ac3dec: detect out-of-range exponents
[FFMpeg-mirror/lagarith.git] / libavcodec / ac3dec.c
blob998c872d1e17dbb406e97a068436ebe58fedf91f
1 /*
2 * AC-3 Audio Decoder
3 * This code was developed as part of Google Summer of Code 2006.
4 * E-AC-3 support was added as part of Google Summer of Code 2007.
6 * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
7 * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
8 * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
10 * Portions of this code are derived from liba52
11 * http://liba52.sourceforge.net
12 * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
13 * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
15 * This file is part of FFmpeg.
17 * FFmpeg is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public
19 * License as published by the Free Software Foundation; either
20 * version 2 of the License, or (at your option) any later version.
22 * FFmpeg is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 * General Public License for more details.
27 * You should have received a copy of the GNU General Public
28 * License along with FFmpeg; if not, write to the Free Software
29 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
32 #include <stdio.h>
33 #include <stddef.h>
34 #include <math.h>
35 #include <string.h>
37 #include "libavutil/crc.h"
38 #include "ac3_parser.h"
39 #include "ac3dec.h"
40 #include "ac3dec_data.h"
42 /** Large enough for maximum possible frame size when the specification limit is ignored */
43 #define AC3_FRAME_BUFFER_SIZE 32768
45 /**
46 * table for ungrouping 3 values in 7 bits.
47 * used for exponents and bap=2 mantissas
49 static uint8_t ungroup_3_in_7_bits_tab[128][3];
52 /** tables for ungrouping mantissas */
53 static int b1_mantissas[32][3];
54 static int b2_mantissas[128][3];
55 static int b3_mantissas[8];
56 static int b4_mantissas[128][2];
57 static int b5_mantissas[16];
59 /**
60 * Quantization table: levels for symmetric. bits for asymmetric.
61 * reference: Table 7.18 Mapping of bap to Quantizer
63 static const uint8_t quantization_tab[16] = {
64 0, 3, 5, 7, 11, 15,
65 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
68 /** dynamic range table. converts codes to scale factors. */
69 static float dynamic_range_tab[256];
71 /** Adjustments in dB gain */
72 #define LEVEL_PLUS_3DB 1.4142135623730950
73 #define LEVEL_PLUS_1POINT5DB 1.1892071150027209
74 #define LEVEL_MINUS_1POINT5DB 0.8408964152537145
75 #define LEVEL_MINUS_3DB 0.7071067811865476
76 #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
77 #define LEVEL_MINUS_6DB 0.5000000000000000
78 #define LEVEL_MINUS_9DB 0.3535533905932738
79 #define LEVEL_ZERO 0.0000000000000000
80 #define LEVEL_ONE 1.0000000000000000
82 static const float gain_levels[9] = {
83 LEVEL_PLUS_3DB,
84 LEVEL_PLUS_1POINT5DB,
85 LEVEL_ONE,
86 LEVEL_MINUS_1POINT5DB,
87 LEVEL_MINUS_3DB,
88 LEVEL_MINUS_4POINT5DB,
89 LEVEL_MINUS_6DB,
90 LEVEL_ZERO,
91 LEVEL_MINUS_9DB
94 /**
95 * Table for center mix levels
96 * reference: Section 5.4.2.4 cmixlev
98 static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
101 * Table for surround mix levels
102 * reference: Section 5.4.2.5 surmixlev
104 static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
107 * Table for default stereo downmixing coefficients
108 * reference: Section 7.8.2 Downmixing Into Two Channels
110 static const uint8_t ac3_default_coeffs[8][5][2] = {
111 { { 2, 7 }, { 7, 2 }, },
112 { { 4, 4 }, },
113 { { 2, 7 }, { 7, 2 }, },
114 { { 2, 7 }, { 5, 5 }, { 7, 2 }, },
115 { { 2, 7 }, { 7, 2 }, { 6, 6 }, },
116 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
117 { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
118 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
122 * Symmetrical Dequantization
123 * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
124 * Tables 7.19 to 7.23
126 static inline int
127 symmetric_dequant(int code, int levels)
129 return ((code - (levels >> 1)) << 24) / levels;
133 * Initialize tables at runtime.
