205 rootpow2tab
[63+i
]=sqrt(pow(2, i
));
209 /* table generator */
210 static av_cold
void init_gain_table(COOKContext
*q
) {
212 q
->gain_size_factor
= q
->samples_per_channel
/8;
213 for (i
=0 ; i
<23 ; i
++) {
214 q
->gain_table
[i
] = pow(pow2tab
[i
+52] ,
215 (1.0/(double)q
->gain_size_factor
));
220 static av_cold
int init_cook_vlc_tables(COOKContext
*q
) {
224 for (i
=0 ; i
<13 ; i
++) {
225 result
|= init_vlc (&q
->envelope_quant_index
[i
], 9, 24,
226 envelope_quant_index_huffbits
[i
], 1, 1,
227 envelope_quant_index_huffcodes
[i
], 2, 2, 0);
229 av_log(q
->avctx
,AV_LOG_DEBUG
,"sqvh VLC init\n");
230 for (i
=0 ; i
<7 ; i
++) {
231 result
|= init_vlc (&q
->sqvh
[i
], vhvlcsize_tab
[i
], vhsize_tab
[i
],
232 cvh_huffbits
[i
], 1, 1,
233 cvh_huffcodes
[i
], 2, 2, 0);
236 for(i
=0;i
<q
->num_subpackets
;i
++){
237 if (q
->subpacket
[i
].joint_stereo
==1){
238 result
|= init_vlc (&q
->subpacket
[i
].ccpl
, 6, (1<<q
->subpacket
[i
].js_vlc_bits
)-1,
239 ccpl_huffbits
[q
->subpacket
[i
].js_vlc_bits
-2], 1, 1,
240 ccpl_huffcodes
[q
->subpacket
[i
].js_vlc_bits
-2], 2, 2, 0);
241 av_log(q
->avctx
,AV_LOG_DEBUG
,"subpacket %i Joint-stereo VLC used.\n",i
);
245 av_log(q
->avctx
,AV_LOG_DEBUG
,"VLC tables initialized.\n");
249 static av_cold
int init_cook_mlt(COOKContext
*q
) {
251 int mlt_size
= q
->samples_per_channel
;
253 if ((q
->mlt_window
= av_malloc(sizeof(float)*mlt_size
)) == 0)
256 /* Initialize the MLT window: simple sine window. */
257 ff_sine_window_init(q
->mlt_window
, mlt_size
);
258 for(j
=0 ; j
<mlt_size
; j
++)
259 q
->mlt_window
[j
] *= sqrt(2.0 / q
->samples_per_channel
);
261 /* Initialize the MDCT. */
262 if (ff_mdct_init(&q
->mdct_ctx
, av_log2(mlt_size
)+1, 1, 1.0)) {
263 av_free(q
->mlt_window
);
266 av_log(q
->avctx
,AV_LOG_DEBUG
,"MDCT initialized, order = %d.\n",
267 av_log2(mlt_size
)+1);
272 static const float *maybe_reformat_buffer32 (COOKContext
*q
, const float *ptr
, int n
)
278 static av_cold
void init_cplscales_table (COOKContext
*q
) {
281 q
->cplscales
[i
] = maybe_reformat_buffer32 (q
, cplscales
[i
], (1<<(i
+2))-1);
284 /*************** init functions end ***********/
287 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
288 * Why? No idea, some checksum/error detection method maybe.
290 * Out buffer size: extra bytes are needed to cope with
291 * padding/misalignment.
292 * Subpackets passed to the decoder can contain two, consecutive
293 * half-subpackets, of identical but arbitrary size.
294 * 1234 1234 1234 1234 extraA extraB
295 * Case 1: AAAA BBBB 0 0
296 * Case 2: AAAA ABBB BB-- 3 3
297 * Case 3: AAAA AABB BBBB 2 2
298 * Case 4: AAAA AAAB BBBB BB-- 1 5
300 * Nice way to waste CPU cycles.
302 * @param inbuffer pointer to byte array of indata
303 * @param out pointer to byte array of outdata
304 * @param bytes number of bytes
306 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
307 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
309 static inline int decode_bytes(const uint8_t* inbuffer
, uint8_t* out
, int bytes
){
313 uint32_t* obuf
= (uint32_t*) out
;
314 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
315 * I'm too lazy though, should be something like
316 * for(i=0 ; i<bitamount/64 ; i++)
317 * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
318 * Buffer alignment needs to be checked. */
320 off
= (intptr_t)inbuffer
& 3;
321 buf
= (const uint32_t*) (inbuffer
- off
);
322 c
= be2me_32((0x37c511f2 >> (off
*8)) | (0x37c511f2 << (32-(off
*8))));
324 for (i
= 0; i
< bytes
/4; i
++)
325 obuf
[i
] = c
^ buf
[i
];
334 static av_cold
int cook_decode_close(AVCodecContext
*avctx
)
337 COOKContext
*q
= avctx
->priv_data
;
338 av_log(avctx
,AV_LOG_DEBUG
, "Deallocating memory.\n");
340 /* Free allocated memory buffers. */
341 av_free(q
->mlt_window
);
342 av_free(q
->decoded_bytes_buffer
);
344 /* Free the transform. */
345 ff_mdct_end(&q
->mdct_ctx
);
347 /* Free the VLC tables. */
348 for (i
=0 ; i
<13 ; i
++) {
349 free_vlc(&q
->envelope_quant_index
[i
]);
351 for (i
=0 ; i
<7 ; i
++) {
352 free_vlc(&q
->sqvh
[i
]);
354 for (i
=0 ; i
<q
->num_subpackets
; i
++) {
355 free_vlc(&q
->subpacket
[i
].ccpl
);
358 av_log(avctx
,AV_LOG_DEBUG
,"Memory deallocated.\n");
364 * Fill the gain array for the timedomain quantization.
