cosmetics: line wrap and vertical alignment
[FFMpeg-mirror/lagarith.git] / libavcodec / vp3.c
blob982ca2fb23c3042b8a80ade3b01a381893cd58d0
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 /**
22 * @file libavcodec/vp3.c
23 * On2 VP3 Video Decoder
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
29 * Theora decoder by Alex Beregszaszi
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <unistd.h>
37 #include "avcodec.h"
38 #include "dsputil.h"
39 #include "get_bits.h"
41 #include "vp3data.h"
42 #include "xiph.h"
44 #define FRAGMENT_PIXELS 8
46 typedef struct Coeff {
47 struct Coeff *next;
48 DCTELEM coeff;
49 uint8_t index;
50 } Coeff;
52 //FIXME split things out into their own arrays
53 typedef struct Vp3Fragment {
54 Coeff *next_coeff;
55 /* address of first pixel taking into account which plane the fragment
56 * lives on as well as the plane stride */
57 int first_pixel;
58 /* this is the macroblock that the fragment belongs to */
59 uint16_t macroblock;
60 uint8_t coding_method;
61 int8_t motion_x;
62 int8_t motion_y;
63 } Vp3Fragment;
65 #define SB_NOT_CODED 0
66 #define SB_PARTIALLY_CODED 1
67 #define SB_FULLY_CODED 2
69 #define MODE_INTER_NO_MV 0
70 #define MODE_INTRA 1
71 #define MODE_INTER_PLUS_MV 2
72 #define MODE_INTER_LAST_MV 3
73 #define MODE_INTER_PRIOR_LAST 4
74 #define MODE_USING_GOLDEN 5
75 #define MODE_GOLDEN_MV 6
76 #define MODE_INTER_FOURMV 7
77 #define CODING_MODE_COUNT 8
79 /* special internal mode */
80 #define MODE_COPY 8
82 /* There are 6 preset schemes, plus a free-form scheme */
83 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
85 /* scheme 1: Last motion vector dominates */
86 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
87 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
88 MODE_INTRA, MODE_USING_GOLDEN,
89 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
91 /* scheme 2 */
92 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
93 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
94 MODE_INTRA, MODE_USING_GOLDEN,
95 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
97 /* scheme 3 */
98 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
99 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
100 MODE_INTRA, MODE_USING_GOLDEN,
101 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
103 /* scheme 4 */
104 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
105 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
106 MODE_INTRA, MODE_USING_GOLDEN,
107 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
109 /* scheme 5: No motion vector dominates */
110 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
111 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
112 MODE_INTRA, MODE_USING_GOLDEN,
113 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
115 /* scheme 6 */
116 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
117 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
118 MODE_INTER_PLUS_MV, MODE_INTRA,
119 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
123 #define MIN_DEQUANT_VAL 2
125 typedef struct Vp3DecodeContext {
126 AVCodecContext *avctx;
127 int theora, theora_tables;
128 int version;
129 int width, height;
130 AVFrame golden_frame;
131 AVFrame last_frame;
132 AVFrame current_frame;
133 int keyframe;
134 DSPContext dsp;
135 int flipped_image;
137 int qis[3];
138 int nqis;
139 int quality_index;
140 int last_quality_index;
142 int superblock_count;
143 int y_superblock_width;
144 int y_superblock_height;
145 int c_superblock_width;
146 int c_superblock_height;
147 int u_superblock_start;
148 int v_superblock_start;
149 unsigned char *superblock_coding;
151 int macroblock_count;
152 int macroblock_width;
153 int macroblock_height;
155 int fragment_count;
156 int fragment_width;
157 int fragment_height;
159 Vp3Fragment *all_fragments;
160 uint8_t *coeff_counts;
161 Coeff *coeffs;
162 Coeff *next_coeff;
163 int fragment_start[3];
165 ScanTable scantable;
167 /* tables */
168 uint16_t coded_dc_scale_factor[64];
169 uint32_t coded_ac_scale_factor[64];
170 uint8_t base_matrix[384][64];
171 uint8_t qr_count[2][3];
172 uint8_t qr_size [2][3][64];
173 uint16_t qr_base[2][3][64];
175 /* this is a list of indexes into the all_fragments array indicating
176 * which of the fragments are coded */
177 int *coded_fragment_list;
178 int coded_fragment_list_index;
179 int pixel_addresses_initialized;
181 VLC dc_vlc[16];
182 VLC ac_vlc_1[16];
183 VLC ac_vlc_2[16];
184 VLC ac_vlc_3[16];
185 VLC ac_vlc_4[16];
187 VLC superblock_run_length_vlc;
188 VLC fragment_run_length_vlc;
189 VLC mode_code_vlc;
190 VLC motion_vector_vlc;
192 /* these arrays need to be on 16-byte boundaries since SSE2 operations
193 * index into them */
194 DECLARE_ALIGNED_16(int16_t, qmat[2][4][64]); //<qmat[is_inter][plane]
196 /* This table contains superblock_count * 16 entries. Each set of 16
197 * numbers corresponds to the fragment indexes 0..15 of the superblock.
198 * An entry will be -1 to indicate that no entry corresponds to that
199 * index. */
200 int *superblock_fragments;
202 /* This table contains superblock_count * 4 entries. Each set of 4
203 * numbers corresponds to the macroblock indexes 0..3 of the superblock.
204 * An entry will be -1 to indicate that no entry corresponds to that
205 * index. */
206 int *superblock_macroblocks;
208 /* This table contains macroblock_count * 6 entries. Each set of 6
209 * numbers corresponds to the fragment indexes 0..5 which comprise
210 * the macroblock (4 Y fragments and 2 C fragments). */
211 int *macroblock_fragments;
212 /* This is an array that indicates how a particular macroblock
213 * is coded. */
214 unsigned char *macroblock_coding;
216 int first_coded_y_fragment;
217 int first_coded_c_fragment;
218 int last_coded_y_fragment;
219 int last_coded_c_fragment;
221 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
222 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
224 /* Huffman decode */
225 int hti;
226 unsigned int hbits;
227 int entries;
228 int huff_code_size;
229 uint16_t huffman_table[80][32][2];
231 uint8_t filter_limit_values[64];
232 DECLARE_ALIGNED_8(int, bounding_values_array[256+2]);
233 } Vp3DecodeContext;
235 /************************************************************************
236 * VP3 specific functions
237 ************************************************************************/
240 * This function sets up all of the various blocks mappings:
241 * superblocks <-> fragments, macroblocks <-> fragments,
242 * superblocks <-> macroblocks
244 * Returns 0 is successful; returns 1 if *anything* went wrong.