135 static av_cold void ac3_tables_init(void)
137 int i;
139 /* generate table for ungrouping 3 values in 7 bits
140 reference: Section 7.1.3 Exponent Decoding */
141 for(i=0; i<128; i++) {
142 ungroup_3_in_7_bits_tab[i][0] = i / 25;
143 ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
144 ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
147 /* generate grouped mantissa tables
148 reference: Section 7.3.5 Ungrouping of Mantissas */
149 for(i=0; i<32; i++) {
150 /* bap=1 mantissas */
151 b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
152 b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
153 b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
155 for(i=0; i<128; i++) {
156 /* bap=2 mantissas */
157 b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
158 b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
159 b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
161 /* bap=4 mantissas */
162 b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
163 b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
165 /* generate ungrouped mantissa tables
166 reference: Tables 7.21 and 7.23 */
167 for(i=0; i<7; i++) {
168 /* bap=3 mantissas */
169 b3_mantissas[i] = symmetric_dequant(i, 7);
171 for(i=0; i<15; i++) {
172 /* bap=5 mantissas */
173 b5_mantissas[i] = symmetric_dequant(i, 15);
176 /* generate dynamic range table
177 reference: Section 7.7.1 Dynamic Range Control */
178 for(i=0; i<256; i++) {
179 int v = (i >> 5) - ((i >> 7) << 3) - 5;
180 dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
186 * AVCodec initialization
188 static av_cold int ac3_decode_init(AVCodecContext *avctx)
190 AC3DecodeContext *s = avctx->priv_data;
191 s->avctx = avctx;
193 ac3_common_init();
194 ac3_tables_init();
195 ff_mdct_init(&s->imdct_256, 8, 1);
196 ff_mdct_init(&s->imdct_512, 9, 1);
197 ff_kbd_window_init(s->window, 5.0, 256);
198 dsputil_init(&s->dsp, avctx);
199 av_lfg_init(&s->dith_state, 0);
201 /* set bias values for float to int16 conversion */
202 if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
203 s->add_bias = 385.0f;
204 s->mul_bias = 1.0f;
205 } else {
206 s->add_bias = 0.0f;
207 s->mul_bias = 32767.0f;
210 /* allow downmixing to stereo or mono */
211 if (avctx->channels > 0 && avctx->request_channels > 0 &&
212 avctx->request_channels < avctx->channels &&
213 avctx->request_channels <= 2) {
214 avctx->channels = avctx->request_channels;
216 s->downmixed = 1;
218 /* allocate context input buffer */
219 if (avctx->error_recognition >= FF_ER_CAREFUL) {
220 s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
221 if (!s->input_buffer)
222 return AVERROR_NOMEM;
225 avctx->sample_fmt = SAMPLE_FMT_S16;
226 return 0;
230 * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
231 * GetBitContext within AC3DecodeContext must point to
232 * the start of the synchronized AC-3 bitstream.
234 static int ac3_parse_header(AC3DecodeContext *s)
236 GetBitContext *gbc = &s->gbc;
237 int i;
239 /* read the rest of the bsi. read twice for dual mono mode. */
240 i = !(s->channel_mode);
241 do {
242 skip_bits(gbc, 5); // skip dialog normalization
243 if (get_bits1(gbc))
244 skip_bits(gbc, 8); //skip compression
245 if (get_bits1(gbc))
246 skip_bits(gbc, 8); //skip language code
247 if (get_bits1(gbc))
248 skip_bits(gbc, 7); //skip audio production information
249 } while (i--);
251 skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
253 /* skip the timecodes (or extra bitstream information for Alternate Syntax)
254 TODO: read & use the xbsi1 downmix levels */
255 if (get_bits1(gbc))
256 skip_bits(gbc, 14); //skip timecode1 / xbsi1
257 if (get_bits1(gbc))
258 skip_bits(gbc, 14); //skip timecode2 / xbsi2
260 /* skip additional bitstream info */
261 if (get_bits1(gbc)) {
262 i = get_bits(gbc, 6);
263 do {
264 skip_bits(gbc, 8);
265 } while(i--);
268 return 0;
272 * Common function to parse AC-3 or E-AC-3 frame header
274 static int parse_frame_header(AC3DecodeContext *s)
276 AC3HeaderInfo hdr;
277 int err;
279 err = ff_ac3_parse_header(&s->gbc, &hdr);
280 if(err)
281 return err;
283 /* get decoding parameters from header info */
284 s->bit_alloc_params.sr_code = hdr.sr_code;
285 s->channel_mode = hdr.channel_mode;
286 s->lfe_on = hdr.lfe_on;
287 s->bit_alloc_params.sr_shift = hdr.sr_shift;
288 s->sample_rate = hdr.sample_rate;
289 s->bit_rate = hdr.bit_rate;
290 s->channels = hdr.channels;
291 s->fbw_channels = s->channels - s->lfe_on;
292 s->lfe_ch = s->fbw_channels + 1;
293 s->frame_size = hdr.frame_size;
294 s->center_mix_level = hdr.center_mix_level;
295 s->surround_mix_level = hdr.surround_mix_level;
296 s->num_blocks = hdr.num_blocks;
297 s->frame_type = hdr.frame_type;
298 s->substreamid = hdr.substreamid;
300 if(s->lfe_on) {
301 s->start_freq[s->lfe_ch] = 0;
302 s->end_freq[s->lfe_ch] = 7;
303 s->num_exp_groups[s->lfe_ch] = 2;
304 s->channel_in_cpl[s->lfe_ch] = 0;
307 if (hdr.bitstream_id <= 10) {
308 s->eac3 = 0;
309 s->snr_offset_strategy = 2;
310 s->block_switch_syntax = 1;
311 s->dither_flag_syntax = 1;
312 s->bit_allocation_syntax = 1;
313 s->fast_gain_syntax = 0;
314 s->first_cpl_leak = 0;
315 s->dba_syntax = 1;
316 s->skip_syntax = 1;
317 memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
318 return ac3_parse_header(s);
319 } else {
320 s->eac3 = 1;
321 return ff_eac3_parse_header(s);
326 * Set stereo downmixing coefficients based on frame header info.