366 * @param q pointer to the COOKContext
367 * @param gaininfo[9] array of gain indexes
370 static void decode_gain_info(GetBitContext
*gb
, int *gaininfo
)
374 while (get_bits1(gb
)) {}
375 n
= get_bits_count(gb
) - 1; //amount of elements*2 to update
379 int index
= get_bits(gb
, 3);
380 int gain
= get_bits1(gb
) ? get_bits(gb
, 4) - 7 : -1;
382 while (i
<= index
) gaininfo
[i
++] = gain
;
384 while (i
<= 8) gaininfo
[i
++] = 0;
388 * Create the quant index table needed for the envelope.
390 * @param q pointer to the COOKContext
391 * @param quant_index_table pointer to the array
394 static void decode_envelope(COOKContext
*q
, COOKSubpacket
*p
, int* quant_index_table
) {
397 quant_index_table
[0]= get_bits(&q
->gb
,6) - 6; //This is used later in categorize
399 for (i
=1 ; i
< p
->total_subbands
; i
++){
401 if (i
>= p
->js_subband_start
* 2) {
402 vlc_index
-=p
->js_subband_start
;
405 if(vlc_index
< 1) vlc_index
= 1;
407 if (vlc_index
>13) vlc_index
= 13; //the VLC tables >13 are identical to No. 13
409 j
= get_vlc2(&q
->gb
, q
->envelope_quant_index
[vlc_index
-1].table
,
410 q
->envelope_quant_index
[vlc_index
-1].bits
,2);
411 quant_index_table
[i
] = quant_index_table
[i
-1] + j
- 12; //differential encoding
416 * Calculate the category and category_index vector.
418 * @param q pointer to the COOKContext
419 * @param quant_index_table pointer to the array
420 * @param category pointer to the category array
421 * @param category_index pointer to the category_index array
424 static void categorize(COOKContext
*q
, COOKSubpacket
*p
, int* quant_index_table
,
425 int* category
, int* category_index
){
426 int exp_idx
, bias
, tmpbias1
, tmpbias2
, bits_left
, num_bits
, index
, v
, i
, j
;
430 int tmp_categorize_array
[128*2];
431 int tmp_categorize_array1_idx
=p
->numvector_size
;
432 int tmp_categorize_array2_idx
=p
->numvector_size
;
434 bits_left
= p
->bits_per_subpacket
- get_bits_count(&q
->gb
);
436 if(bits_left
> q
->samples_per_channel
) {
437 bits_left
= q
->samples_per_channel
+
438 ((bits_left
- q
->samples_per_channel
)*5)/8;
439 //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
442 memset(&exp_index1
,0,102*sizeof(int));
443 memset(&exp_index2
,0,102*sizeof(int));
444 memset(&tmp_categorize_array
,0,128*2*sizeof(int));
449 for (i
=32 ; i
>0 ; i
=i
/2){
452 for (j
=p
->total_subbands
; j
>0 ; j
--){
453 exp_idx
= av_clip((i
- quant_index_table
[index
] + bias
) / 2, 0, 7);
455 num_bits
+=expbits_tab
[exp_idx
];
457 if(num_bits
>= bits_left
- 32){
462 /* Calculate total number of bits. */
464 for (i
=0 ; i
<p
->total_subbands
; i
++) {
465 exp_idx
= av_clip((bias
- quant_index_table
[i
]) / 2, 0, 7);
466 num_bits
+= expbits_tab
[exp_idx
];
467 exp_index1
[i
] = exp_idx
;
468 exp_index2
[i
] = exp_idx
;
470 tmpbias1
= tmpbias2
= num_bits
;
472 for (j
= 1 ; j
< p
->numvector_size
; j
++) {
473 if (tmpbias1
+ tmpbias2
> 2*bits_left
) { /* ---> */
476 for (i
=0 ; i
<p
->total_subbands
; i
++){
477 if (exp_index1
[i
] < 7) {
478 v
= (-2*exp_index1
[i
]) - quant_index_table
[i
] + bias
;
486 tmp_categorize_array
[tmp_categorize_array1_idx
++] = index
;
487 tmpbias1
-= expbits_tab
[exp_index1
[index
]] -
488 expbits_tab
[exp_index1
[index
]+1];
493 for (i
=0 ; i
<p
->total_subbands
; i
++){
494 if(exp_index2
[i
] > 0){
495 v
= (-2*exp_index2
[i
])-quant_index_table
[i
]+bias
;
502 if(index
== -1)break;
503 tmp_categorize_array
[--tmp_categorize_array2_idx
] = index
;
504 tmpbias2
-= expbits_tab
[exp_index2
[index
]] -
505 expbits_tab
[exp_index2
[index
]-1];
510 for(i
=0 ; i
<p
->total_subbands
; i
++)
511 category
[i
] = exp_index2
[i
];
513 for(i
=0 ; i
<p
->numvector_size
-1 ; i
++)
514 category_index
[i
] = tmp_categorize_array
[tmp_categorize_array2_idx
++];
520 * Expand the category vector.
