oggenc: return error value from ogg_build_flac_headers()
[FFMpeg-mirror/lagarith.git] / libavcodec / vp3.c
blob7612851aa510b51a1f8e671a31bbb2388933cbd3
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 /**
22 * @file libavcodec/vp3.c
23 * On2 VP3 Video Decoder
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
29 * Theora decoder by Alex Beregszaszi
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <unistd.h>
37 #include "avcodec.h"
38 #include "dsputil.h"
39 #include "get_bits.h"
41 #include "vp3data.h"
42 #include "xiph.h"
44 #define FRAGMENT_PIXELS 8
46 typedef struct Coeff {
47 struct Coeff *next;
48 DCTELEM coeff;
49 uint8_t index;
50 } Coeff;
52 //FIXME split things out into their own arrays
53 typedef struct Vp3Fragment {
54 Coeff *next_coeff;
55 /* address of first pixel taking into account which plane the fragment
56 * lives on as well as the plane stride */
57 int first_pixel;
58 /* this is the macroblock that the fragment belongs to */
59 uint16_t macroblock;
60 uint8_t coding_method;
61 int8_t motion_x;
62 int8_t motion_y;
63 uint8_t qpi;
64 } Vp3Fragment;
66 #define SB_NOT_CODED 0
67 #define SB_PARTIALLY_CODED 1
68 #define SB_FULLY_CODED 2
70 #define MODE_INTER_NO_MV 0
71 #define MODE_INTRA 1
72 #define MODE_INTER_PLUS_MV 2
73 #define MODE_INTER_LAST_MV 3
74 #define MODE_INTER_PRIOR_LAST 4
75 #define MODE_USING_GOLDEN 5
76 #define MODE_GOLDEN_MV 6
77 #define MODE_INTER_FOURMV 7
78 #define CODING_MODE_COUNT 8
80 /* special internal mode */
81 #define MODE_COPY 8
83 /* There are 6 preset schemes, plus a free-form scheme */
84 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
86 /* scheme 1: Last motion vector dominates */
87 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
88 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
89 MODE_INTRA, MODE_USING_GOLDEN,
90 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
92 /* scheme 2 */
93 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
94 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
95 MODE_INTRA, MODE_USING_GOLDEN,
96 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
98 /* scheme 3 */
99 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
100 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
101 MODE_INTRA, MODE_USING_GOLDEN,
102 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
104 /* scheme 4 */
105 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
106 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
107 MODE_INTRA, MODE_USING_GOLDEN,
108 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
110 /* scheme 5: No motion vector dominates */
111 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
112 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
113 MODE_INTRA, MODE_USING_GOLDEN,
114 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
116 /* scheme 6 */
117 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
118 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
119 MODE_INTER_PLUS_MV, MODE_INTRA,
120 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
124 #define MIN_DEQUANT_VAL 2
126 typedef struct Vp3DecodeContext {
127 AVCodecContext *avctx;
128 int theora, theora_tables;
129 int version;
130 int width, height;
131 AVFrame golden_frame;
132 AVFrame last_frame;
133 AVFrame current_frame;
134 int keyframe;
135 DSPContext dsp;
136 int flipped_image;
138 int qps[3];
139 int nqps;
140 int last_qps[3];
142 int superblock_count;
143 int y_superblock_width;
144 int y_superblock_height;
145 int c_superblock_width;
146 int c_superblock_height;
147 int u_superblock_start;
148 int v_superblock_start;
149 unsigned char *superblock_coding;
151 int macroblock_count;
152 int macroblock_width;
153 int macroblock_height;
155 int fragment_count;
156 int fragment_width;
157 int fragment_height;
159 Vp3Fragment *all_fragments;
160 uint8_t *coeff_counts;
161 Coeff *coeffs;
162 Coeff *next_coeff;
163 int fragment_start[3];
165 ScanTable scantable;
167 /* tables */
168 uint16_t coded_dc_scale_factor[64];
169 uint32_t coded_ac_scale_factor[64];
170 uint8_t base_matrix[384][64];
171 uint8_t qr_count[2][3];
172 uint8_t qr_size [2][3][64];
173 uint16_t qr_base[2][3][64];
175 /* this is a list of indexes into the all_fragments array indicating
176 * which of the fragments are coded */
177 int *coded_fragment_list;
178 int coded_fragment_list_index;
179 int pixel_addresses_initialized;
181 VLC dc_vlc[16];
182 VLC ac_vlc_1[16];
183 VLC ac_vlc_2[16];
184 VLC ac_vlc_3[16];
185 VLC ac_vlc_4[16];
187 VLC superblock_run_length_vlc;
188 VLC fragment_run_length_vlc;
189 VLC mode_code_vlc;
190 VLC motion_vector_vlc;
192 /* these arrays need to be on 16-byte boundaries since SSE2 operations
193 * index into them */
194 DECLARE_ALIGNED_16(int16_t, qmat[3][2][3][64]); //<qmat[qpi][is_inter][plane]
196 /* This table contains superblock_count * 16 entries. Each set of 16
197 * numbers corresponds to the fragment indexes 0..15 of the superblock.