327 * reference: Section 7.8.2 Downmixing Into Two Channels
329 static void set_downmix_coeffs(AC3DecodeContext *s)
331 int i;
332 float cmix = gain_levels[center_levels[s->center_mix_level]];
333 float smix = gain_levels[surround_levels[s->surround_mix_level]];
334 float norm0, norm1;
336 for(i=0; i<s->fbw_channels; i++) {
337 s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
338 s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
340 if(s->channel_mode > 1 && s->channel_mode & 1) {
341 s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
343 if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
344 int nf = s->channel_mode - 2;
345 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
347 if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
348 int nf = s->channel_mode - 4;
349 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
352 /* renormalize */
353 norm0 = norm1 = 0.0;
354 for(i=0; i<s->fbw_channels; i++) {
355 norm0 += s->downmix_coeffs[i][0];
356 norm1 += s->downmix_coeffs[i][1];
358 norm0 = 1.0f / norm0;
359 norm1 = 1.0f / norm1;
360 for(i=0; i<s->fbw_channels; i++) {
361 s->downmix_coeffs[i][0] *= norm0;
362 s->downmix_coeffs[i][1] *= norm1;
365 if(s->output_mode == AC3_CHMODE_MONO) {
366 for(i=0; i<s->fbw_channels; i++)
367 s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
372 * Decode the grouped exponents according to exponent strategy.
373 * reference: Section 7.1.3 Exponent Decoding
375 static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
376 uint8_t absexp, int8_t *dexps)
378 int i, j, grp, group_size;
379 int dexp[256];
380 int expacc, prevexp;
382 /* unpack groups */
383 group_size = exp_strategy + (exp_strategy == EXP_D45);
384 for(grp=0,i=0; grp<ngrps; grp++) {
385 expacc = get_bits(gbc, 7);
386 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
387 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
388 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
391 /* convert to absolute exps and expand groups */
392 prevexp = absexp;
393 for(i=0; i<ngrps*3; i++) {
394 prevexp += dexp[i] - 2;
395 if (prevexp < 0 || prevexp > 24)
396 return -1;
397 for(j=0; j<group_size; j++) {
398 dexps[(i*group_size)+j] = prevexp;
401 return 0;
405 * Generate transform coefficients for each coupled channel in the coupling
406 * range using the coupling coefficients and coupling coordinates.
407 * reference: Section 7.4.3 Coupling Coordinate Format
409 static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
411 int i, j, ch, bnd, subbnd;
413 subbnd = -1;
414 i = s->start_freq[CPL_CH];
415 for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
416 do {
417 subbnd++;
418 for(j=0; j<12; j++) {
419 for(ch=1; ch<=s->fbw_channels; ch++) {
420 if(s->channel_in_cpl[ch]) {
421 s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
422 if (ch == 2 && s->phase_flags[bnd])
423 s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
426 i++;
428 } while(s->cpl_band_struct[subbnd]);
433 * Grouped mantissas for 3-level 5-level and 11-level quantization
435 typedef struct {
436 int b1_mant[3];
437 int b2_mant[3];
438 int b4_mant[2];
439 int b1ptr;
440 int b2ptr;
441 int b4ptr;
442 } mant_groups;
445 * Decode the transform coefficients for a particular channel
446 * reference: Section 7.3 Quantization and Decoding of Mantissas
448 static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
450 GetBitContext *gbc = &s->gbc;
451 int i, gcode, tbap, start, end;
452 uint8_t *exps;
453 uint8_t *bap;
454 int *coeffs;
456 exps = s->dexps[ch_index];
457 bap = s->bap[ch_index];
458 coeffs = s->fixed_coeffs[ch_index];
459 start = s->start_freq[ch_index];
460 end = s->end_freq[ch_index];
462 for (i = start; i < end; i++) {
463 tbap = bap[i];
464 switch (tbap) {
465 case 0:
466 coeffs[i] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
467 break;
469 case 1:
470 if(m->b1ptr > 2) {
471 gcode = get_bits(gbc, 5);
472 m->b1_mant[0] = b1_mantissas[gcode][0];
473 m->b1_mant[1] = b1_mantissas[gcode][1];
474 m->b1_mant[2] = b1_mantissas[gcode][2];
475 m->b1ptr = 0;
477 coeffs[i] = m->b1_mant[m->b1ptr++];
478 break;
480 case 2:
481 if(m->b2ptr > 2) {
482 gcode = get_bits(gbc, 7);
483 m->b2_mant[0] = b2_mantissas[gcode][0];
484 m->b2_mant[1] = b2_mantissas[gcode][1];
485 m->b2_mant[2] = b2_mantissas[gcode][2];
486 m->b2ptr = 0;
488 coeffs[i] = m->b2_mant[m->b2ptr++];
489 break;
491 case 3:
492 coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
493 break;
495 case 4:
496 if(m->b4ptr > 1) {
497 gcode = get_bits(gbc, 7);
498 m->b4_mant[0] = b4_mantissas[gcode][0];
499 m->b4_mant[1] = b4_mantissas[gcode][1];
500 m->b4ptr = 0;
502 coeffs[i] = m->b4_mant[m->b4ptr++];
503 break;
505 case 5:
506 coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
507 break;
509 default: {
510 /* asymmetric dequantization */
511 int qlevel = quantization_tab[tbap];
512 coeffs[i] = get_sbits(gbc, qlevel) << (24 - qlevel);
513 break;
516 coeffs[i] >>= exps[i];
521 * Remove random dithering from coefficients with zero-bit mantissas
522 * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
524 static void remove_dithering(AC3DecodeContext *s) {
525 int ch, i;
526 int end=0;
527 int *coeffs;
528 uint8_t *bap;
530 for(ch=1; ch<=s->fbw_channels; ch++) {
531 if(!s->dither_flag[ch]) {
532 coeffs = s->fixed_coeffs[ch];
533 bap = s->bap[ch];
534 if(s->channel_in_cpl[ch])
535 end = s->start_freq[CPL_CH];
536 else
537 end = s->end_freq[ch];
538 for(i=0; i<end; i++) {
539 if(!bap[i])
540 coeffs[i] = 0;
542 if(s->channel_in_cpl[ch]) {
543 bap = s->bap[CPL_CH];
544 for(; i<s->end_freq[CPL_CH]; i++) {
545 if(!bap[i])
546 coeffs[i] = 0;
553 static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
554 mant_groups *m)
556 if (!s->channel_uses_aht[ch]) {
557 ac3_decode_transform_coeffs_ch(s, ch, m);
558 } else {
559 /* if AHT is used, mantissas for all blocks are encoded in the first
560 block of the frame. */
561 int bin;
562 if (!blk)
563 ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
564 for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
565 s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
571 * Decode the transform coefficients.