522 * @param q pointer to the COOKContext
523 * @param category pointer to the category array
524 * @param category_index pointer to the category_index array
527 static inline void expand_category(COOKContext
*q
, int* category
,
528 int* category_index
){
530 for(i
=0 ; i
<q
->num_vectors
; i
++){
531 ++category
[category_index
[i
]];
536 * The real requantization of the mltcoefs
538 * @param q pointer to the COOKContext
540 * @param quant_index quantisation index
541 * @param subband_coef_index array of indexes to quant_centroid_tab
542 * @param subband_coef_sign signs of coefficients
543 * @param mlt_p pointer into the mlt buffer
546 static void scalar_dequant_float(COOKContext
*q
, int index
, int quant_index
,
547 int* subband_coef_index
, int* subband_coef_sign
,
552 for(i
=0 ; i
<SUBBAND_SIZE
; i
++) {
553 if (subband_coef_index
[i
]) {
554 f1
= quant_centroid_tab
[index
][subband_coef_index
[i
]];
555 if (subband_coef_sign
[i
]) f1
= -f1
;
557 /* noise coding if subband_coef_index[i] == 0 */
558 f1
= dither_tab
[index
];
559 if (av_lfg_get(&q
->random_state
) < 0x80000000) f1
= -f1
;
561 mlt_p
[i
] = f1
* rootpow2tab
[quant_index
+63];
565 * Unpack the subband_coef_index and subband_coef_sign vectors.
567 * @param q pointer to the COOKContext
568 * @param category pointer to the category array
569 * @param subband_coef_index array of indexes to quant_centroid_tab
570 * @param subband_coef_sign signs of coefficients
573 static int unpack_SQVH(COOKContext
*q
, COOKSubpacket
*p
, int category
, int* subband_coef_index
,
574 int* subband_coef_sign
) {
576 int vlc
, vd
,tmp
, result
;
578 vd
= vd_tab
[category
];
580 for(i
=0 ; i
<vpr_tab
[category
] ; i
++){
581 vlc
= get_vlc2(&q
->gb
, q
->sqvh
[category
].table
, q
->sqvh
[category
].bits
, 3);
582 if (p
->bits_per_subpacket
< get_bits_count(&q
->gb
)){
586 for(j
=vd
-1 ; j
>=0 ; j
--){
587 tmp
= (vlc
* invradix_tab
[category
])/0x100000;
588 subband_coef_index
[vd
*i
+j
] = vlc
- tmp
* (kmax_tab
[category
]+1);
591 for(j
=0 ; j
<vd
; j
++){
592 if (subband_coef_index
[i
*vd
+ j
]) {
593 if(get_bits_count(&q
->gb
) < p
->bits_per_subpacket
){
594 subband_coef_sign
[i
*vd
+j
] = get_bits1(&q
->gb
);
597 subband_coef_sign
[i
*vd
+j
]=0;
600 subband_coef_sign
[i
*vd
+j
]=0;
609 * Fill the mlt_buffer with mlt coefficients.
611 * @param q pointer to the COOKContext
612 * @param category pointer to the category array
613 * @param quant_index_table pointer to the array
614 * @param mlt_buffer pointer to mlt coefficients
618 static void decode_vectors(COOKContext
* q
, COOKSubpacket
* p
, int* category
,
619 int *quant_index_table
, float* mlt_buffer
){
620 /* A zero in this table means that the subband coefficient is
621 random noise coded. */
622 int subband_coef_index
[SUBBAND_SIZE
];
623 /* A zero in this table means that the subband coefficient is a
624 positive multiplicator. */
625 int subband_coef_sign
[SUBBAND_SIZE
];
629 for(band
=0 ; band
<p
->total_subbands
; band
++){
630 index
= category
[band
];
631 if(category
[band
] < 7){
632 if(unpack_SQVH(q
, p
, category
[band
], subband_coef_index
, subband_coef_sign
)){
634 for(j
=0 ; j
<p
->total_subbands
; j
++) category
[band
+j
]=7;
638 memset(subband_coef_index
, 0, sizeof(subband_coef_index
));
639 memset(subband_coef_sign
, 0, sizeof(subband_coef_sign
));
641 q
->scalar_dequant(q
, index
, quant_index_table
[band
],
642 subband_coef_index
, subband_coef_sign
,
643 &mlt_buffer
[band
* SUBBAND_SIZE
]);
646 if(p
->total_subbands
*SUBBAND_SIZE
>= q
->samples_per_channel
){
648 } /* FIXME: should this be removed, or moved into loop above? */
653 * function for decoding mono data
655 * @param q pointer to the COOKContext
656 * @param mlt_buffer pointer to mlt coefficients
659 static void mono_decode(COOKContext
*q
, COOKSubpacket
*p
, float* mlt_buffer
) {
661 int category_index
[128];
662 int quant_index_table
[102];
665 memset(&category
, 0, 128*sizeof(int));
666 memset(&category_index
, 0, 128*sizeof(int));
668 decode_envelope(q
, p
, quant_index_table
);
669 q
->num_vectors
= get_bits(&q
->gb
,p
->log2_numvector_size
);
670 categorize(q
, p
, quant_index_table
, category
, category_index
);
671 expand_category(q
, category
, category_index
);
672 decode_vectors(q
, p
, category
, quant_index_table
, mlt_buffer
);
677 * the actual requantization of the timedomain samples
679 * @param q pointer to the COOKContext
680 * @param buffer pointer to the timedomain buffer
681 * @param gain_index index for the block multiplier
682 * @param gain_index_next index for the next block multiplier
685 static void interpolate_float(COOKContext
*q
, float* buffer
,
686 int gain_index
, int gain_index_next
){
689 fc1
= pow2tab
[gain_index
+63];
691 if(gain_index
== gain_index_next
){ //static gain
692 for(i
=0 ; i
<q
->gain_size_factor
; i
++){
696 } else { //smooth gain
697 fc2
= q
->gain_table
[11 + (gain_index_next
-gain_index
)];
698 for(i
=0 ; i
<q
->gain_size_factor
; i
++){
707 * Apply transform window, overlap buffers.