198 * An entry will be -1 to indicate that no entry corresponds to that
199 * index. */
200 int *superblock_fragments;
202 /* This table contains superblock_count * 4 entries. Each set of 4
203 * numbers corresponds to the macroblock indexes 0..3 of the superblock.
204 * An entry will be -1 to indicate that no entry corresponds to that
205 * index. */
206 int *superblock_macroblocks;
208 /* This table contains macroblock_count * 6 entries. Each set of 6
209 * numbers corresponds to the fragment indexes 0..5 which comprise
210 * the macroblock (4 Y fragments and 2 C fragments). */
211 int *macroblock_fragments;
212 /* This is an array that indicates how a particular macroblock
213 * is coded. */
214 unsigned char *macroblock_coding;
216 int first_coded_y_fragment;
217 int first_coded_c_fragment;
218 int last_coded_y_fragment;
219 int last_coded_c_fragment;
221 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
222 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
224 /* Huffman decode */
225 int hti;
226 unsigned int hbits;
227 int entries;
228 int huff_code_size;
229 uint16_t huffman_table[80][32][2];
231 uint8_t filter_limit_values[64];
232 DECLARE_ALIGNED_8(int, bounding_values_array[256+2]);
233 } Vp3DecodeContext;
235 /************************************************************************
236 * VP3 specific functions
237 ************************************************************************/
240 * This function sets up all of the various blocks mappings:
241 * superblocks <-> fragments, macroblocks <-> fragments,
242 * superblocks <-> macroblocks
244 * Returns 0 is successful; returns 1 if *anything* went wrong.
246 static int init_block_mapping(Vp3DecodeContext *s)
248 int i, j;
249 signed int hilbert_walk_mb[4];
251 int current_fragment = 0;
252 int current_width = 0;
253 int current_height = 0;
254 int right_edge = 0;
255 int bottom_edge = 0;
256 int superblock_row_inc = 0;
257 int mapping_index = 0;
259 int current_macroblock;
260 int c_fragment;
262 signed char travel_width[16] = {
263 1, 1, 0, -1,
264 0, 0, 1, 0,
265 1, 0, 1, 0,
266 0, -1, 0, 1
269 signed char travel_height[16] = {
270 0, 0, 1, 0,
271 1, 1, 0, -1,
272 0, 1, 0, -1,
273 -1, 0, -1, 0
276 signed char travel_width_mb[4] = {
277 1, 0, 1, 0
280 signed char travel_height_mb[4] = {
281 0, 1, 0, -1
284 hilbert_walk_mb[0] = 1;
285 hilbert_walk_mb[1] = s->macroblock_width;
286 hilbert_walk_mb[2] = 1;
287 hilbert_walk_mb[3] = -s->macroblock_width;
289 /* iterate through each superblock (all planes) and map the fragments */
290 for (i = 0; i < s->superblock_count; i++) {
291 /* time to re-assign the limits? */
292 if (i == 0) {
294 /* start of Y superblocks */
295 right_edge = s->fragment_width;
296 bottom_edge = s->fragment_height;
297 current_width = -1;
298 current_height = 0;
299 superblock_row_inc = 3 * s->fragment_width -
300 (s->y_superblock_width * 4 - s->fragment_width);
302 /* the first operation for this variable is to advance by 1 */
303 current_fragment = -1;
305 } else if (i == s->u_superblock_start) {
307 /* start of U superblocks */
308 right_edge = s->fragment_width / 2;
309 bottom_edge = s->fragment_height / 2;
310 current_width = -1;
311 current_height = 0;
312 superblock_row_inc = 3 * (s->fragment_width / 2) -
313 (s->c_superblock_width * 4 - s->fragment_width / 2);
315 /* the first operation for this variable is to advance by 1 */
316 current_fragment = s->fragment_start[1] - 1;
318 } else if (i == s->v_superblock_start) {
320 /* start of V superblocks */
321 right_edge = s->fragment_width / 2;
322 bottom_edge = s->fragment_height / 2;
323 current_width = -1;
324 current_height = 0;
325 superblock_row_inc = 3 * (s->fragment_width / 2) -
326 (s->c_superblock_width * 4 - s->fragment_width / 2);
328 /* the first operation for this variable is to advance by 1 */
329 current_fragment = s->fragment_start[2] - 1;