573 static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
575 int ch, end;
576 int got_cplchan = 0;
577 mant_groups m;
579 m.b1ptr = m.b2ptr = m.b4ptr = 3;
581 for (ch = 1; ch <= s->channels; ch++) {
582 /* transform coefficients for full-bandwidth channel */
583 decode_transform_coeffs_ch(s, blk, ch, &m);
584 /* tranform coefficients for coupling channel come right after the
585 coefficients for the first coupled channel*/
586 if (s->channel_in_cpl[ch]) {
587 if (!got_cplchan) {
588 decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
589 calc_transform_coeffs_cpl(s);
590 got_cplchan = 1;
592 end = s->end_freq[CPL_CH];
593 } else {
594 end = s->end_freq[ch];
597 s->fixed_coeffs[ch][end] = 0;
598 while(++end < 256);
601 /* zero the dithered coefficients for appropriate channels */
602 remove_dithering(s);
606 * Stereo rematrixing.
607 * reference: Section 7.5.4 Rematrixing : Decoding Technique
609 static void do_rematrixing(AC3DecodeContext *s)
611 int bnd, i;
612 int end, bndend;
613 int tmp0, tmp1;
615 end = FFMIN(s->end_freq[1], s->end_freq[2]);
617 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
618 if(s->rematrixing_flags[bnd]) {
619 bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
620 for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
621 tmp0 = s->fixed_coeffs[1][i];
622 tmp1 = s->fixed_coeffs[2][i];
623 s->fixed_coeffs[1][i] = tmp0 + tmp1;
624 s->fixed_coeffs[2][i] = tmp0 - tmp1;
631 * Inverse MDCT Transform.
632 * Convert frequency domain coefficients to time-domain audio samples.
633 * reference: Section 7.9.4 Transformation Equations
635 static inline void do_imdct(AC3DecodeContext *s, int channels)
637 int ch;
638 float add_bias = s->add_bias;
639 if(s->out_channels==1 && channels>1)
640 add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
642 for (ch=1; ch<=channels; ch++) {
643 if (s->block_switch[ch]) {
644 int i;
645 float *x = s->tmp_output+128;
646 for(i=0; i<128; i++)
647 x[i] = s->transform_coeffs[ch][2*i];
648 ff_imdct_half(&s->imdct_256, s->tmp_output, x);
649 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
650 for(i=0; i<128; i++)
651 x[i] = s->transform_coeffs[ch][2*i+1];
652 ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
653 } else {
654 ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
655 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
656 memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
662 * Downmix the output to mono or stereo.
664 void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
666 int i, j;
667 float v0, v1;
668 if(out_ch == 2) {
669 for(i=0; i<len; i++) {
670 v0 = v1 = 0.0f;
671 for(j=0; j<in_ch; j++) {
672 v0 += samples[j][i] * matrix[j][0];
673 v1 += samples[j][i] * matrix[j][1];
675 samples[0][i] = v0;
676 samples[1][i] = v1;
678 } else if(out_ch == 1) {
679 for(i=0; i<len; i++) {
680 v0 = 0.0f;
681 for(j=0; j<in_ch; j++)
682 v0 += samples[j][i] * matrix[j][0];
683 samples[0][i] = v0;
689 * Upmix delay samples from stereo to original channel layout.