709 * @param q pointer to the COOKContext
710 * @param inbuffer pointer to the mltcoefficients
711 * @param gains_ptr current and previous gains
712 * @param previous_buffer pointer to the previous buffer to be used for overlapping
715 static void imlt_window_float (COOKContext
*q
, float *buffer1
,
716 cook_gains
*gains_ptr
, float *previous_buffer
)
718 const float fc
= pow2tab
[gains_ptr
->previous
[0] + 63];
720 /* The weird thing here, is that the two halves of the time domain
721 * buffer are swapped. Also, the newest data, that we save away for
722 * next frame, has the wrong sign. Hence the subtraction below.
723 * Almost sounds like a complex conjugate/reverse data/FFT effect.
726 /* Apply window and overlap */
727 for(i
= 0; i
< q
->samples_per_channel
; i
++){
728 buffer1
[i
] = buffer1
[i
] * fc
* q
->mlt_window
[i
] -
729 previous_buffer
[i
] * q
->mlt_window
[q
->samples_per_channel
- 1 - i
];
734 * The modulated lapped transform, this takes transform coefficients
735 * and transforms them into timedomain samples.
736 * Apply transform window, overlap buffers, apply gain profile
737 * and buffer management.
739 * @param q pointer to the COOKContext
740 * @param inbuffer pointer to the mltcoefficients
741 * @param gains_ptr current and previous gains
742 * @param previous_buffer pointer to the previous buffer to be used for overlapping
745 static void imlt_gain(COOKContext
*q
, float *inbuffer
,
746 cook_gains
*gains_ptr
, float* previous_buffer
)
748 float *buffer0
= q
->mono_mdct_output
;
749 float *buffer1
= q
->mono_mdct_output
+ q
->samples_per_channel
;
752 /* Inverse modified discrete cosine transform */
753 ff_imdct_calc(&q
->mdct_ctx
, q
->mono_mdct_output
, inbuffer
);
755 q
->imlt_window (q
, buffer1
, gains_ptr
, previous_buffer
);
757 /* Apply gain profile */
758 for (i
= 0; i
< 8; i
++) {
759 if (gains_ptr
->now
[i
] || gains_ptr
->now
[i
+ 1])
760 q
->interpolate(q
, &buffer1
[q
->gain_size_factor
* i
],
761 gains_ptr
->now
[i
], gains_ptr
->now
[i
+ 1]);
764 /* Save away the current to be previous block. */
765 memcpy(previous_buffer
, buffer0
, sizeof(float)*q
->samples_per_channel
);
770 * function for getting the jointstereo coupling information
772 * @param q pointer to the COOKContext
773 * @param decouple_tab decoupling array
777 static void decouple_info(COOKContext
*q
, COOKSubpacket
*p
, int* decouple_tab
){
780 if(get_bits1(&q
->gb
)) {
781 if(cplband
[p
->js_subband_start
] > cplband
[p
->subbands
-1]) return;
783 length
= cplband
[p
->subbands
-1] - cplband
[p
->js_subband_start
] + 1;
784 for (i
=0 ; i
<length
; i
++) {
785 decouple_tab
[cplband
[p
->js_subband_start
] + i
] = get_vlc2(&q
->gb
, p
->ccpl
.table
, p
->ccpl
.bits
, 2);
790 if(cplband
[p
->js_subband_start
] > cplband
[p
->subbands
-1]) return;
792 length
= cplband
[p
->subbands
-1] - cplband
[p
->js_subband_start
] + 1;
793 for (i
=0 ; i
<length
; i
++) {
794 decouple_tab
[cplband
[p
->js_subband_start
] + i
] = get_bits(&q
->gb
, p
->js_vlc_bits
);
800 * function decouples a pair of signals from a single signal via multiplication.