246 static int init_block_mapping(Vp3DecodeContext *s)
248 int i, j;
249 signed int hilbert_walk_mb[4];
251 int current_fragment = 0;
252 int current_width = 0;
253 int current_height = 0;
254 int right_edge = 0;
255 int bottom_edge = 0;
256 int superblock_row_inc = 0;
257 int mapping_index = 0;
259 int current_macroblock;
260 int c_fragment;
262 signed char travel_width[16] = {
263 1, 1, 0, -1,
264 0, 0, 1, 0,
265 1, 0, 1, 0,
266 0, -1, 0, 1
269 signed char travel_height[16] = {
270 0, 0, 1, 0,
271 1, 1, 0, -1,
272 0, 1, 0, -1,
273 -1, 0, -1, 0
276 signed char travel_width_mb[4] = {
277 1, 0, 1, 0
280 signed char travel_height_mb[4] = {
281 0, 1, 0, -1
284 hilbert_walk_mb[0] = 1;
285 hilbert_walk_mb[1] = s->macroblock_width;
286 hilbert_walk_mb[2] = 1;
287 hilbert_walk_mb[3] = -s->macroblock_width;
289 /* iterate through each superblock (all planes) and map the fragments */
290 for (i = 0; i < s->superblock_count; i++) {
291 /* time to re-assign the limits? */
292 if (i == 0) {
294 /* start of Y superblocks */
295 right_edge = s->fragment_width;
296 bottom_edge = s->fragment_height;
297 current_width = -1;
298 current_height = 0;
299 superblock_row_inc = 3 * s->fragment_width -
300 (s->y_superblock_width * 4 - s->fragment_width);
302 /* the first operation for this variable is to advance by 1 */
303 current_fragment = -1;
305 } else if (i == s->u_superblock_start) {
307 /* start of U superblocks */
308 right_edge = s->fragment_width / 2;
309 bottom_edge = s->fragment_height / 2;
310 current_width = -1;
311 current_height = 0;
312 superblock_row_inc = 3 * (s->fragment_width / 2) -
313 (s->c_superblock_width * 4 - s->fragment_width / 2);
315 /* the first operation for this variable is to advance by 1 */
316 current_fragment = s->fragment_start[1] - 1;
318 } else if (i == s->v_superblock_start) {
320 /* start of V superblocks */
321 right_edge = s->fragment_width / 2;
322 bottom_edge = s->fragment_height / 2;
323 current_width = -1;
324 current_height = 0;
325 superblock_row_inc = 3 * (s->fragment_width / 2) -
326 (s->c_superblock_width * 4 - s->fragment_width / 2);
328 /* the first operation for this variable is to advance by 1 */
329 current_fragment = s->fragment_start[2] - 1;
333 if (current_width >= right_edge - 1) {
334 /* reset width and move to next superblock row */
335 current_width = -1;
336 current_height += 4;
338 /* fragment is now at the start of a new superblock row */
339 current_fragment += superblock_row_inc;
342 /* iterate through all 16 fragments in a superblock */
343 for (j = 0; j < 16; j++) {
344 current_fragment += travel_width[j] + right_edge * travel_height[j];
345 current_width += travel_width[j];
346 current_height += travel_height[j];
348 /* check if the fragment is in bounds */
349 if ((current_width < right_edge) &&
350 (current_height < bottom_edge)) {
351 s->superblock_fragments[mapping_index] = current_fragment;
352 } else {
353 s->superblock_fragments[mapping_index] = -1;
356 mapping_index++;
360 /* initialize the superblock <-> macroblock mapping; iterate through
361 * all of the Y plane superblocks to build this mapping */
362 right_edge = s->macroblock_width;
363 bottom_edge = s->macroblock_height;
364 current_width = -1;
365 current_height = 0;
366 superblock_row_inc = s->macroblock_width -
367 (s->y_superblock_width * 2 - s->macroblock_width);
368 mapping_index = 0;
369 current_macroblock = -1;
370 for (i = 0; i < s->u_superblock_start; i++) {
372 if (current_width >= right_edge - 1) {
373 /* reset width and move to next superblock row */
374 current_width = -1;
375 current_height += 2;
377 /* macroblock is now at the start of a new superblock row */
378 current_macroblock += superblock_row_inc;
381 /* iterate through each potential macroblock in the superblock */
382 for (j = 0; j < 4; j++) {
383 current_macroblock += hilbert_walk_mb[j];
384 current_width += travel_width_mb[j];
385 current_height += travel_height_mb[j];
387 /* check if the macroblock is in bounds */
388 if ((current_width < right_edge) &&
389 (current_height < bottom_edge)) {
390 s->superblock_macroblocks[mapping_index] = current_macroblock;
391 } else {
392 s->superblock_macroblocks[mapping_index] = -1;
395 mapping_index++;
399 /* initialize the macroblock <-> fragment mapping */
400 current_fragment = 0;
401 current_macroblock = 0;
402 mapping_index = 0;
403 for (i = 0; i < s->fragment_height; i += 2) {
405 for (j = 0; j < s->fragment_width; j += 2) {
407 s->all_fragments[current_fragment].macroblock = current_macroblock;
408 s->macroblock_fragments[mapping_index++] = current_fragment;
410 if (j + 1 < s->fragment_width) {
411 s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
412 s->macroblock_fragments[mapping_index++] = current_fragment + 1;
413 } else
414 s->macroblock_fragments[mapping_index++] = -1;
416 if (i + 1 < s->fragment_height) {
417 s->all_fragments[current_fragment + s->fragment_width].macroblock =
418 current_macroblock;
419 s->macroblock_fragments[mapping_index++] =
420 current_fragment + s->fragment_width;
421 } else
422 s->macroblock_fragments[mapping_index++] = -1;
424 if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
425 s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
426 current_macroblock;
427 s->macroblock_fragments[mapping_index++] =
428 current_fragment + s->fragment_width + 1;
429 } else
430 s->macroblock_fragments[mapping_index++] = -1;
432 /* C planes */
433 c_fragment = s->fragment_start[1] +
434 (i * s->fragment_width / 4) + (j / 2);
435 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
436 s->macroblock_fragments[mapping_index++] = c_fragment;
438 c_fragment = s->fragment_start[2] +
439 (i * s->fragment_width / 4) + (j / 2);
440 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
441 s->macroblock_fragments[mapping_index++] = c_fragment;
443 if (j + 2 <= s->fragment_width)
444 current_fragment += 2;
445 else
446 current_fragment++;
447 current_macroblock++;
450 current_fragment += s->fragment_width;
453 return 0; /* successful path out */
457 * This function wipes out all of the fragment data.
459 static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
461 int i;
463 /* zero out all of the fragment information */
464 s->coded_fragment_list_index = 0;
465 for (i = 0; i < s->fragment_count; i++) {
466 s->coeff_counts[i] = 0;
467 s->all_fragments[i].motion_x = 127;
468 s->all_fragments[i].motion_y = 127;
469 s->all_fragments[i].next_coeff= NULL;
470 s->coeffs[i].index=
471 s->coeffs[i].coeff=0;
472 s->coeffs[i].next= NULL;
477 * This function sets up the dequantization tables used for a particular
478 * frame.
480 static void init_dequantizer(Vp3DecodeContext *s)
482 int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
483 int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
484 int i, plane, inter, qri, bmi, bmj, qistart;
486 for(inter=0; inter<2; inter++){
487 for(plane=0; plane<3; plane++){
488 int sum=0;
489 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
490 sum+= s->qr_size[inter][plane][qri];
491 if(s->quality_index <= sum)
492 break;
494 qistart= sum - s->qr_size[inter][plane][qri];
495 bmi= s->qr_base[inter][plane][qri ];
496 bmj= s->qr_base[inter][plane][qri+1];
497 for(i=0; i<64; i++){
498 int coeff= ( 2*(sum -s->quality_index)*s->base_matrix[bmi][i]
499 - 2*(qistart-s->quality_index)*s->base_matrix[bmj][i]
500 + s->qr_size[inter][plane][qri])
501 / (2*s->qr_size[inter][plane][qri]);
503 int qmin= 8<<(inter + !i);
504 int qscale= i ? ac_scale_factor : dc_scale_factor;
506 s->qmat[inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
511 memset(s->qscale_table, (FFMAX(s->qmat[0][0][1], s->qmat[0][1][1])+8)/16, 512); //FIXME finetune
515 * This function initializes the loop filter boundary limits if the frame's
516 * quality index is different from the previous frame's.
518 static void init_loop_filter(Vp3DecodeContext *s)
520 int *bounding_values= s->bounding_values_array+127;
521 int filter_limit;
522 int x;
524 filter_limit = s->filter_limit_values[s->quality_index];
526 /* set up the bounding values */
527 memset(s->bounding_values_array, 0, 256 * sizeof(int));
528 for (x = 0; x < filter_limit; x++) {
529 bounding_values[-x - filter_limit] = -filter_limit + x;
530 bounding_values[-x] = -x;
531 bounding_values[x] = x;
532 bounding_values[x + filter_limit] = filter_limit - x;
534 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
538 * This function unpacks all of the superblock/macroblock/fragment coding
539 * information from the bitstream.