691 static void ac3_upmix_delay(AC3DecodeContext *s)
693 int channel_data_size = sizeof(s->delay[0]);
694 switch(s->channel_mode) {
695 case AC3_CHMODE_DUALMONO:
696 case AC3_CHMODE_STEREO:
697 /* upmix mono to stereo */
698 memcpy(s->delay[1], s->delay[0], channel_data_size);
699 break;
700 case AC3_CHMODE_2F2R:
701 memset(s->delay[3], 0, channel_data_size);
702 case AC3_CHMODE_2F1R:
703 memset(s->delay[2], 0, channel_data_size);
704 break;
705 case AC3_CHMODE_3F2R:
706 memset(s->delay[4], 0, channel_data_size);
707 case AC3_CHMODE_3F1R:
708 memset(s->delay[3], 0, channel_data_size);
709 case AC3_CHMODE_3F:
710 memcpy(s->delay[2], s->delay[1], channel_data_size);
711 memset(s->delay[1], 0, channel_data_size);
712 break;
717 * Decode band structure for coupling, spectral extension, or enhanced coupling.
718 * @param[in] gbc bit reader context
719 * @param[in] blk block number
720 * @param[in] eac3 flag to indicate E-AC-3
721 * @param[in] ecpl flag to indicate enhanced coupling
722 * @param[in] start_subband subband number for start of range
723 * @param[in] end_subband subband number for end of range
724 * @param[in] default_band_struct default band structure table
725 * @param[out] band_struct decoded band structure
726 * @param[out] num_subbands number of subbands (optionally NULL)
727 * @param[out] num_bands number of bands (optionally NULL)
728 * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
730 static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
731 int ecpl, int start_subband, int end_subband,
732 const uint8_t *default_band_struct,
733 uint8_t *band_struct, int *num_subbands,
734 int *num_bands, uint8_t *band_sizes)
736 int subbnd, bnd, n_subbands, n_bands=0;
737 uint8_t bnd_sz[22];
739 n_subbands = end_subband - start_subband;
741 /* decode band structure from bitstream or use default */
742 if (!eac3 || get_bits1(gbc)) {
743 for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
744 band_struct[subbnd] = get_bits1(gbc);
746 } else if (!blk) {
747 memcpy(band_struct,
748 &default_band_struct[start_subband+1],
749 n_subbands-1);
751 band_struct[n_subbands-1] = 0;
753 /* calculate number of bands and band sizes based on band structure.
754 note that the first 4 subbands in enhanced coupling span only 6 bins
755 instead of 12. */
756 if (num_bands || band_sizes ) {
757 n_bands = n_subbands;
758 bnd_sz[0] = ecpl ? 6 : 12;
759 for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
760 int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
761 if (band_struct[subbnd-1]) {
762 n_bands--;
763 bnd_sz[bnd] += subbnd_size;
764 } else {
765 bnd_sz[++bnd] = subbnd_size;
770 /* set optional output params */
771 if (num_subbands)
772 *num_subbands = n_subbands;
773 if (num_bands)
774 *num_bands = n_bands;
775 if (band_sizes)
776 memcpy(band_sizes, bnd_sz, n_bands);
780 * Decode a single audio block from the AC-3 bitstream.
782 static int decode_audio_block(AC3DecodeContext *s, int blk)
784 int fbw_channels = s->fbw_channels;
785 int channel_mode = s->channel_mode;
786 int i, bnd, seg, ch;
787 int different_transforms;
788 int downmix_output;
789 int cpl_in_use;
790 GetBitContext *gbc = &s->gbc;
791 uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
793 memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
795 /* block switch flags */
796 different_transforms = 0;
797 if (s->block_switch_syntax) {
798 for (ch = 1; ch <= fbw_channels; ch++) {
799 s->block_switch[ch] = get_bits1(gbc);
800 if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
801 different_transforms = 1;
805 /* dithering flags */
806 if (s->dither_flag_syntax) {
807 for (ch = 1; ch <= fbw_channels; ch++) {
808 s->dither_flag[ch] = get_bits1(gbc);
812 /* dynamic range */
813 i = !(s->channel_mode);
814 do {
815 if(get_bits1(gbc)) {
816 s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
817 s->avctx->drc_scale)+1.0;
818 } else if(blk == 0) {
819 s->dynamic_range[i] = 1.0f;
821 } while(i--);
823 /* spectral extension strategy */
824 if (s->eac3 && (!blk || get_bits1(gbc))) {
825 if (get_bits1(gbc)) {
826 av_log_missing_feature(s->avctx, "Spectral extension", 1);
827 return -1;
829 /* TODO: parse spectral extension strategy info */
832 /* TODO: spectral extension coordinates */
834 /* coupling strategy */
835 if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
836 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
837 if (!s->eac3)
838 s->cpl_in_use[blk] = get_bits1(gbc);
839 if (s->cpl_in_use[blk]) {
840 /* coupling in use */
841 int cpl_start_subband, cpl_end_subband;
843 if (channel_mode < AC3_CHMODE_STEREO) {
844 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
845 return -1;
848 /* check for enhanced coupling */
849 if (s->eac3 && get_bits1(gbc)) {
850 /* TODO: parse enhanced coupling strategy info */
851 av_log_missing_feature(s->avctx, "Enhanced coupling", 1);
852 return -1;
855 /* determine which channels are coupled */
856 if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
857 s->channel_in_cpl[1] = 1;
858 s->channel_in_cpl[2] = 1;
859 } else {
860 for (ch = 1; ch <= fbw_channels; ch++)
861 s->channel_in_cpl[ch] = get_bits1(gbc);
864 /* phase flags in use */
865 if (channel_mode == AC3_CHMODE_STEREO)
866 s->phase_flags_in_use = get_bits1(gbc);
868 /* coupling frequency range */
869 /* TODO: modify coupling end freq if spectral extension is used */
870 cpl_start_subband = get_bits(gbc, 4);
871 cpl_end_subband = get_bits(gbc, 4) + 3;
872 s->num_cpl_subbands = cpl_end_subband - cpl_start_subband;
873 if (s->num_cpl_subbands < 0) {