802 * @param q pointer to the COOKContext
803 * @param subband index of the current subband
804 * @param f1 multiplier for channel 1 extraction
805 * @param f2 multiplier for channel 2 extraction
806 * @param decode_buffer input buffer
807 * @param mlt_buffer1 pointer to left channel mlt coefficients
808 * @param mlt_buffer2 pointer to right channel mlt coefficients
810 static void decouple_float (COOKContext
*q
,
814 float *decode_buffer
,
815 float *mlt_buffer1
, float *mlt_buffer2
)
818 for (j
=0 ; j
<SUBBAND_SIZE
; j
++) {
819 tmp_idx
= ((p
->js_subband_start
+ subband
)*SUBBAND_SIZE
)+j
;
820 mlt_buffer1
[SUBBAND_SIZE
*subband
+ j
] = f1
* decode_buffer
[tmp_idx
];
821 mlt_buffer2
[SUBBAND_SIZE
*subband
+ j
] = f2
* decode_buffer
[tmp_idx
];
826 * function for decoding joint stereo data
828 * @param q pointer to the COOKContext
829 * @param mlt_buffer1 pointer to left channel mlt coefficients
830 * @param mlt_buffer2 pointer to right channel mlt coefficients
833 static void joint_decode(COOKContext
*q
, COOKSubpacket
*p
, float* mlt_buffer1
,
834 float* mlt_buffer2
) {
836 int decouple_tab
[SUBBAND_SIZE
];
837 float *decode_buffer
= q
->decode_buffer_0
;
840 const float* cplscale
;
842 memset(decouple_tab
, 0, sizeof(decouple_tab
));
843 memset(decode_buffer
, 0, sizeof(decode_buffer
));
845 /* Make sure the buffers are zeroed out. */
846 memset(mlt_buffer1
,0, 1024*sizeof(float));
847 memset(mlt_buffer2
,0, 1024*sizeof(float));
848 decouple_info(q
, p
, decouple_tab
);
849 mono_decode(q
, p
, decode_buffer
);
851 /* The two channels are stored interleaved in decode_buffer. */
852 for (i
=0 ; i
<p
->js_subband_start
; i
++) {
853 for (j
=0 ; j
<SUBBAND_SIZE
; j
++) {
854 mlt_buffer1
[i
*20+j
] = decode_buffer
[i
*40+j
];
855 mlt_buffer2
[i
*20+j
] = decode_buffer
[i
*40+20+j
];
859 /* When we reach js_subband_start (the higher frequencies)
860 the coefficients are stored in a coupling scheme. */
861 idx
= (1 << p
->js_vlc_bits
) - 1;
862 for (i
=p
->js_subband_start
; i
<p
->subbands
; i
++) {
863 cpl_tmp
= cplband
[i
];
864 idx
-=decouple_tab
[cpl_tmp
];
865 cplscale
= q
->cplscales
[p
->js_vlc_bits
-2]; //choose decoupler table
866 f1
= cplscale
[decouple_tab
[cpl_tmp
]];
867 f2
= cplscale
[idx
-1];
868 q
->decouple (q
, p
, i
, f1
, f2
, decode_buffer
, mlt_buffer1
, mlt_buffer2
);
869 idx
= (1 << p
->js_vlc_bits
) - 1;
874 * First part of subpacket decoding:
875 * decode raw stream bytes and read gain info.
877 * @param q pointer to the COOKContext
878 * @param inbuffer pointer to raw stream data
879 * @param gain_ptr array of current/prev gain pointers
883 decode_bytes_and_gain(COOKContext
*q
, COOKSubpacket
*p
, const uint8_t *inbuffer
,
884 cook_gains
*gains_ptr
)
888 offset
= decode_bytes(inbuffer
, q
->decoded_bytes_buffer
,
889 p
->bits_per_subpacket
/8);
890 init_get_bits(&q
->gb
, q
->decoded_bytes_buffer
+ offset
,
891 p
->bits_per_subpacket
);
892 decode_gain_info(&q
->gb
, gains_ptr
->now
);
894 /* Swap current and previous gains */
895 FFSWAP(int *, gains_ptr
->now
, gains_ptr
->previous
);
899 * Saturate the output signal to signed 16bit integers.
901 * @param q pointer to the COOKContext
902 * @param chan channel to saturate
903 * @param out pointer to the output vector
906 saturate_output_float (COOKContext
*q
, int chan
, int16_t *out
)
909 float *output
= q
->mono_mdct_output
+ q
->samples_per_channel
;
910 /* Clip and convert floats to 16 bits.
912 for (j
= 0; j
< q
->samples_per_channel
; j
++) {
913 out
[chan
+ q
->nb_channels
* j
] =
914 av_clip_int16(lrintf(output
[j
]));
919 * Final part of subpacket decoding:
920 * Apply modulated lapped transform, gain compensation,
921 * clip and convert to integer.
923 * @param q pointer to the COOKContext
924 * @param decode_buffer pointer to the mlt coefficients
925 * @param gain_ptr array of current/prev gain pointers
926 * @param previous_buffer pointer to the previous buffer to be used for overlapping
927 * @param out pointer to the output buffer
928 * @param chan 0: left or single channel, 1: right channel
932 mlt_compensate_output(COOKContext
*q
, float *decode_buffer
,
933 cook_gains
*gains
, float *previous_buffer
,
934 int16_t *out
, int chan
)
936 imlt_gain(q
, decode_buffer
, gains
, previous_buffer
);
937 q
->saturate_output (q
, chan
, out
);
942 * Cook subpacket decoding. This function returns one decoded subpacket,
943 * usually 1024 samples per channel.