541 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
543 int bit = 0;
544 int current_superblock = 0;
545 int current_run = 0;
546 int decode_fully_flags = 0;
547 int decode_partial_blocks = 0;
548 int first_c_fragment_seen;
550 int i, j;
551 int current_fragment;
553 if (s->keyframe) {
554 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
556 } else {
558 /* unpack the list of partially-coded superblocks */
559 bit = get_bits1(gb);
560 /* toggle the bit because as soon as the first run length is
561 * fetched the bit will be toggled again */
562 bit ^= 1;
563 while (current_superblock < s->superblock_count) {
564 if (current_run-- == 0) {
565 bit ^= 1;
566 current_run = get_vlc2(gb,
567 s->superblock_run_length_vlc.table, 6, 2);
568 if (current_run == 33)
569 current_run += get_bits(gb, 12);
571 /* if any of the superblocks are not partially coded, flag
572 * a boolean to decode the list of fully-coded superblocks */
573 if (bit == 0) {
574 decode_fully_flags = 1;
575 } else {
577 /* make a note of the fact that there are partially coded
578 * superblocks */
579 decode_partial_blocks = 1;
582 s->superblock_coding[current_superblock++] = bit;
585 /* unpack the list of fully coded superblocks if any of the blocks were
586 * not marked as partially coded in the previous step */
587 if (decode_fully_flags) {
589 current_superblock = 0;
590 current_run = 0;
591 bit = get_bits1(gb);
592 /* toggle the bit because as soon as the first run length is
593 * fetched the bit will be toggled again */
594 bit ^= 1;
595 while (current_superblock < s->superblock_count) {
597 /* skip any superblocks already marked as partially coded */
598 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
600 if (current_run-- == 0) {
601 bit ^= 1;
602 current_run = get_vlc2(gb,
603 s->superblock_run_length_vlc.table, 6, 2);
604 if (current_run == 33)
605 current_run += get_bits(gb, 12);
607 s->superblock_coding[current_superblock] = 2*bit;
609 current_superblock++;
613 /* if there were partial blocks, initialize bitstream for
614 * unpacking fragment codings */
615 if (decode_partial_blocks) {
617 current_run = 0;
618 bit = get_bits1(gb);
619 /* toggle the bit because as soon as the first run length is
620 * fetched the bit will be toggled again */
621 bit ^= 1;
625 /* figure out which fragments are coded; iterate through each
626 * superblock (all planes) */
627 s->coded_fragment_list_index = 0;
628 s->next_coeff= s->coeffs + s->fragment_count;
629 s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
630 s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
631 first_c_fragment_seen = 0;
632 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
633 for (i = 0; i < s->superblock_count; i++) {
635 /* iterate through all 16 fragments in a superblock */
636 for (j = 0; j < 16; j++) {
638 /* if the fragment is in bounds, check its coding status */
639 current_fragment = s->superblock_fragments[i * 16 + j];
640 if (current_fragment >= s->fragment_count) {
641 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
642 current_fragment, s->fragment_count);
643 return 1;
645 if (current_fragment != -1) {
646 if (s->superblock_coding[i] == SB_NOT_CODED) {
648 /* copy all the fragments from the prior frame */
649 s->all_fragments[current_fragment].coding_method =
650 MODE_COPY;
652 } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
654 /* fragment may or may not be coded; this is the case
655 * that cares about the fragment coding runs */
656 if (current_run-- == 0) {
657 bit ^= 1;
658 current_run = get_vlc2(gb,
659 s->fragment_run_length_vlc.table, 5, 2);
662 if (bit) {
663 /* default mode; actual mode will be decoded in
664 * the next phase */
665 s->all_fragments[current_fragment].coding_method =
666 MODE_INTER_NO_MV;
667 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
668 s->coded_fragment_list[s->coded_fragment_list_index] =
669 current_fragment;
670 if ((current_fragment >= s->fragment_start[1]) &&
671 (s->last_coded_y_fragment == -1) &&
672 (!first_c_fragment_seen)) {
673 s->first_coded_c_fragment = s->coded_fragment_list_index;
674 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
675 first_c_fragment_seen = 1;
677 s->coded_fragment_list_index++;
678 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
679 } else {
680 /* not coded; copy this fragment from the prior frame */
681 s->all_fragments[current_fragment].coding_method =
682 MODE_COPY;
685 } else {
687 /* fragments are fully coded in this superblock; actual
688 * coding will be determined in next step */
689 s->all_fragments[current_fragment].coding_method =
690 MODE_INTER_NO_MV;
691 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
692 s->coded_fragment_list[s->coded_fragment_list_index] =
693 current_fragment;
694 if ((current_fragment >= s->fragment_start[1]) &&
695 (s->last_coded_y_fragment == -1) &&
696 (!first_c_fragment_seen)) {
697 s->first_coded_c_fragment = s->coded_fragment_list_index;
698 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
699 first_c_fragment_seen = 1;
701 s->coded_fragment_list_index++;
702 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
708 if (!first_c_fragment_seen)
709 /* only Y fragments coded in this frame */
710 s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
711 else
712 /* end the list of coded C fragments */
713 s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
715 return 0;
719 * This function unpacks all the coding mode data for individual macroblocks
720 * from the bitstream.
722 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
724 int i, j, k;
725 int scheme;
726 int current_macroblock;
727 int current_fragment;
728 int coding_mode;
729 int custom_mode_alphabet[CODING_MODE_COUNT];
731 if (s->keyframe) {
732 for (i = 0; i < s->fragment_count; i++)
733 s->all_fragments[i].coding_method = MODE_INTRA;
735 } else {
737 /* fetch the mode coding scheme for this frame */
738 scheme = get_bits(gb, 3);
740 /* is it a custom coding scheme? */
741 if (scheme == 0) {
742 for (i = 0; i < 8; i++)
743 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
744 for (i = 0; i < 8; i++)
745 custom_mode_alphabet[get_bits(gb, 3)] = i;
748 /* iterate through all of the macroblocks that contain 1 or more
749 * coded fragments */
750 for (i = 0; i < s->u_superblock_start; i++) {
752 for (j = 0; j < 4; j++) {
753 current_macroblock = s->superblock_macroblocks[i * 4 + j];
754 if ((current_macroblock == -1) ||
755 (s->macroblock_coding[current_macroblock] == MODE_COPY))
756 continue;
757 if (current_macroblock >= s->macroblock_count) {
758 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
759 current_macroblock, s->macroblock_count);
760 return 1;
763 /* mode 7 means get 3 bits for each coding mode */
764 if (scheme == 7)
765 coding_mode = get_bits(gb, 3);
766 else if(scheme == 0)
767 coding_mode = custom_mode_alphabet
768 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
769 else
770 coding_mode = ModeAlphabet[scheme-1]
771 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
773 s->macroblock_coding[current_macroblock] = coding_mode;
774 for (k = 0; k < 6; k++) {
775 current_fragment =
776 s->macroblock_fragments[current_macroblock * 6 + k];
777 if (current_fragment == -1)
778 continue;
779 if (current_fragment >= s->fragment_count) {
780 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
781 current_fragment, s->fragment_count);
782 return 1;
784 if (s->all_fragments[current_fragment].coding_method !=
785 MODE_COPY)
786 s->all_fragments[current_fragment].coding_method =
787 coding_mode;
793 return 0;
797 * This function unpacks all the motion vectors for the individual
798 * macroblocks from the bitstream.