874 av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d > %d)\n",
875 cpl_start_subband, cpl_end_subband);
876 return -1;
878 s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
879 s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37;
881 decode_band_structure(gbc, blk, s->eac3, 0,
882 cpl_start_subband, cpl_end_subband,
883 ff_eac3_default_cpl_band_struct,
884 s->cpl_band_struct, &s->num_cpl_subbands,
885 &s->num_cpl_bands, NULL);
886 } else {
887 /* coupling not in use */
888 for (ch = 1; ch <= fbw_channels; ch++) {
889 s->channel_in_cpl[ch] = 0;
890 s->first_cpl_coords[ch] = 1;
892 s->first_cpl_leak = s->eac3;
893 s->phase_flags_in_use = 0;
895 } else if (!s->eac3) {
896 if(!blk) {
897 av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
898 return -1;
899 } else {
900 s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
903 cpl_in_use = s->cpl_in_use[blk];
905 /* coupling coordinates */
906 if (cpl_in_use) {
907 int cpl_coords_exist = 0;
909 for (ch = 1; ch <= fbw_channels; ch++) {
910 if (s->channel_in_cpl[ch]) {
911 if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
912 int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
913 s->first_cpl_coords[ch] = 0;
914 cpl_coords_exist = 1;
915 master_cpl_coord = 3 * get_bits(gbc, 2);
916 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
917 cpl_coord_exp = get_bits(gbc, 4);
918 cpl_coord_mant = get_bits(gbc, 4);
919 if (cpl_coord_exp == 15)
920 s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
921 else
922 s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
923 s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
925 } else if (!blk) {
926 av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
927 return -1;
929 } else {
930 /* channel not in coupling */
931 s->first_cpl_coords[ch] = 1;
934 /* phase flags */
935 if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
936 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
937 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
942 /* stereo rematrixing strategy and band structure */
943 if (channel_mode == AC3_CHMODE_STEREO) {
944 if ((s->eac3 && !blk) || get_bits1(gbc)) {
945 s->num_rematrixing_bands = 4;
946 if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
947 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
948 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
949 s->rematrixing_flags[bnd] = get_bits1(gbc);
950 } else if (!blk) {
951 av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
952 return -1;
956 /* exponent strategies for each channel */
957 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
958 if (!s->eac3)
959 s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
960 if(s->exp_strategy[blk][ch] != EXP_REUSE)
961 bit_alloc_stages[ch] = 3;
964 /* channel bandwidth */
965 for (ch = 1; ch <= fbw_channels; ch++) {
966 s->start_freq[ch] = 0;
967 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
968 int group_size;
969 int prev = s->end_freq[ch];
970 if (s->channel_in_cpl[ch])
971 s->end_freq[ch] = s->start_freq[CPL_CH];
972 else {
973 int bandwidth_code = get_bits(gbc, 6);
974 if (bandwidth_code > 60) {
975 av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
976 return -1;
978 s->end_freq[ch] = bandwidth_code * 3 + 73;
980 group_size = 3 << (s->exp_strategy[blk][ch] - 1);
981 s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
982 if(blk > 0 && s->end_freq[ch] != prev)
983 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
986 if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
987 s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
988 (3 << (s->exp_strategy[blk][CPL_CH] - 1));
991 /* decode exponents for each channel */
992 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
993 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
994 s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
995 if (decode_exponents(gbc, s->exp_strategy[blk][ch],
996 s->num_exp_groups[ch], s->dexps[ch][0],
997 &s->dexps[ch][s->start_freq[ch]+!!ch])) {
998 av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
999 return -1;
1001 if(ch != CPL_CH && ch != s->lfe_ch)
1002 skip_bits(gbc, 2); /* skip gainrng */
1006 /* bit allocation information */
1007 if (s->bit_allocation_syntax) {
1008 if (get_bits1(gbc)) {
1009 s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
1010 s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
1011 s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
1012 s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
1013 s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
1014 for(ch=!cpl_in_use; ch<=s->channels; ch++)
1015 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1016 } else if (!blk) {
1017 av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
1018 return -1;
1022 /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
1023 if(!s->eac3 || !blk){
1024 if(s->snr_offset_strategy && get_bits1(gbc)) {
1025 int snr = 0;
1026 int csnr;
1027 csnr = (get_bits(gbc, 6) - 15) << 4;
1028 for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
1029 /* snr offset */
1030 if (ch == i || s->snr_offset_strategy == 2)
1031 snr = (csnr + get_bits(gbc, 4)) << 2;
1032 /* run at least last bit allocation stage if snr offset changes */
1033 if(blk && s->snr_offset[ch] != snr) {
1034 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
1036 s->snr_offset[ch] = snr;
1038 /* fast gain (normal AC-3 only) */
1039 if (!s->eac3) {
1040 int prev = s->fast_gain[ch];
1041 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1042 /* run last 2 bit allocation stages if fast gain changes */