333 if (current_width >= right_edge - 1) {
334 /* reset width and move to next superblock row */
335 current_width = -1;
336 current_height += 4;
338 /* fragment is now at the start of a new superblock row */
339 current_fragment += superblock_row_inc;
342 /* iterate through all 16 fragments in a superblock */
343 for (j = 0; j < 16; j++) {
344 current_fragment += travel_width[j] + right_edge * travel_height[j];
345 current_width += travel_width[j];
346 current_height += travel_height[j];
348 /* check if the fragment is in bounds */
349 if ((current_width < right_edge) &&
350 (current_height < bottom_edge)) {
351 s->superblock_fragments[mapping_index] = current_fragment;
352 } else {
353 s->superblock_fragments[mapping_index] = -1;
356 mapping_index++;
360 /* initialize the superblock <-> macroblock mapping; iterate through
361 * all of the Y plane superblocks to build this mapping */
362 right_edge = s->macroblock_width;
363 bottom_edge = s->macroblock_height;
364 current_width = -1;
365 current_height = 0;
366 superblock_row_inc = s->macroblock_width -
367 (s->y_superblock_width * 2 - s->macroblock_width);
368 mapping_index = 0;
369 current_macroblock = -1;
370 for (i = 0; i < s->u_superblock_start; i++) {
372 if (current_width >= right_edge - 1) {
373 /* reset width and move to next superblock row */
374 current_width = -1;
375 current_height += 2;
377 /* macroblock is now at the start of a new superblock row */
378 current_macroblock += superblock_row_inc;
381 /* iterate through each potential macroblock in the superblock */
382 for (j = 0; j < 4; j++) {
383 current_macroblock += hilbert_walk_mb[j];
384 current_width += travel_width_mb[j];
385 current_height += travel_height_mb[j];
387 /* check if the macroblock is in bounds */
388 if ((current_width < right_edge) &&
389 (current_height < bottom_edge)) {
390 s->superblock_macroblocks[mapping_index] = current_macroblock;
391 } else {
392 s->superblock_macroblocks[mapping_index] = -1;
395 mapping_index++;
399 /* initialize the macroblock <-> fragment mapping */
400 current_fragment = 0;
401 current_macroblock = 0;
402 mapping_index = 0;
403 for (i = 0; i < s->fragment_height; i += 2) {
405 for (j = 0; j < s->fragment_width; j += 2) {
407 s->all_fragments[current_fragment].macroblock = current_macroblock;
408 s->macroblock_fragments[mapping_index++] = current_fragment;
410 if (j + 1 < s->fragment_width) {
411 s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
412 s->macroblock_fragments[mapping_index++] = current_fragment + 1;
413 } else
414 s->macroblock_fragments[mapping_index++] = -1;
416 if (i + 1 < s->fragment_height) {
417 s->all_fragments[current_fragment + s->fragment_width].macroblock =
418 current_macroblock;
419 s->macroblock_fragments[mapping_index++] =
420 current_fragment + s->fragment_width;
421 } else
422 s->macroblock_fragments[mapping_index++] = -1;
424 if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
425 s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
426 current_macroblock;
427 s->macroblock_fragments[mapping_index++] =
428 current_fragment + s->fragment_width + 1;
429 } else
430 s->macroblock_fragments[mapping_index++] = -1;
432 /* C planes */
433 c_fragment = s->fragment_start[1] +
434 (i * s->fragment_width / 4) + (j / 2);
435 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
436 s->macroblock_fragments[mapping_index++] = c_fragment;
438 c_fragment = s->fragment_start[2] +
439 (i * s->fragment_width / 4) + (j / 2);
440 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
441 s->macroblock_fragments[mapping_index++] = c_fragment;
443 if (j + 2 <= s->fragment_width)
444 current_fragment += 2;
445 else
446 current_fragment++;
447 current_macroblock++;
450 current_fragment += s->fragment_width;
453 return 0; /* successful path out */
457 * This function wipes out all of the fragment data.