800 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
802 int i, j, k, l;
803 int coding_mode;
804 int motion_x[6];
805 int motion_y[6];
806 int last_motion_x = 0;
807 int last_motion_y = 0;
808 int prior_last_motion_x = 0;
809 int prior_last_motion_y = 0;
810 int current_macroblock;
811 int current_fragment;
813 if (s->keyframe)
814 return 0;
816 memset(motion_x, 0, 6 * sizeof(int));
817 memset(motion_y, 0, 6 * sizeof(int));
819 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
820 coding_mode = get_bits1(gb);
822 /* iterate through all of the macroblocks that contain 1 or more
823 * coded fragments */
824 for (i = 0; i < s->u_superblock_start; i++) {
826 for (j = 0; j < 4; j++) {
827 current_macroblock = s->superblock_macroblocks[i * 4 + j];
828 if ((current_macroblock == -1) ||
829 (s->macroblock_coding[current_macroblock] == MODE_COPY))
830 continue;
831 if (current_macroblock >= s->macroblock_count) {
832 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
833 current_macroblock, s->macroblock_count);
834 return 1;
837 current_fragment = s->macroblock_fragments[current_macroblock * 6];
838 if (current_fragment >= s->fragment_count) {
839 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
840 current_fragment, s->fragment_count);
841 return 1;
843 switch (s->macroblock_coding[current_macroblock]) {
845 case MODE_INTER_PLUS_MV:
846 case MODE_GOLDEN_MV:
847 /* all 6 fragments use the same motion vector */
848 if (coding_mode == 0) {
849 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
850 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
851 } else {
852 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
853 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
856 for (k = 1; k < 6; k++) {
857 motion_x[k] = motion_x[0];
858 motion_y[k] = motion_y[0];
861 /* vector maintenance, only on MODE_INTER_PLUS_MV */
862 if (s->macroblock_coding[current_macroblock] ==
863 MODE_INTER_PLUS_MV) {
864 prior_last_motion_x = last_motion_x;
865 prior_last_motion_y = last_motion_y;
866 last_motion_x = motion_x[0];
867 last_motion_y = motion_y[0];
869 break;
871 case MODE_INTER_FOURMV:
872 /* vector maintenance */
873 prior_last_motion_x = last_motion_x;
874 prior_last_motion_y = last_motion_y;
876 /* fetch 4 vectors from the bitstream, one for each
877 * Y fragment, then average for the C fragment vectors */
878 motion_x[4] = motion_y[4] = 0;
879 for (k = 0; k < 4; k++) {
880 for (l = 0; l < s->coded_fragment_list_index; l++)
881 if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k])
882 break;
883 if (l < s->coded_fragment_list_index) {
884 if (coding_mode == 0) {
885 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
886 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
887 } else {
888 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
889 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
891 last_motion_x = motion_x[k];
892 last_motion_y = motion_y[k];
893 } else {
894 motion_x[k] = 0;
895 motion_y[k] = 0;
897 motion_x[4] += motion_x[k];
898 motion_y[4] += motion_y[k];
901 motion_x[5]=
902 motion_x[4]= RSHIFT(motion_x[4], 2);
903 motion_y[5]=
904 motion_y[4]= RSHIFT(motion_y[4], 2);
905 break;
907 case MODE_INTER_LAST_MV:
908 /* all 6 fragments use the last motion vector */
909 motion_x[0] = last_motion_x;
910 motion_y[0] = last_motion_y;
911 for (k = 1; k < 6; k++) {
912 motion_x[k] = motion_x[0];
913 motion_y[k] = motion_y[0];
916 /* no vector maintenance (last vector remains the
917 * last vector) */
918 break;
920 case MODE_INTER_PRIOR_LAST:
921 /* all 6 fragments use the motion vector prior to the
922 * last motion vector */
923 motion_x[0] = prior_last_motion_x;
924 motion_y[0] = prior_last_motion_y;
925 for (k = 1; k < 6; k++) {
926 motion_x[k] = motion_x[0];
927 motion_y[k] = motion_y[0];
930 /* vector maintenance */
931 prior_last_motion_x = last_motion_x;
932 prior_last_motion_y = last_motion_y;
933 last_motion_x = motion_x[0];
934 last_motion_y = motion_y[0];
935 break;
937 default:
938 /* covers intra, inter without MV, golden without MV */
939 memset(motion_x, 0, 6 * sizeof(int));
940 memset(motion_y, 0, 6 * sizeof(int));
942 /* no vector maintenance */
943 break;
946 /* assign the motion vectors to the correct fragments */
947 for (k = 0; k < 6; k++) {
948 current_fragment =
949 s->macroblock_fragments[current_macroblock * 6 + k];
950 if (current_fragment == -1)
951 continue;
952 if (current_fragment >= s->fragment_count) {
953 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
954 current_fragment, s->fragment_count);
955 return 1;
957 s->all_fragments[current_fragment].motion_x = motion_x[k];
958 s->all_fragments[current_fragment].motion_y = motion_y[k];
963 return 0;
967 * This function is called by unpack_dct_coeffs() to extract the VLCs from
968 * the bitstream. The VLCs encode tokens which are used to unpack DCT
969 * data. This function unpacks all the VLCs for either the Y plane or both
970 * C planes, and is called for DC coefficients or different AC coefficient
971 * levels (since different coefficient types require different VLC tables.
973 * This function returns a residual eob run. E.g, if a particular token gave
974 * instructions to EOB the next 5 fragments and there were only 2 fragments
975 * left in the current fragment range, 3 would be returned so that it could
976 * be passed into the next call to this same function.
978 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
979 VLC *table, int coeff_index,
980 int first_fragment, int last_fragment,
981 int eob_run)
983 int i;
984 int token;
985 int zero_run = 0;
986 DCTELEM coeff = 0;
987 Vp3Fragment *fragment;
988 uint8_t *perm= s->scantable.permutated;
989 int bits_to_get;
991 if ((first_fragment >= s->fragment_count) ||
992 (last_fragment >= s->fragment_count)) {
994 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
995 first_fragment, last_fragment);
996 return 0;
999 for (i = first_fragment; i <= last_fragment; i++) {
1000 int fragment_num = s->coded_fragment_list[i];
1002 if (s->coeff_counts[fragment_num] > coeff_index)
1003 continue;
1004 fragment = &s->all_fragments[fragment_num];
1006 if (!eob_run) {
1007 /* decode a VLC into a token */
1008 token = get_vlc2(gb, table->table, 5, 3);
1009 /* use the token to get a zero run, a coefficient, and an eob run */
1010 if (token <= 6) {
1011 eob_run = eob_run_base[token];
1012 if (eob_run_get_bits[token])
1013 eob_run += get_bits(gb, eob_run_get_bits[token]);
1014 coeff = zero_run = 0;
1015 } else {
1016 bits_to_get = coeff_get_bits[token];
1017 if (!bits_to_get)
1018 coeff = coeff_tables[token][0];
1019 else
1020 coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
1022 zero_run = zero_run_base[token];
1023 if (zero_run_get_bits[token])
1024 zero_run += get_bits(gb, zero_run_get_bits[token]);
1028 if (!eob_run) {
1029 s->coeff_counts[fragment_num] += zero_run;
1030 if (s->coeff_counts[fragment_num] < 64){
1031 fragment->next_coeff->coeff= coeff;
1032 fragment->next_coeff->index= perm[s->coeff_counts[fragment_num]++]; //FIXME perm here already?
1033 fragment->next_coeff->next= s->next_coeff;
1034 s->next_coeff->next=NULL;
1035 fragment->next_coeff= s->next_coeff++;
1037 } else {
1038 s->coeff_counts[fragment_num] |= 128;
1039 eob_run--;
1043 return eob_run;
1047 * This function unpacks all of the DCT coefficient data from the
1048 * bitstream.
1050 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1052 int i;
1053 int dc_y_table;
1054 int dc_c_table;
1055 int ac_y_table;
1056 int ac_c_table;
1057 int residual_eob_run = 0;
1059 /* fetch the DC table indexes */
1060 dc_y_table = get_bits(gb, 4);
1061 dc_c_table = get_bits(gb, 4);
1063 /* unpack the Y plane DC coefficients */
1064 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1065 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1067 /* unpack the C plane DC coefficients */
1068 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1069 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1071 /* fetch the AC table indexes */
1072 ac_y_table = get_bits(gb, 4);
1073 ac_c_table = get_bits(gb, 4);
1075 /* unpack the group 1 AC coefficients (coeffs 1-5) */
1076 for (i = 1; i <= 5; i++) {
1077 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1078 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1080 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1081 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1084 /* unpack the group 2 AC coefficients (coeffs 6-14) */
1085 for (i = 6; i <= 14; i++) {
1086 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1087 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1089 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1090 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1093 /* unpack the group 3 AC coefficients (coeffs 15-27) */
1094 for (i = 15; i <= 27; i++) {
1095 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1096 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1098 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1099 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1102 /* unpack the group 4 AC coefficients (coeffs 28-63) */
1103 for (i = 28; i <= 63; i++) {
1104 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1105 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1107 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1108 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1111 return 0;
1115 * This function reverses the DC prediction for each coded fragment in
1116 * the frame. Much of this function is adapted directly from the original
1117 * VP3 source code.