1043 if(blk && prev != s->fast_gain[ch])
1044 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1047 } else if (!s->eac3 && !blk) {
1048 av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
1049 return -1;
1053 /* fast gain (E-AC-3 only) */
1054 if (s->fast_gain_syntax && get_bits1(gbc)) {
1055 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
1056 int prev = s->fast_gain[ch];
1057 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1058 /* run last 2 bit allocation stages if fast gain changes */
1059 if(blk && prev != s->fast_gain[ch])
1060 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1062 } else if (s->eac3 && !blk) {
1063 for (ch = !cpl_in_use; ch <= s->channels; ch++)
1064 s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
1067 /* E-AC-3 to AC-3 converter SNR offset */
1068 if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
1069 skip_bits(gbc, 10); // skip converter snr offset
1072 /* coupling leak information */
1073 if (cpl_in_use) {
1074 if (s->first_cpl_leak || get_bits1(gbc)) {
1075 int fl = get_bits(gbc, 3);
1076 int sl = get_bits(gbc, 3);
1077 /* run last 2 bit allocation stages for coupling channel if
1078 coupling leak changes */
1079 if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
1080 sl != s->bit_alloc_params.cpl_slow_leak)) {
1081 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
1083 s->bit_alloc_params.cpl_fast_leak = fl;
1084 s->bit_alloc_params.cpl_slow_leak = sl;
1085 } else if (!s->eac3 && !blk) {
1086 av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
1087 return -1;
1089 s->first_cpl_leak = 0;
1092 /* delta bit allocation information */
1093 if (s->dba_syntax && get_bits1(gbc)) {
1094 /* delta bit allocation exists (strategy) */
1095 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1096 s->dba_mode[ch] = get_bits(gbc, 2);
1097 if (s->dba_mode[ch] == DBA_RESERVED) {
1098 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
1099 return -1;
1101 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1103 /* channel delta offset, len and bit allocation */
1104 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1105 if (s->dba_mode[ch] == DBA_NEW) {
1106 s->dba_nsegs[ch] = get_bits(gbc, 3);
1107 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
1108 s->dba_offsets[ch][seg] = get_bits(gbc, 5);
1109 s->dba_lengths[ch][seg] = get_bits(gbc, 4);
1110 s->dba_values[ch][seg] = get_bits(gbc, 3);
1112 /* run last 2 bit allocation stages if new dba values */
1113 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1116 } else if(blk == 0) {
1117 for(ch=0; ch<=s->channels; ch++) {
1118 s->dba_mode[ch] = DBA_NONE;
1122 /* Bit allocation */
1123 for(ch=!cpl_in_use; ch<=s->channels; ch++) {
1124 if(bit_alloc_stages[ch] > 2) {
1125 /* Exponent mapping into PSD and PSD integration */
1126 ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
1127 s->start_freq[ch], s->end_freq[ch],
1128 s->psd[ch], s->band_psd[ch]);
1130 if(bit_alloc_stages[ch] > 1) {
1131 /* Compute excitation function, Compute masking curve, and
1132 Apply delta bit allocation */
1133 ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
1134 s->start_freq[ch], s->end_freq[ch],
1135 s->fast_gain[ch], (ch == s->lfe_ch),
1136 s->dba_mode[ch], s->dba_nsegs[ch],
1137 s->dba_offsets[ch], s->dba_lengths[ch],
1138 s->dba_values[ch], s->mask[ch]);
1140 if(bit_alloc_stages[ch] > 0) {
1141 /* Compute bit allocation */
1142 const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
1143 ff_eac3_hebap_tab : ff_ac3_bap_tab;
1144 ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
1145 s->start_freq[ch], s->end_freq[ch],
1146 s->snr_offset[ch],
1147 s->bit_alloc_params.floor,
1148 bap_tab, s->bap[ch]);
1152 /* unused dummy data */
1153 if (s->skip_syntax && get_bits1(gbc)) {
1154 int skipl = get_bits(gbc, 9);
1155 while(skipl--)
1156 skip_bits(gbc, 8);
1159 /* unpack the transform coefficients
1160 this also uncouples channels if coupling is in use. */
1161 decode_transform_coeffs(s, blk);
1163 /* TODO: generate enhanced coupling coordinates and uncouple */
1165 /* TODO: apply spectral extension */
1167 /* recover coefficients if rematrixing is in use */
1168 if(s->channel_mode == AC3_CHMODE_STEREO)
1169 do_rematrixing(s);
1171 /* apply scaling to coefficients (headroom, dynrng) */
1172 for(ch=1; ch<=s->channels; ch++) {
1173 float gain = s->mul_bias / 4194304.0f;
1174 if(s->channel_mode == AC3_CHMODE_DUALMONO) {
1175 gain *= s->dynamic_range[ch-1];
1176 } else {
1177 gain *= s->dynamic_range[0];
1179 s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
1182 /* downmix and MDCT. order depends on whether block switching is used for
1183 any channel in this block. this is because coefficients for the long
1184 and short transforms cannot be mixed. */
1185 downmix_output = s->channels != s->out_channels &&
1186 !((s->output_mode & AC3_OUTPUT_LFEON) &&
1187 s->fbw_channels == s->out_channels);
1188 if(different_transforms) {
1189 /* the delay samples have already been downmixed, so we upmix the delay
1190 samples in order to reconstruct all channels before downmixing. */
1191 if(s->downmixed) {
1192 s->downmixed = 0;
1193 ac3_upmix_delay(s);
1196 do_imdct(s, s->channels);
1198 if(downmix_output) {
1199 s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1201 } else {
1202 if(downmix_output) {
1203 s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1206 if(downmix_output && !s->downmixed) {
1207 s->downmixed = 1;
1208 s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
1211 do_imdct(s, s->out_channels);
1214 return 0;
1218 * Decode a single AC-3 frame.