459 static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
461 int i;
463 /* zero out all of the fragment information */
464 s->coded_fragment_list_index = 0;
465 for (i = 0; i < s->fragment_count; i++) {
466 s->coeff_counts[i] = 0;
467 s->all_fragments[i].motion_x = 127;
468 s->all_fragments[i].motion_y = 127;
469 s->all_fragments[i].next_coeff= NULL;
470 s->all_fragments[i].qpi = 0;
471 s->coeffs[i].index=
472 s->coeffs[i].coeff=0;
473 s->coeffs[i].next= NULL;
478 * This function sets up the dequantization tables used for a particular
479 * frame.
481 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
483 int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
484 int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
485 int i, plane, inter, qri, bmi, bmj, qistart;
487 for(inter=0; inter<2; inter++){
488 for(plane=0; plane<3; plane++){
489 int sum=0;
490 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
491 sum+= s->qr_size[inter][plane][qri];
492 if(s->qps[qpi] <= sum)
493 break;
495 qistart= sum - s->qr_size[inter][plane][qri];
496 bmi= s->qr_base[inter][plane][qri ];
497 bmj= s->qr_base[inter][plane][qri+1];
498 for(i=0; i<64; i++){
499 int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i]
500 - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
501 + s->qr_size[inter][plane][qri])
502 / (2*s->qr_size[inter][plane][qri]);
504 int qmin= 8<<(inter + !i);
505 int qscale= i ? ac_scale_factor : dc_scale_factor;
507 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
509 // all DC coefficients use the same quant so as not to interfere with DC prediction
510 s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
514 memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
518 * This function initializes the loop filter boundary limits if the frame's
519 * quality index is different from the previous frame's.
521 static void init_loop_filter(Vp3DecodeContext *s)
523 int *bounding_values= s->bounding_values_array+127;
524 int filter_limit;
525 int x;
527 filter_limit = s->filter_limit_values[s->qps[0]];
529 /* set up the bounding values */
530 memset(s->bounding_values_array, 0, 256 * sizeof(int));
531 for (x = 0; x < filter_limit; x++) {
532 bounding_values[-x - filter_limit] = -filter_limit + x;
533 bounding_values[-x] = -x;
534 bounding_values[x] = x;
535 bounding_values[x + filter_limit] = filter_limit - x;
537 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
541 * This function unpacks all of the superblock/macroblock/fragment coding
542 * information from the bitstream.
544 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
546 int bit = 0;
547 int current_superblock = 0;
548 int current_run = 0;
549 int decode_fully_flags = 0;
550 int decode_partial_blocks = 0;
551 int first_c_fragment_seen;
553 int i, j;
554 int current_fragment;
556 if (s->keyframe) {
557 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
559 } else {
561 /* unpack the list of partially-coded superblocks */
562 bit = get_bits1(gb);
563 /* toggle the bit because as soon as the first run length is
564 * fetched the bit will be toggled again */
565 bit ^= 1;
566 while (current_superblock < s->superblock_count) {
567 if (current_run-- == 0) {
568 bit ^= 1;
569 current_run = get_vlc2(gb,
570 s->superblock_run_length_vlc.table, 6, 2);
571 if (current_run == 33)
572 current_run += get_bits(gb, 12);
574 /* if any of the superblocks are not partially coded, flag
575 * a boolean to decode the list of fully-coded superblocks */
576 if (bit == 0) {
577 decode_fully_flags = 1;
578 } else {
580 /* make a note of the fact that there are partially coded
581 * superblocks */
582 decode_partial_blocks = 1;
585 s->superblock_coding[current_superblock++] = bit;
588 /* unpack the list of fully coded superblocks if any of the blocks were
589 * not marked as partially coded in the previous step */
590 if (decode_fully_flags) {
592 current_superblock = 0;
593 current_run = 0;
594 bit = get_bits1(gb);
595 /* toggle the bit because as soon as the first run length is
596 * fetched the bit will be toggled again */
597 bit ^= 1;
598 while (current_superblock < s->superblock_count) {
600 /* skip any superblocks already marked as partially coded */
601 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