1119 #define COMPATIBLE_FRAME(x) \
1120 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1121 #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1122 #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1124 static void reverse_dc_prediction(Vp3DecodeContext *s,
1125 int first_fragment,
1126 int fragment_width,
1127 int fragment_height)
1130 #define PUL 8
1131 #define PU 4
1132 #define PUR 2
1133 #define PL 1
1135 int x, y;
1136 int i = first_fragment;
1138 int predicted_dc;
1140 /* DC values for the left, up-left, up, and up-right fragments */
1141 int vl, vul, vu, vur;
1143 /* indexes for the left, up-left, up, and up-right fragments */
1144 int l, ul, u, ur;
1147 * The 6 fields mean:
1148 * 0: up-left multiplier
1149 * 1: up multiplier
1150 * 2: up-right multiplier
1151 * 3: left multiplier
1153 int predictor_transform[16][4] = {
1154 { 0, 0, 0, 0},
1155 { 0, 0, 0,128}, // PL
1156 { 0, 0,128, 0}, // PUR
1157 { 0, 0, 53, 75}, // PUR|PL
1158 { 0,128, 0, 0}, // PU
1159 { 0, 64, 0, 64}, // PU|PL
1160 { 0,128, 0, 0}, // PU|PUR
1161 { 0, 0, 53, 75}, // PU|PUR|PL
1162 {128, 0, 0, 0}, // PUL
1163 { 0, 0, 0,128}, // PUL|PL
1164 { 64, 0, 64, 0}, // PUL|PUR
1165 { 0, 0, 53, 75}, // PUL|PUR|PL
1166 { 0,128, 0, 0}, // PUL|PU
1167 {-104,116, 0,116}, // PUL|PU|PL
1168 { 24, 80, 24, 0}, // PUL|PU|PUR
1169 {-104,116, 0,116} // PUL|PU|PUR|PL
1172 /* This table shows which types of blocks can use other blocks for
1173 * prediction. For example, INTRA is the only mode in this table to
1174 * have a frame number of 0. That means INTRA blocks can only predict
1175 * from other INTRA blocks. There are 2 golden frame coding types;
1176 * blocks encoding in these modes can only predict from other blocks
1177 * that were encoded with these 1 of these 2 modes. */
1178 unsigned char compatible_frame[8] = {
1179 1, /* MODE_INTER_NO_MV */
1180 0, /* MODE_INTRA */
1181 1, /* MODE_INTER_PLUS_MV */
1182 1, /* MODE_INTER_LAST_MV */
1183 1, /* MODE_INTER_PRIOR_MV */
1184 2, /* MODE_USING_GOLDEN */
1185 2, /* MODE_GOLDEN_MV */
1186 1 /* MODE_INTER_FOUR_MV */
1188 int current_frame_type;
1190 /* there is a last DC predictor for each of the 3 frame types */
1191 short last_dc[3];
1193 int transform = 0;
1195 vul = vu = vur = vl = 0;
1196 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1198 /* for each fragment row... */
1199 for (y = 0; y < fragment_height; y++) {
1201 /* for each fragment in a row... */
1202 for (x = 0; x < fragment_width; x++, i++) {
1204 /* reverse prediction if this block was coded */
1205 if (s->all_fragments[i].coding_method != MODE_COPY) {
1207 current_frame_type =
1208 compatible_frame[s->all_fragments[i].coding_method];
1210 transform= 0;
1211 if(x){
1212 l= i-1;
1213 vl = DC_COEFF(l);
1214 if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
1215 transform |= PL;
1217 if(y){
1218 u= i-fragment_width;
1219 vu = DC_COEFF(u);
1220 if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
1221 transform |= PU;
1222 if(x){
1223 ul= i-fragment_width-1;
1224 vul = DC_COEFF(ul);
1225 if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
1226 transform |= PUL;
1228 if(x + 1 < fragment_width){
1229 ur= i-fragment_width+1;
1230 vur = DC_COEFF(ur);
1231 if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
1232 transform |= PUR;
1236 if (transform == 0) {
1238 /* if there were no fragments to predict from, use last
1239 * DC saved */
1240 predicted_dc = last_dc[current_frame_type];
1241 } else {
1243 /* apply the appropriate predictor transform */
1244 predicted_dc =
1245 (predictor_transform[transform][0] * vul) +
1246 (predictor_transform[transform][1] * vu) +
1247 (predictor_transform[transform][2] * vur) +
1248 (predictor_transform[transform][3] * vl);
1250 predicted_dc /= 128;
1252 /* check for outranging on the [ul u l] and
1253 * [ul u ur l] predictors */
1254 if ((transform == 13) || (transform == 15)) {
1255 if (FFABS(predicted_dc - vu) > 128)
1256 predicted_dc = vu;
1257 else if (FFABS(predicted_dc - vl) > 128)
1258 predicted_dc = vl;
1259 else if (FFABS(predicted_dc - vul) > 128)
1260 predicted_dc = vul;
1264 /* at long last, apply the predictor */
1265 if(s->coeffs[i].index){
1266 *s->next_coeff= s->coeffs[i];
1267 s->coeffs[i].index=0;
1268 s->coeffs[i].coeff=0;
1269 s->coeffs[i].next= s->next_coeff++;
1271 s->coeffs[i].coeff += predicted_dc;
1272 /* save the DC */
1273 last_dc[current_frame_type] = DC_COEFF(i);
1274 if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1275 s->coeff_counts[i]= 129;
1276 // s->all_fragments[i].next_coeff= s->next_coeff;
1277 s->coeffs[i].next= s->next_coeff;
1278 (s->next_coeff++)->next=NULL;
1286 * Perform the final rendering for a particular slice of data.
1287 * The slice number ranges from 0..(macroblock_height - 1).
1289 static void render_slice(Vp3DecodeContext *s, int slice)
1291 int x;
1292 int16_t *dequantizer;
1293 DECLARE_ALIGNED_16(DCTELEM, block[64]);
1294 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1295 int motion_halfpel_index;
1296 uint8_t *motion_source;
1297 int plane;
1298 int current_macroblock_entry = slice * s->macroblock_width * 6;
1300 if (slice >= s->macroblock_height)
1301 return;
1303 for (plane = 0; plane < 3; plane++) {
1304 uint8_t *output_plane = s->current_frame.data [plane];
1305 uint8_t * last_plane = s-> last_frame.data [plane];
1306 uint8_t *golden_plane = s-> golden_frame.data [plane];
1307 int stride = s->current_frame.linesize[plane];
1308 int plane_width = s->width >> !!plane;
1309 int plane_height = s->height >> !!plane;
1310 int y = slice * FRAGMENT_PIXELS << !plane ;
1311 int slice_height = y + (FRAGMENT_PIXELS << !plane);
1312 int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1314 if (!s->flipped_image) stride = -stride;
1317 if(FFABS(stride) > 2048)
1318 return; //various tables are fixed size
1320 /* for each fragment row in the slice (both of them)... */
1321 for (; y < slice_height; y += 8) {
1323 /* for each fragment in a row... */
1324 for (x = 0; x < plane_width; x += 8, i++) {
1326 if ((i < 0) || (i >= s->fragment_count)) {
1327 av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
1328 return;
1331 /* transform if this block was coded */
1332 if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1333 !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1335 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1336 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1337 motion_source= golden_plane;
1338 else
1339 motion_source= last_plane;
1341 motion_source += s->all_fragments[i].first_pixel;
1342 motion_halfpel_index = 0;
1344 /* sort out the motion vector if this fragment is coded
1345 * using a motion vector method */
1346 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1347 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1348 int src_x, src_y;
1349 motion_x = s->all_fragments[i].motion_x;
1350 motion_y = s->all_fragments[i].motion_y;
1351 if(plane){
1352 motion_x= (motion_x>>1) | (motion_x&1);
1353 motion_y= (motion_y>>1) | (motion_y&1);
1356 src_x= (motion_x>>1) + x;
1357 src_y= (motion_y>>1) + y;
1358 if ((motion_x == 127) || (motion_y == 127))
1359 av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1361 motion_halfpel_index = motion_x & 0x01;
1362 motion_source += (motion_x >> 1);
1364 motion_halfpel_index |= (motion_y & 0x01) << 1;
1365 motion_source += ((motion_y >> 1) * stride);
1367 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1368 uint8_t *temp= s->edge_emu_buffer;
1369 if(stride<0) temp -= 9*stride;
1370 else temp += 9*stride;
1372 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1373 motion_source= temp;
1378 /* first, take care of copying a block from either the
1379 * previous or the golden frame */
1380 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1381 /* Note, it is possible to implement all MC cases with
1382 put_no_rnd_pixels_l2 which would look more like the
1383 VP3 source but this would be slower as
1384 put_no_rnd_pixels_tab is better optimzed */
1385 if(motion_halfpel_index != 3){
1386 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1387 output_plane + s->all_fragments[i].first_pixel,
1388 motion_source, stride, 8);
1389 }else{
1390 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1391 s->dsp.put_no_rnd_pixels_l2[1](
1392 output_plane + s->all_fragments[i].first_pixel,
1393 motion_source - d,
1394 motion_source + stride + 1 + d,
1395 stride, 8);
1397 dequantizer = s->qmat[1][plane];