1220 static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
1221 const uint8_t *buf, int buf_size)
1223 AC3DecodeContext *s = avctx->priv_data;
1224 int16_t *out_samples = (int16_t *)data;
1225 int blk, ch, err;
1227 /* initialize the GetBitContext with the start of valid AC-3 Frame */
1228 if (s->input_buffer) {
1229 /* copy input buffer to decoder context to avoid reading past the end
1230 of the buffer, which can be caused by a damaged input stream. */
1231 memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
1232 init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
1233 } else {
1234 init_get_bits(&s->gbc, buf, buf_size * 8);
1237 /* parse the syncinfo */
1238 *data_size = 0;
1239 err = parse_frame_header(s);
1241 /* check that reported frame size fits in input buffer */
1242 if(s->frame_size > buf_size) {
1243 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1244 err = AC3_PARSE_ERROR_FRAME_SIZE;
1247 /* check for crc mismatch */
1248 if(err != AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_recognition >= FF_ER_CAREFUL) {
1249 if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
1250 av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
1251 err = AC3_PARSE_ERROR_CRC;
1255 if(err && err != AC3_PARSE_ERROR_CRC) {
1256 switch(err) {
1257 case AC3_PARSE_ERROR_SYNC:
1258 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
1259 return -1;
1260 case AC3_PARSE_ERROR_BSID:
1261 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
1262 break;
1263 case AC3_PARSE_ERROR_SAMPLE_RATE:
1264 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
1265 break;
1266 case AC3_PARSE_ERROR_FRAME_SIZE:
1267 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
1268 break;
1269 case AC3_PARSE_ERROR_FRAME_TYPE:
1270 /* skip frame if CRC is ok. otherwise use error concealment. */
1271 /* TODO: add support for substreams and dependent frames */
1272 if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
1273 av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
1274 return s->frame_size;
1275 } else {
1276 av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
1278 break;
1279 default:
1280 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
1281 break;
1285 /* if frame is ok, set audio parameters */
1286 if (!err) {
1287 avctx->sample_rate = s->sample_rate;
1288 avctx->bit_rate = s->bit_rate;
1290 /* channel config */
1291 s->out_channels = s->channels;
1292 s->output_mode = s->channel_mode;
1293 if(s->lfe_on)
1294 s->output_mode |= AC3_OUTPUT_LFEON;
1295 if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
1296 avctx->request_channels < s->channels) {
1297 s->out_channels = avctx->request_channels;
1298 s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1300 avctx->channels = s->out_channels;
1302 /* set downmixing coefficients if needed */
1303 if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
1304 s->fbw_channels == s->out_channels)) {
1305 set_downmix_coeffs(s);
1307 } else if (!s->out_channels) {
1308 s->out_channels = avctx->channels;
1309 if(s->out_channels < s->channels)
1310 s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1313 /* decode the audio blocks */
1314 for (blk = 0; blk < s->num_blocks; blk++) {
1315 const float *output[s->out_channels];
1316 if (!err && decode_audio_block(s, blk)) {
1317 av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
1318 err = 1;
1320 for (ch = 0; ch < s->out_channels; ch++)
1321 output[ch] = s->output[ch];
1322 s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
1323 out_samples += 256 * s->out_channels;
1325 *data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);
1326 return s->frame_size;
1330 * Uninitialize the AC-3 decoder.
1332 static av_cold int ac3_decode_end(AVCodecContext *avctx)
1334 AC3DecodeContext *s = avctx->priv_data;
1335 ff_mdct_end(&s->imdct_512);
1336 ff_mdct_end(&s->imdct_256);
1338 av_freep(&s->input_buffer);
1340 return 0;
1343 AVCodec ac3_decoder = {
1344 .name = "ac3",
1345 .type = CODEC_TYPE_AUDIO,
1346 .id = CODEC_ID_AC3,
1347 .priv_data_size = sizeof (AC3DecodeContext),
1348 .init = ac3_decode_init,
1349 .close = ac3_decode_end,
1350 .decode = ac3_decode_frame,
1351 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
1354 AVCodec eac3_decoder = {
1355 .name = "eac3",
1356 .type = CODEC_TYPE_AUDIO,
1357 .id = CODEC_ID_EAC3,
1358 .priv_data_size = sizeof (AC3DecodeContext),
1359 .init = ac3_decode_init,
1360 .close = ac3_decode_end,
1361 .decode = ac3_decode_frame,
1362 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),