945 * @param q pointer to the COOKContext
946 * @param inbuffer pointer to the inbuffer
947 * @param sub_packet_size subpacket size
948 * @param outbuffer pointer to the outbuffer
952 static void decode_subpacket(COOKContext
*q
, COOKSubpacket
* p
, const uint8_t *inbuffer
, int16_t *outbuffer
) {
953 int sub_packet_size
= p
->size
;
955 // for (i=0 ; i<sub_packet_size ; i++) {
956 // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
958 // av_log(q->avctx, AV_LOG_ERROR, "\n");
959 memset(q
->decode_buffer_1
,0,sizeof(q
->decode_buffer_1
));
960 decode_bytes_and_gain(q
, p
, inbuffer
, &p
->gains1
);
962 if (p
->joint_stereo
) {
963 joint_decode(q
, p
, q
->decode_buffer_1
, q
->decode_buffer_2
);
965 mono_decode(q
, p
, q
->decode_buffer_1
);
967 if (p
->num_channels
== 2) {
968 decode_bytes_and_gain(q
, p
, inbuffer
+ sub_packet_size
/2, &p
->gains2
);
969 mono_decode(q
, p
, q
->decode_buffer_2
);
973 mlt_compensate_output(q
, q
->decode_buffer_1
, &p
->gains1
,
974 p
->mono_previous_buffer1
, outbuffer
, p
->ch_idx
);
976 if (p
->num_channels
== 2) {
977 if (p
->joint_stereo
) {
978 mlt_compensate_output(q
, q
->decode_buffer_2
, &p
->gains1
,
979 p
->mono_previous_buffer2
, outbuffer
, p
->ch_idx
+ 1);
981 mlt_compensate_output(q
, q
->decode_buffer_2
, &p
->gains2
,
982 p
->mono_previous_buffer2
, outbuffer
, p
->ch_idx
+ 1);
990 * Cook frame decoding
992 * @param avctx pointer to the AVCodecContext
995 static int cook_decode_frame(AVCodecContext
*avctx
,
996 void *data
, int *data_size
,
998 const uint8_t *buf
= avpkt
->data
;
999 int buf_size
= avpkt
->size
;
1000 COOKContext
*q
= avctx
->priv_data
;
1005 if (buf_size
< avctx
->block_align
)
1008 /* estimate subpacket sizes */
1009 q
->subpacket
[0].size
= avctx
->block_align
;
1011 for(i
=1;i
<q
->num_subpackets
;i
++){
1012 q
->subpacket
[i
].size
= 2 * buf
[avctx
->block_align
- q
->num_subpackets
+ i
];
1013 q
->subpacket
[0].size
-= q
->subpacket
[i
].size
+ 1;
1014 if (q
->subpacket
[0].size
< 0) {
1015 av_log(avctx
,AV_LOG_DEBUG
,"frame subpacket size total > avctx->block_align!\n");
1020 /* decode supbackets */
1022 for(i
=0;i
<q
->num_subpackets
;i
++){
1023 q
->subpacket
[i
].bits_per_subpacket
= (q
->subpacket
[i
].size
*8)>>q
->subpacket
[i
].bits_per_subpdiv
;
1024 q
->subpacket
[i
].ch_idx
= chidx
;
1025 av_log(avctx
,AV_LOG_DEBUG
,"subpacket[%i] size %i js %i %i block_align %i\n",i
,q
->subpacket
[i
].size
,q
->subpacket
[i
].joint_stereo
,offset
,avctx
->block_align
);
1026 decode_subpacket(q
, &q
->subpacket
[i
], buf
+ offset
, (int16_t*)data
);
1027 offset
+= q
->subpacket
[i
].size
;
1028 chidx
+= q
->subpacket
[i
].num_channels
;
1029 av_log(avctx
,AV_LOG_DEBUG
,"subpacket[%i] %i %i\n",i
,q
->subpacket
[i
].size
* 8,get_bits_count(&q
->gb
));
1031 *data_size
= sizeof(int16_t) * q
->nb_channels
* q
->samples_per_channel
;
1033 /* Discard the first two frames: no valid audio. */
1034 if (avctx
->frame_number
< 2) *data_size
= 0;
1036 return avctx
->block_align
;
1040 static void dump_cook_context(COOKContext
*q
)
1043 #define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1044 av_log(q
->avctx
,AV_LOG_ERROR
,"COOKextradata\n");
1045 av_log(q
->avctx
,AV_LOG_ERROR
,"cookversion=%x\n",q
->subpacket
[0].cookversion
);
1046 if (q
->subpacket
[0].cookversion
> STEREO
) {
1047 PRINT("js_subband_start",q
->subpacket
[0].js_subband_start
);
1048 PRINT("js_vlc_bits",q
->subpacket
[0].js_vlc_bits
);
1050 av_log(q
->avctx
,AV_LOG_ERROR
,"COOKContext\n");
1051 PRINT("nb_channels",q
->nb_channels
);
1052 PRINT("bit_rate",q
->bit_rate
);
1053 PRINT("sample_rate",q
->sample_rate
);
1054 PRINT("samples_per_channel",q
->subpacket
[0].samples_per_channel
);
1055 PRINT("samples_per_frame",q
->subpacket