1398 }else{
1399 dequantizer = s->qmat[0][plane];
1402 /* dequantize the DCT coefficients */
1403 if(s->avctx->idct_algo==FF_IDCT_VP3){
1404 Coeff *coeff= s->coeffs + i;
1405 s->dsp.clear_block(block);
1406 while(coeff->next){
1407 block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1408 coeff= coeff->next;
1410 }else{
1411 Coeff *coeff= s->coeffs + i;
1412 s->dsp.clear_block(block);
1413 while(coeff->next){
1414 block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1415 coeff= coeff->next;
1419 /* invert DCT and place (or add) in final output */
1421 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1422 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1423 block[0] += 128<<3;
1424 s->dsp.idct_put(
1425 output_plane + s->all_fragments[i].first_pixel,
1426 stride,
1427 block);
1428 } else {
1429 s->dsp.idct_add(
1430 output_plane + s->all_fragments[i].first_pixel,
1431 stride,
1432 block);
1434 } else {
1436 /* copy directly from the previous frame */
1437 s->dsp.put_pixels_tab[1][0](
1438 output_plane + s->all_fragments[i].first_pixel,
1439 last_plane + s->all_fragments[i].first_pixel,
1440 stride, 8);
1443 #if 0
1444 /* perform the left edge filter if:
1445 * - the fragment is not on the left column
1446 * - the fragment is coded in this frame
1447 * - the fragment is not coded in this frame but the left
1448 * fragment is coded in this frame (this is done instead
1449 * of a right edge filter when rendering the left fragment
1450 * since this fragment is not available yet) */
1451 if ((x > 0) &&
1452 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1453 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1454 (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1455 horizontal_filter(
1456 output_plane + s->all_fragments[i].first_pixel + 7*stride,
1457 -stride, s->bounding_values_array + 127);
1460 /* perform the top edge filter if:
1461 * - the fragment is not on the top row
1462 * - the fragment is coded in this frame
1463 * - the fragment is not coded in this frame but the above
1464 * fragment is coded in this frame (this is done instead
1465 * of a bottom edge filter when rendering the above
1466 * fragment since this fragment is not available yet) */
1467 if ((y > 0) &&
1468 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1469 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1470 (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1471 vertical_filter(
1472 output_plane + s->all_fragments[i].first_pixel - stride,
1473 -stride, s->bounding_values_array + 127);
1475 #endif
1480 /* this looks like a good place for slice dispatch... */
1481 /* algorithm:
1482 * if (slice == s->macroblock_height - 1)
1483 * dispatch (both last slice & 2nd-to-last slice);
1484 * else if (slice > 0)
1485 * dispatch (slice - 1);
1488 emms_c();
1491 static void apply_loop_filter(Vp3DecodeContext *s)
1493 int plane;
1494 int x, y;
1495 int *bounding_values= s->bounding_values_array+127;
1497 #if 0
1498 int bounding_values_array[256];
1499 int filter_limit;
1501 /* find the right loop limit value */
1502 for (x = 63; x >= 0; x--) {
1503 if (vp31_ac_scale_factor[x] >= s->quality_index)
1504 break;
1506 filter_limit = vp31_filter_limit_values[s->quality_index];
1508 /* set up the bounding values */
1509 memset(bounding_values_array, 0, 256 * sizeof(int));
1510 for (x = 0; x < filter_limit; x++) {
1511 bounding_values[-x - filter_limit] = -filter_limit + x;
1512 bounding_values[-x] = -x;
1513 bounding_values[x] = x;
1514 bounding_values[x + filter_limit] = filter_limit - x;
1516 #endif
1518 for (plane = 0; plane < 3; plane++) {
1519 int width = s->fragment_width >> !!plane;
1520 int height = s->fragment_height >> !!plane;
1521 int fragment = s->fragment_start [plane];
1522 int stride = s->current_frame.linesize[plane];
1523 uint8_t *plane_data = s->current_frame.data [plane];
1524 if (!s->flipped_image) stride = -stride;
1526 for (y = 0; y < height; y++) {
1528 for (x = 0; x < width; x++) {
1529 /* do not perform left edge filter for left columns frags */
1530 if ((x > 0) &&
1531 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1532 s->dsp.vp3_h_loop_filter(
1533 plane_data + s->all_fragments[fragment].first_pixel,
1534 stride, bounding_values);
1537 /* do not perform top edge filter for top row fragments */
1538 if ((y > 0) &&
1539 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1540 s->dsp.vp3_v_loop_filter(
1541 plane_data + s->all_fragments[fragment].first_pixel,
1542 stride, bounding_values);
1545 /* do not perform right edge filter for right column
1546 * fragments or if right fragment neighbor is also coded
1547 * in this frame (it will be filtered in next iteration) */
1548 if ((x < width - 1) &&
1549 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1550 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1551 s->dsp.vp3_h_loop_filter(
1552 plane_data + s->all_fragments[fragment + 1].first_pixel,
1553 stride, bounding_values);
1556 /* do not perform bottom edge filter for bottom row
1557 * fragments or if bottom fragment neighbor is also coded
1558 * in this frame (it will be filtered in the next row) */
1559 if ((y < height - 1) &&
1560 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1561 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1562 s->dsp.vp3_v_loop_filter(
1563 plane_data + s->all_fragments[fragment + width].first_pixel,
1564 stride, bounding_values);
1567 fragment++;
1574 * This function computes the first pixel addresses for each fragment.
1575 * This function needs to be invoked after the first frame is allocated
1576 * so that it has access to the plane strides.
1578 static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1580 #define Y_INITIAL(chroma_shift) s->flipped_image ? 1 : s->fragment_height >> chroma_shift
1581 #define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0
1583 int i, x, y;
1584 const int y_inc = s->flipped_image ? 1 : -1;
1586 /* figure out the first pixel addresses for each of the fragments */
1587 /* Y plane */
1588 i = 0;
1589 for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) {
1590 for (x = 0; x < s->fragment_width; x++) {
1591 s->all_fragments[i++].first_pixel =
1592 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1593 s->golden_frame.linesize[0] +
1594 x * FRAGMENT_PIXELS;
1598 /* U plane */
1599 i = s->fragment_start[1];
1600 for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1601 for (x = 0; x < s->fragment_width / 2; x++) {
1602 s->all_fragments[i++].first_pixel =
1603 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1604 s->golden_frame.linesize[1] +
1605 x * FRAGMENT_PIXELS;
1609 /* V plane */
1610 i = s->fragment_start[2];
1611 for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1612 for (x = 0; x < s->fragment_width / 2; x++) {
1613 s->all_fragments[i++].first_pixel =
1614 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1615 s->golden_frame.linesize[2] +
1616 x * FRAGMENT_PIXELS;
1622 * This is the ffmpeg/libavcodec API init function.
1624 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1626 Vp3DecodeContext *s = avctx->priv_data;
1627 int i, inter, plane;
1628 int c_width;
1629 int c_height;
1630 int y_superblock_count;
1631 int c_superblock_count;
1633 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1634 s->version = 0;
1635 else
1636 s->version = 1;
1638 s->avctx = avctx;
1639 s->width = (avctx->width + 15) & 0xFFFFFFF0;
1640 s->height = (avctx->height + 15) & 0xFFFFFFF0;
1641 avctx->pix_fmt = PIX_FMT_YUV420P;
1642 if(avctx->idct_algo==FF_IDCT_AUTO)
1643 avctx->idct_algo=FF_IDCT_VP3;
1644 dsputil_init(&s->dsp, avctx);
1646 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1648 /* initialize to an impossible value which will force a recalculation
1649 * in the first frame decode */
1650 s->quality_index = -1;
1652 s->y_superblock_width = (s->width + 31) / 32;
1653 s->y_superblock_height = (s->height + 31) / 32;
1654 y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1656 /* work out the dimensions for the C planes */
1657 c_width = s->width / 2;
1658 c_height = s->height / 2;
1659 s->c_superblock_width = (c_width + 31) / 32;
1660 s->c_superblock_height = (c_height + 31) / 32;
1661 c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1663 s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1664 s->u_superblock_start = y_superblock_count;
