Set ID3v1 genre to 0xFF (unknown) by default instead of 0 (Blues).
[FFMpeg-mirror/lagarith.git] / libavcodec / mdct.c
blobcb024aceda58e68f64a6becf5260d7ef0da49243
1 /*
2 * MDCT/IMDCT transforms
3 * Copyright (c) 2002 Fabrice Bellard
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "dsputil.h"
23 /**
24 * @file libavcodec/mdct.c
25 * MDCT/IMDCT transforms.
28 // Generate a Kaiser-Bessel Derived Window.
29 #define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
30 av_cold void ff_kbd_window_init(float *window, float alpha, int n)
32 int i, j;
33 double sum = 0.0, bessel, tmp;
34 double local_window[n];
35 double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
37 for (i = 0; i < n; i++) {
38 tmp = i * (n - i) * alpha2;
39 bessel = 1.0;
40 for (j = BESSEL_I0_ITER; j > 0; j--)
41 bessel = bessel * tmp / (j * j) + 1;
42 sum += bessel;
43 local_window[i] = sum;
46 sum++;
47 for (i = 0; i < n; i++)
48 window[i] = sqrt(local_window[i] / sum);
51 DECLARE_ALIGNED(16, float, ff_sine_32 [ 32]);
52 DECLARE_ALIGNED(16, float, ff_sine_64 [ 64]);
53 DECLARE_ALIGNED(16, float, ff_sine_128 [ 128]);
54 DECLARE_ALIGNED(16, float, ff_sine_256 [ 256]);
55 DECLARE_ALIGNED(16, float, ff_sine_512 [ 512]);
56 DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
57 DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
58 DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
59 float * const ff_sine_windows[] = {
60 NULL, NULL, NULL, NULL, NULL, // unused
61 ff_sine_32 , ff_sine_64 ,
62 ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024, ff_sine_2048, ff_sine_4096
65 // Generate a sine window.
66 av_cold void ff_sine_window_init(float *window, int n) {
67 int i;
68 for(i = 0; i < n; i++)
69 window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
72 /**
73 * init MDCT or IMDCT computation.
75 av_cold int ff_mdct_init(MDCTContext *s, int nbits, int inverse, double scale)
77 int n, n4, i;
78 double alpha, theta;
80 memset(s, 0, sizeof(*s));
81 n = 1 << nbits;
82 s->nbits = nbits;
83 s->n = n;
84 n4 = n >> 2;
85 s->tcos = av_malloc(n4 * sizeof(FFTSample));
86 if (!s->tcos)
87 goto fail;
88 s->tsin = av_malloc(n4 * sizeof(FFTSample));
89 if (!s->tsin)
90 goto fail;
92 theta = 1.0 / 8.0 + (scale < 0 ? n4 : 0);
93 scale = sqrt(fabs(scale));
94 for(i=0;i<n4;i++) {
95 alpha = 2 * M_PI * (i + theta) / n;
96 s->tcos[i] = -cos(alpha) * scale;
97 s->tsin[i] = -sin(alpha) * scale;
99 if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
100 goto fail;
101 return 0;
102 fail:
103 av_freep(&s->tcos);
104 av_freep(&s->tsin);
105 return -1;
108 /* complex multiplication: p = a * b */
109 #define CMUL(pre, pim, are, aim, bre, bim) \
111 FFTSample _are = (are);\
112 FFTSample _aim = (aim);\
113 FFTSample _bre = (bre);\
114 FFTSample _bim = (bim);\
115 (pre) = _are * _bre - _aim * _bim;\
116 (pim) = _are * _bim + _aim * _bre;\
120 * Compute the middle half of the inverse MDCT of size N = 2^nbits,
121 * thus excluding the parts that can be derived by symmetry
122 * @param output N/2 samples
123 * @param input N/2 samples
125 void ff_imdct_half_c(MDCTContext *s, FFTSample *output, const FFTSample *input)
127 int k, n8, n4, n2, n, j;
128 const uint16_t *revtab = s->fft.revtab;
129 const FFTSample *tcos = s->tcos;
130 const FFTSample *tsin = s->tsin;
131 const FFTSample *in1, *in2;
132 FFTComplex *z = (FFTComplex *)output;
134 n = 1 << s->nbits;
135 n2 = n >> 1;
136 n4 = n >> 2;
137 n8 = n >> 3;
139 /* pre rotation */
140 in1 = input;
141 in2 = input + n2 - 1;
142 for(k = 0; k < n4; k++) {
143 j=revtab[k];
144 CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
145 in1 += 2;
146 in2 -= 2;
148 ff_fft_calc(&s->fft, z);
150 /* post rotation + reordering */
151 for(k = 0; k < n8; k++) {
152 FFTSample r0, i0, r1, i1;
153 CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
154 CMUL(r1, i0, z[n8+k ].im, z[n8+k ].re, tsin[n8+k ], tcos[n8+k ]);
155 z[n8-k-1].re = r0;
156 z[n8-k-1].im = i0;
157 z[n8+k ].re = r1;
158 z[n8+k ].im = i1;
163 * Compute inverse MDCT of size N = 2^nbits
164 * @param output N samples
165 * @param input N/2 samples
167 void ff_imdct_calc_c(MDCTContext *s, FFTSample *output, const FFTSample *input)
169 int k;
170 int n = 1 << s->nbits;
171 int n2 = n >> 1;
172 int n4 = n >> 2;
174 ff_imdct_half_c(s, output+n4, input);
176 for(k = 0; k < n4; k++) {
177 output[k] = -output[n2-k-1];
178 output[n-k-1] = output[n2+k];
183 * Compute MDCT of size N = 2^nbits
184 * @param input N samples
185 * @param out N/2 samples
187 void ff_mdct_calc_c(MDCTContext *s, FFTSample *out, const FFTSample *input)
189 int i, j, n, n8, n4, n2, n3;
190 FFTSample re, im;
191 const uint16_t *revtab = s->fft.revtab;
192 const FFTSample *tcos = s->tcos;
193 const FFTSample *tsin = s->tsin;
194 FFTComplex *x = (FFTComplex *)out;
196 n = 1 << s->nbits;
197 n2 = n >> 1;
198 n4 = n >> 2;
199 n8 = n >> 3;
200 n3 = 3 * n4;
202 /* pre rotation */
203 for(i=0;i<n8;i++) {
204 re = -input[2*i+3*n4] - input[n3-1-2*i];
205 im = -input[n4+2*i] + input[n4-1-2*i];
206 j = revtab[i];
207 CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
209 re = input[2*i] - input[n2-1-2*i];
210 im = -(input[n2+2*i] + input[n-1-2*i]);
211 j = revtab[n8 + i];
212 CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
215 ff_fft_calc(&s->fft, x);
217 /* post rotation */
218 for(i=0;i<n8;i++) {
219 FFTSample r0, i0, r1, i1;
220 CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
221 CMUL(i0, r1, x[n8+i ].re, x[n8+i ].im, -tsin[n8+i ], -tcos[n8+i ]);
222 x[n8-i-1].re = r0;
223 x[n8-i-1].im = i0;
224 x[n8+i ].re = r1;
225 x[n8+i ].im = i1;
229 av_cold void ff_mdct_end(MDCTContext *s)
231 av_freep(&s->tcos);
232 av_freep(&s->tsin);
233 ff_fft_end(&s->fft);