[0].samples_per_frame
);
1056 PRINT("subbands",q
->subpacket
[0].subbands
);
1057 PRINT("random_state",q
->random_state
);
1058 PRINT("js_subband_start",q
->subpacket
[0].js_subband_start
);
1059 PRINT("log2_numvector_size",q
->subpacket
[0].log2_numvector_size
);
1060 PRINT("numvector_size",q
->subpacket
[0].numvector_size
);
1061 PRINT("total_subbands",q
->subpacket
[0].total_subbands
);
1065 static av_cold
int cook_count_channels(unsigned int mask
){
1068 for(i
= 0;i
<32;i
++){
1076 * Cook initialization
1078 * @param avctx pointer to the AVCodecContext
1081 static av_cold
int cook_decode_init(AVCodecContext
*avctx
)
1083 COOKContext
*q
= avctx
->priv_data
;
1084 const uint8_t *edata_ptr
= avctx
->extradata
;
1085 const uint8_t *edata_ptr_end
= edata_ptr
+ avctx
->extradata_size
;
1086 int extradata_size
= avctx
->extradata_size
;
1088 unsigned int channel_mask
= 0;
1091 /* Take care of the codec specific extradata. */
1092 if (extradata_size
<= 0) {
1093 av_log(avctx
,AV_LOG_ERROR
,"Necessary extradata missing!\n");
1096 av_log(avctx
,AV_LOG_DEBUG
,"codecdata_length=%d\n",avctx
->extradata_size
);
1098 /* Take data from the AVCodecContext (RM container). */
1099 q
->sample_rate
= avctx
->sample_rate
;
1100 q
->nb_channels
= avctx
->channels
;
1101 q
->bit_rate
= avctx
->bit_rate
;
1103 /* Initialize RNG. */
1104 av_lfg_init(&q
->random_state
, ff_random_get_seed());
1106 while(edata_ptr
< edata_ptr_end
){
1107 /* 8 for mono, 16 for stereo, ? for multichannel
1108 Swap to right endianness so we don't need to care later on. */
1109 if (extradata_size
>= 8){
1110 q
->subpacket
[s
].cookversion
= bytestream_get_be32(&edata_ptr
);
1111 q
->subpacket
[s
].samples_per_frame
= bytestream_get_be16(&edata_ptr
);
1112 q
->subpacket
[s
].subbands
= bytestream_get_be16(&edata_ptr
);
1113 extradata_size
-= 8;
1115 if (avctx
->extradata_size
>= 8){
1116 bytestream_get_be32(&edata_ptr
); //Unknown unused
1117 q
->subpacket
[s
].js_subband_start
= bytestream_get_be16(&edata_ptr
);
1118 q
->subpacket
[s
].js_vlc_bits
= bytestream_get_be16(&edata_ptr
);
1119 extradata_size
-= 8;
1122 /* Initialize extradata related variables. */
1123 q
->subpacket
[s
].samples_per_channel
= q
->subpacket
[s
].samples_per_frame
/ q
->nb_channels
;
1124 q
->subpacket
[s
].bits_per_subpacket
= avctx
->block_align
* 8;
1126 /* Initialize default data states. */
1127 q
->subpacket
[s
].log2_numvector_size
= 5;
1128 q
->subpacket
[s
].total_subbands
= q
->subpacket
[s
].subbands
;
1129 q
->subpacket
[s
].num_channels
= 1;
1131 /* Initialize version-dependent variables */
1133 av_log(avctx
,AV_LOG_DEBUG
,"subpacket[%i].cookversion=%x\n",s
,q
->subpacket
[s
].cookversion
);
1134 q
->subpacket
[s
].joint_stereo
= 0;
1135 switch (q
->subpacket
[s
].cookversion
) {
1137 if (q
->nb_channels
!= 1) {
1138 av_log(avctx
,AV_LOG_ERROR
,"Container channels != 1, report sample!\n");
1141 av_log(avctx
,AV_LOG_DEBUG
,"MONO\n");
1144 if (q
->nb_channels
!= 1) {
1145 q
->subpacket
[s
].bits_per_subpdiv
= 1;
1146 q
->subpacket
[s
].num_channels
= 2;
1148 av_log(avctx
,AV_LOG_DEBUG
,"STEREO\n");
1151 if (q
->nb_channels
!= 2) {
1152 av_log(avctx
,AV_LOG_ERROR
,"Container channels != 2, report sample!\n");
1155 av_log(avctx
,AV_LOG_DEBUG
,"JOINT_STEREO\n");
1156 if (avctx
->extradata_size
>= 16){
1157 q
->subpacket
[s
].total_subbands
= q
->subpacket
[s
].subbands
+ q
->subpacket
[s
].js_subband_start
;
1158 q
->subpacket
[s
].joint_stereo
= 1;
1159 q
->subpacket
[s
].num_channels
= 2;
1161 if (q
->subpacket
[s
].samples_per_channel
> 256) {
1162 q
->subpacket
[s
].log2_numvector_size
= 6;
1164 if (q
->subpacket
[s
].samples_per_channel
> 512) {
1165 q
->subpacket
[s
].log2_numvector_size
= 7;
1169 av_log(avctx
,AV_LOG_DEBUG
,"MULTI_CHANNEL\n");