1665 s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1666 s->superblock_coding = av_malloc(s->superblock_count);
1668 s->macroblock_width = (s->width + 15) / 16;
1669 s->macroblock_height = (s->height + 15) / 16;
1670 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1672 s->fragment_width = s->width / FRAGMENT_PIXELS;
1673 s->fragment_height = s->height / FRAGMENT_PIXELS;
1675 /* fragment count covers all 8x8 blocks for all 3 planes */
1676 s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1677 s->fragment_start[1] = s->fragment_width * s->fragment_height;
1678 s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1680 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1681 s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1682 s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1683 s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1684 s->pixel_addresses_initialized = 0;
1686 if (!s->theora_tables)
1688 for (i = 0; i < 64; i++) {
1689 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1690 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1691 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1692 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1693 s->base_matrix[2][i] = vp31_inter_dequant[i];
1694 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1697 for(inter=0; inter<2; inter++){
1698 for(plane=0; plane<3; plane++){
1699 s->qr_count[inter][plane]= 1;
1700 s->qr_size [inter][plane][0]= 63;
1701 s->qr_base [inter][plane][0]=
1702 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1706 /* init VLC tables */
1707 for (i = 0; i < 16; i++) {
1709 /* DC histograms */
1710 init_vlc(&s->dc_vlc[i], 5, 32,
1711 &dc_bias[i][0][1], 4, 2,
1712 &dc_bias[i][0][0], 4, 2, 0);
1714 /* group 1 AC histograms */
1715 init_vlc(&s->ac_vlc_1[i], 5, 32,
1716 &ac_bias_0[i][0][1], 4, 2,
1717 &ac_bias_0[i][0][0], 4, 2, 0);
1719 /* group 2 AC histograms */
1720 init_vlc(&s->ac_vlc_2[i], 5, 32,
1721 &ac_bias_1[i][0][1], 4, 2,
1722 &ac_bias_1[i][0][0], 4, 2, 0);
1724 /* group 3 AC histograms */
1725 init_vlc(&s->ac_vlc_3[i], 5, 32,
1726 &ac_bias_2[i][0][1], 4, 2,
1727 &ac_bias_2[i][0][0], 4, 2, 0);
1729 /* group 4 AC histograms */
1730 init_vlc(&s->ac_vlc_4[i], 5, 32,
1731 &ac_bias_3[i][0][1], 4, 2,
1732 &ac_bias_3[i][0][0], 4, 2, 0);
1734 } else {
1735 for (i = 0; i < 16; i++) {
1737 /* DC histograms */
1738 init_vlc(&s->dc_vlc[i], 5, 32,
1739 &s->huffman_table[i][0][1], 4, 2,
1740 &s->huffman_table[i][0][0], 4, 2, 0);
1742 /* group 1 AC histograms */
1743 init_vlc(&s->ac_vlc_1[i], 5, 32,
1744 &s->huffman_table[i+16][0][1], 4, 2,
1745 &s->huffman_table[i+16][0][0], 4, 2, 0);
1747 /* group 2 AC histograms */
1748 init_vlc(&s->ac_vlc_2[i], 5, 32,
1749 &s->huffman_table[i+16*2][0][1], 4, 2,
1750 &s->huffman_table[i+16*2][0][0], 4, 2, 0);
1752 /* group 3 AC histograms */
1753 init_vlc(&s->ac_vlc_3[i], 5, 32,
1754 &s->huffman_table[i+16*3][0][1], 4, 2,
1755 &s->huffman_table[i+16*3][0][0], 4, 2, 0);
1757 /* group 4 AC histograms */
1758 init_vlc(&s->ac_vlc_4[i], 5, 32,
1759 &s->huffman_table[i+16*4][0][1], 4, 2,
1760 &s->huffman_table[i+16*4][0][0], 4, 2, 0);
1764 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1765 &superblock_run_length_vlc_table[0][1], 4, 2,
1766 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1768 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1769 &fragment_run_length_vlc_table[0][1], 4, 2,
1770 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1772 init_vlc(&s->mode_code_vlc, 3, 8,
1773 &mode_code_vlc_table[0][1], 2, 1,
1774 &mode_code_vlc_table[0][0], 2, 1, 0);
1776 init_vlc(&s->motion_vector_vlc, 6, 63,
1777 &motion_vector_vlc_table[0][1], 2, 1,
1778 &motion_vector_vlc_table[0][0], 2, 1, 0);
1780 /* work out the block mapping tables */
1781 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1782 s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
1783 s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
1784 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1785 init_block_mapping(s);
1787 for (i = 0; i < 3; i++) {
1788 s->current_frame.data[i] = NULL;
1789 s->last_frame.data[i] = NULL;
1790 s->golden_frame.data[i] = NULL;
1793 return 0;
1797 * This is the ffmpeg/libavcodec API frame decode function.
1799 static int vp3_decode_frame(AVCodecContext *avctx,
1800 void *data, int *data_size,
1801 AVPacket *avpkt)
1803 const uint8_t *buf = avpkt->data;
1804 int buf_size = avpkt->size;
1805 Vp3DecodeContext *s = avctx->priv_data;
1806 GetBitContext gb;
1807 static int counter = 0;
1808 int i;
1810 init_get_bits(&gb, buf, buf_size * 8);
1812 if (s->theora && get_bits1(&gb))
1814 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1815 return -1;
1818 s->keyframe = !get_bits1(&gb);
1819 if (!s->theora)
1820 skip_bits(&gb, 1);
1821 s->last_quality_index = s->quality_index;
1823 s->nqis=0;
1825 s->qis[s->nqis++]= get_bits(&gb, 6);
1826 } while(s->theora >= 0x030200 && s->nqis<3 && get_bits1(&gb));
1828 s->quality_index= s->qis[0];
1830 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1831 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1832 s->keyframe?"key":"", counter, s->quality_index);
1833 counter++;
1835 if (s->quality_index != s->last_quality_index) {
1836 init_dequantizer(s);
1837 init_loop_filter(s);
1840 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1841 return buf_size;
1843 if (s->keyframe) {
1844 if (!s->theora)
1846 skip_bits(&gb, 4); /* width code */
1847 skip_bits(&gb, 4); /* height code */
1848 if (s->version)
1850 s->version = get_bits(&gb, 5);
1851 if (counter == 1)
1852 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1855 if (s->version || s->theora)
1857 if (get_bits1(&gb))
1858 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1859 skip_bits(&gb, 2); /* reserved? */
1862 if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1863 if (s->golden_frame.data[0])
1864 avctx->release_buffer(avctx, &s->golden_frame);
1865 s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1866 } else {
1867 if (s->golden_frame.data[0])
1868 avctx->release_buffer(avctx, &s->golden_frame);
1869 if (s->last_frame.data[0])
1870 avctx->release_buffer(avctx, &s->last_frame);
1873 s->golden_frame.reference = 3;
1874 if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1875 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1876 return -1;
1879 /* golden frame is also the current frame */
1880 s->current_frame= s->golden_frame;
1882 /* time to figure out pixel addresses? */
1883 if (!s->pixel_addresses_initialized)
1885 vp3_calculate_pixel_addresses(s);
1886 s->pixel_addresses_initialized = 1;
1888 } else {
1889 /* allocate a new current frame */
1890 s->current_frame.reference = 3;
1891 if (!s->pixel_addresses_initialized) {
1892 av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1893 return -1;
1895 if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1896 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1897 return -1;
1901 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1902 s->current_frame.qstride= 0;
1904 init_frame(s, &gb);
1906 if (unpack_superblocks(s, &gb)){
1907 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1908 return -1;
1910 if (unpack_modes(s, &gb)){
1911 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1912 return -1;
1914 if (unpack_vectors(s, &gb)){
1915 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1916 return -1;
1918 if (unpack_dct_coeffs(s, &gb)){
1919 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1920 return -1;
1923 reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1924 if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
1925 reverse_dc_prediction(s, s->fragment_start[1],
1926 s->fragment_width / 2, s->fragment_height / 2);
1927 reverse_dc_prediction(s, s->fragment_start[2],
1928 s->fragment_width / 2, s->fragment_height / 2);
1931 for (i = 0; i < s->macroblock_height; i++)
1932 render_slice(s, i);
1934 apply_loop_filter(s);
1936 *data_size=sizeof(AVFrame);
1937 *(AVFrame*)data= s->current_frame;
1939 /* release the last frame, if it is allocated and if it is not the
1940 * golden frame */
1941 if ((s->last_frame.data[0]) &&
1942 (s->last_frame.data[0] != s->golden_frame.data[0]))
1943 avctx->release_buffer(avctx, &s->last_frame);
1945 /* shuffle frames (last = current) */
1946 s->last_frame= s->current_frame;
1947 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1949 return buf_size;
1953 * This is the ffmpeg/libavcodec API module cleanup function.
1955 static av_cold int vp3_decode_end(AVCodecContext *avctx)
1957 Vp3DecodeContext *s = avctx->priv_data;
1958 int i;
1960 av_free(s->superblock_coding);
1961 av_free(s->all_fragments);
1962 av_free(s->coeff_counts);
1963 av_free(s->coeffs);
1964 av_free(s->coded_fragment_list);
1965 av_free(s->superblock_fragments);
1966 av_free(s->superblock_macroblocks);
1967 av_free(s->macroblock_fragments);
1968 av_free(s->macroblock_coding);
1970 for (i = 0; i < 16; i++) {
1971 free_vlc(&s->dc_vlc[i]);
1972 free_vlc(&s->ac_vlc_1[i]);
1973 free_vlc(&s->ac_vlc_2[i]);
1974 free_vlc(&s->ac_vlc_3[i]);
1975 free_vlc(&s->ac_vlc_4[i]);
1978 free_vlc(&s->superblock_run_length_vlc);
1979 free_vlc(&s->fragment_run_length_vlc);
1980 free_vlc(&s->mode_code_vlc);
1981 free_vlc(&s->motion_vector_vlc);
1983 /* release all frames */
1984 if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
1985 avctx->release_buffer(avctx, &s->golden_frame);
1986 if (s->last_frame.data[0])
1987 avctx->release_buffer(avctx, &s->last_frame);
1988 /* no need to release the current_frame since it will always be pointing
1989 * to the same frame as either the golden or last frame */
1991 return 0;
1994 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
1996 Vp3DecodeContext *s = avctx->priv_data;
1998 if (get_bits1(gb)) {
1999 int token;
2000 if (s->entries >= 32) { /* overflow */
2001 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2002 return -1;
2004 token = get_bits(gb, 5);
2005 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2006 s->huffman_table[s->hti][token][0] = s->hbits;
2007 s->huffman_table[s->hti][token][1] = s->huff_code_size;
2008 s->entries++;
2010 else {
2011 if (s->huff_code_size >= 32) {/* overflow */
2012 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2013 return -1;
2015 s->huff_code_size++;
2016 s->hbits <<= 1;
2017 if (read_huffman_tree(avctx, gb))
2018 return -1;
2019 s->hbits |= 1;
2020 if (read_huffman_tree(avctx, gb))
2021 return -1;
2022 s->hbits >>= 1;
2023 s->huff_code_size--;
2025 return 0;
2028 #if CONFIG_THEORA_DECODER
2029 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2031 Vp3DecodeContext *s = avctx->priv_data;
2032 int visible_width, visible_height;
2034 s->theora = get_bits_long(gb, 24);
2035 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2037 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2038 /* but previous versions have the image flipped relative to vp3 */
2039 if (s->theora < 0x030200)
2041 s->flipped_image = 1;
2042 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2045 visible_width = s->width = get_bits(gb, 16) << 4;
2046 visible_height = s->height = get_bits(gb, 16) << 4;
2048 if(avcodec_check_dimensions(avctx, s->width, s->height)){
2049 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2050 s->width= s->height= 0;
2051 return -1;
2054 if (s->theora >= 0x030400)
2056 skip_bits(gb, 32); /* total number of superblocks in a frame */
2057 // fixme, the next field is 36bits long
2058 skip_bits(gb, 32); /* total number of blocks in a frame */
2059 skip_bits(gb, 4); /* total number of blocks in a frame */
2060 skip_bits(gb, 32); /* total number of macroblocks in a frame */
2063 if (s->theora >= 0x030200) {
2064 visible_width = get_bits_long(gb, 24);
2065 visible_height = get_bits_long(gb, 24);
2067 skip_bits(gb, 8); /* offset x */
2068 skip_bits(gb, 8); /* offset y */
2071 skip_bits(gb, 32); /* fps numerator */
2072 skip_bits(gb, 32); /* fps denumerator */
2073 skip_bits(gb, 24); /* aspect numerator */
2074 skip_bits(gb, 24); /* aspect denumerator */
2076 if (s->theora < 0x030200)
2077 skip_bits(gb, 5); /* keyframe frequency force */
2078 skip_bits(gb, 8); /* colorspace */
2079 if (s->theora >= 0x030400)
2080 skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2081 skip_bits(gb, 24); /* bitrate */
2083 skip_bits(gb, 6); /* quality hint */
2085 if (s->theora >= 0x030200)
2087 skip_bits(gb, 5); /* keyframe frequency force */
2089 if (s->theora < 0x030400)
2090 skip_bits(gb, 5); /* spare bits */
2093 // align_get_bits(gb);
2095 if ( visible_width <= s->width && visible_width > s->width-16
2096 && visible_height <= s->height && visible_height > s->height-16)
2097 avcodec_set_dimensions(avctx, visible_width, visible_height);
2098 else
2099 avcodec_set_dimensions(avctx, s->width, s->height);
2101 return 0;
2104 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2106 Vp3DecodeContext *s = avctx->priv_data;
2107 int i, n, matrices, inter, plane;
2109 if (s->theora >= 0x030200) {
2110 n = get_bits(gb, 3);
2111 /* loop filter limit values table */
2112 for (i = 0; i < 64; i++)
2113 s->filter_limit_values[i] = get_bits(gb, n);
2116 if (s->theora >= 0x030200)
2117 n = get_bits(gb, 4) + 1;
2118 else
2119 n = 16;
2120 /* quality threshold table */
2121 for (i = 0; i < 64; i++)
2122 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2124 if (s->theora >= 0x030200)
2125 n = get_bits(gb, 4) + 1;
2126 else
2127 n = 16;
2128 /* dc scale factor table */
2129 for (i = 0; i < 64; i++)
2130 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2132 if (s->theora >= 0x030200)
2133 matrices = get_bits(gb, 9) + 1;
2134 else
2135 matrices = 3;
2137 if(matrices > 384){
2138 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2139 return -1;
2142 for(n=0; n<matrices; n++){
2143 for (i = 0; i < 64; i++)
2144 s->base_matrix[n][i]= get_bits(gb, 8);
2147 for (inter = 0; inter <= 1; inter++) {
2148 for (plane = 0; plane <= 2; plane++) {
2149 int newqr= 1;
2150 if (inter || plane > 0)
2151 newqr = get_bits1(gb);
2152 if (!newqr) {
2153 int qtj, plj;
2154 if(inter && get_bits1(gb)){
2155 qtj = 0;
2156 plj = plane;
2157 }else{
2158 qtj= (3*inter + plane - 1) / 3;
2159 plj= (plane + 2) % 3;
2161 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2162 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2163 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2164 } else {
2165 int qri= 0;
2166 int qi = 0;
2168 for(;;){
2169 i= get_bits(gb, av_log2(matrices-1)+1);
2170 if(i>= matrices){
2171 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2172 return -1;
2174 s->qr_base[inter][plane][qri]= i;
2175 if(qi >= 63)
2176 break;
2177 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2178 s->qr_size[inter][plane][qri++]= i;
2179 qi += i;
2182 if (qi > 63) {
2183 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2184 return -1;
2186 s->qr_count[inter][plane]= qri;
2191 /* Huffman tables */
2192 for (s->hti = 0; s->hti < 80; s->hti++) {
2193 s->entries = 0;
2194 s->huff_code_size = 1;
2195 if (!get_bits1(gb)) {
2196 s->hbits = 0;
2197 if(read_huffman_tree(avctx, gb))
2198 return -1;
2199 s->hbits = 1;
2200 if(read_huffman_tree(avctx, gb))
2201 return -1;
2205 s->theora_tables = 1;
2207 return 0;
2210 static av_cold int theora_decode_init(AVCodecContext *avctx)
2212 Vp3DecodeContext *s = avctx->priv_data;
2213 GetBitContext gb;
2214 int ptype;
2215 uint8_t *header_start[3];
2216 int header_len[3];
2217 int i;
2219 s->theora = 1;
2221 if (!avctx->extradata_size)
2223 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2224 return -1;
2227 if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2228 42, header_start, header_len) < 0) {
2229 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2230 return -1;
2233 for(i=0;i<3;i++) {
2234 init_get_bits(&gb, header_start[i], header_len[i]);
2236 ptype = get_bits(&gb, 8);
2238 if (!(ptype & 0x80))
2240 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2241 // return -1;
2244 // FIXME: Check for this as well.
2245 skip_bits(&gb, 6*8); /* "theora" */
2247 switch(ptype)
2249 case 0x80:
2250 theora_decode_header(avctx, &gb);
2251 break;
2252 case 0x81:
2253 // FIXME: is this needed? it breaks sometimes
2254 // theora_decode_comments(avctx, gb);
2255 break;
2256 case 0x82:
2257 if (theora_decode_tables(avctx, &gb))
2258 return -1;
2259 break;
2260 default:
2261 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2262 break;
2264 if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2265 av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2266 if (s->theora < 0x030200)
2267 break;
2270 vp3_decode_init(avctx);
2271 return 0;
2274 AVCodec theora_decoder = {
2275 "theora",
2276 CODEC_TYPE_VIDEO,
2277 CODEC_ID_THEORA,
2278 sizeof(Vp3DecodeContext),
2279 theora_decode_init,
2280 NULL,
2281 vp3_decode_end,
2282 vp3_decode_frame,
2284 NULL,
2285 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2287 #endif
2289 AVCodec vp3_decoder = {
2290 "vp3",
2291 CODEC_TYPE_VIDEO,
2292 CODEC_ID_VP3,
2293 sizeof(Vp3DecodeContext),
2294 vp3_decode_init,
2295 NULL,
2296 vp3_decode_end,
2297 vp3_decode_frame,
2299 NULL,
2300 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),