1170 if(extradata_size
>= 4)
1171 channel_mask
|= q
->subpacket
[s
].channel_mask
= bytestream_get_be32(&edata_ptr
);
1173 if(cook_count_channels(q
->subpacket
[s
].channel_mask
) > 1){
1174 q
->subpacket
[s
].total_subbands
= q
->subpacket
[s
].subbands
+ q
->subpacket
[s
].js_subband_start
;
1175 q
->subpacket
[s
].joint_stereo
= 1;
1176 q
->subpacket
[s
].num_channels
= 2;
1177 q
->subpacket
[s
].samples_per_channel
= q
->subpacket
[s
].samples_per_frame
>> 1;
1179 if (q
->subpacket
[s
].samples_per_channel
> 256) {
1180 q
->subpacket
[s
].log2_numvector_size
= 6;
1182 if (q
->subpacket
[s
].samples_per_channel
> 512) {
1183 q
->subpacket
[s
].log2_numvector_size
= 7;
1186 q
->subpacket
[s
].samples_per_channel
= q
->subpacket
[s
].samples_per_frame
;
1190 av_log(avctx
,AV_LOG_ERROR
,"Unknown Cook version, report sample!\n");
1195 if(s
> 1 && q
->subpacket
[s
].samples_per_channel
!= q
->samples_per_channel
) {
1196 av_log(avctx
,AV_LOG_ERROR
,"different number of samples per channel!\n");
1199 q
->samples_per_channel
= q
->subpacket
[0].samples_per_channel
;
1202 /* Initialize variable relations */
1203 q
->subpacket
[s
].numvector_size
= (1 << q
->subpacket
[s
].log2_numvector_size
);
1205 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1206 if (q
->subpacket
[s
].total_subbands
> 53) {
1207 av_log(avctx
,AV_LOG_ERROR
,"total_subbands > 53, report sample!\n");
1211 if ((q
->subpacket
[s
].js_vlc_bits
> 6) || (q
->subpacket
[s
].js_vlc_bits
< 0)) {
1212 av_log(avctx
,AV_LOG_ERROR
,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q
->subpacket
[s
].js_vlc_bits
);
1216 if (q
->subpacket
[s
].subbands
> 50) {
1217 av_log(avctx
,AV_LOG_ERROR
,"subbands > 50, report sample!\n");
1220 q
->subpacket
[s
].gains1
.now
= q
->subpacket
[s
].gain_1
;
1221 q
->subpacket
[s
].gains1
.previous
= q
->subpacket
[s
].gain_2
;
1222 q
->subpacket
[s
].gains2
.now
= q
->subpacket
[s
].gain_3
;
1223 q
->subpacket
[s
].gains2
.previous
= q
->subpacket
[s
].gain_4
;
1225 q
->num_subpackets
++;
1227 if (s
> MAX_SUBPACKETS
) {
1228 av_log(avctx
,AV_LOG_ERROR
,"Too many subpackets > 5, report file!\n");
1232 /* Generate tables */
1235 init_cplscales_table(q
);
1237 if (init_cook_vlc_tables(q
) != 0)
1241 if(avctx
->block_align
>= UINT_MAX
/2)
1244 /* Pad the databuffer with:
1245 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1246 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1247 q
->decoded_bytes_buffer
=
1248 av_mallocz(avctx
->block_align
1249 + DECODE_BYTES_PAD1(avctx
->block_align
)
1250 + FF_INPUT_BUFFER_PADDING_SIZE
);
1251 if (q
->decoded_bytes_buffer
== NULL
)
1254 /* Initialize transform. */
1255 if ( init_cook_mlt(q
) != 0 )
1258 /* Initialize COOK signal arithmetic handling */
1260 q
->scalar_dequant
= scalar_dequant_float
;
1261 q
->decouple
= decouple_float
;
1262 q
->imlt_window
= imlt_window_float
;
1263 q
->interpolate
= interpolate_float
;
1264 q
->saturate_output
= saturate_output_float
;
1267 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1268 if ((q
->samples_per_channel
== 256) || (q
->samples_per_channel
== 512) || (q
->samples_per_channel
== 1024)) {
1270 av_log(avctx
,AV_LOG_ERROR
,"unknown amount of samples_per_channel = %d, report sample!\n",q
->samples_per_channel
);
1274 avctx
->sample_fmt
= SAMPLE_FMT_S16
;
1276 avctx
->channel_layout
= channel_mask
;
1278 avctx
->channel_layout
= (avctx
->channels
==2) ? CH_LAYOUT_STEREO
: CH_LAYOUT_MONO
;
1281 dump_cook_context(q
);
1287 AVCodec cook_decoder
=
1290 .type
= CODEC_TYPE_AUDIO
,
1291 .id
= CODEC_ID_COOK
,
1292 .priv_data_size
= sizeof(COOKContext
),
1293 .init
= cook_decode_init
,
1294 .close
= cook_decode_close
,
1295 .decode
= cook_decode_frame
,
1296 .long_name
= NULL_IF_CONFIG_SMALL("COOK"),