603 if (current_run-- == 0) {
604 bit ^= 1;
605 current_run = get_vlc2(gb,
606 s->superblock_run_length_vlc.table, 6, 2);
607 if (current_run == 33)
608 current_run += get_bits(gb, 12);
610 s->superblock_coding[current_superblock] = 2*bit;
612 current_superblock++;
616 /* if there were partial blocks, initialize bitstream for
617 * unpacking fragment codings */
618 if (decode_partial_blocks) {
620 current_run = 0;
621 bit = get_bits1(gb);
622 /* toggle the bit because as soon as the first run length is
623 * fetched the bit will be toggled again */
624 bit ^= 1;
628 /* figure out which fragments are coded; iterate through each
629 * superblock (all planes) */
630 s->coded_fragment_list_index = 0;
631 s->next_coeff= s->coeffs + s->fragment_count;
632 s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
633 s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
634 first_c_fragment_seen = 0;
635 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
636 for (i = 0; i < s->superblock_count; i++) {
638 /* iterate through all 16 fragments in a superblock */
639 for (j = 0; j < 16; j++) {
641 /* if the fragment is in bounds, check its coding status */
642 current_fragment = s->superblock_fragments[i * 16 + j];
643 if (current_fragment >= s->fragment_count) {
644 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
645 current_fragment, s->fragment_count);
646 return 1;
648 if (current_fragment != -1) {
649 if (s->superblock_coding[i] == SB_NOT_CODED) {
651 /* copy all the fragments from the prior frame */
652 s->all_fragments[current_fragment].coding_method =
653 MODE_COPY;
655 } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
657 /* fragment may or may not be coded; this is the case
658 * that cares about the fragment coding runs */
659 if (current_run-- == 0) {
660 bit ^= 1;
661 current_run = get_vlc2(gb,
662 s->fragment_run_length_vlc.table, 5, 2);
665 if (bit) {
666 /* default mode; actual mode will be decoded in
667 * the next phase */
668 s->all_fragments[current_fragment].coding_method =
669 MODE_INTER_NO_MV;
670 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
671 s->coded_fragment_list[s->coded_fragment_list_index] =
672 current_fragment;
673 if ((current_fragment >= s->fragment_start[1]) &&
674 (s->last_coded_y_fragment == -1) &&
675 (!first_c_fragment_seen)) {
676 s->first_coded_c_fragment = s->coded_fragment_list_index;
677 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
678 first_c_fragment_seen = 1;
680 s->coded_fragment_list_index++;
681 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
682 } else {
683 /* not coded; copy this fragment from the prior frame */
684 s->all_fragments[current_fragment].coding_method =
685 MODE_COPY;
688 } else {
690 /* fragments are fully coded in this superblock; actual
691 * coding will be determined in next step */
692 s->all_fragments[current_fragment].coding_method =
693 MODE_INTER_NO_MV;
694 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
695 s->coded_fragment_list[s->coded_fragment_list_index] =
696 current_fragment;
697 if ((current_fragment >= s->fragment_start[1]) &&
698 (s->last_coded_y_fragment == -1) &&
699 (!first_c_fragment_seen)) {
700 s->first_coded_c_fragment = s->coded_fragment_list_index;
701 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
702 first_c_fragment_seen = 1;
704 s->coded_fragment_list_index++;
705 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
711 if (!first_c_fragment_seen)
712 /* only Y fragments coded in this frame */
713 s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
714 else
715 /* end the list of coded C fragments */
716 s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
718 return 0;
722 * This function unpacks all the coding mode data for individual macroblocks
723 * from the bitstream.
725 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
727 int i, j, k;
728 int scheme;
729 int current_macroblock;
730 int current_fragment;
731 int coding_mode;
732 int custom_mode_alphabet[CODING_MODE_COUNT];
734 if (s->keyframe) {
735 for (i = 0; i < s->fragment_count; i++)
736 s->all_fragments[i].coding_method = MODE_INTRA;
738 } else {
740 /* fetch the mode coding scheme for this frame */
741 scheme = get_bits(gb, 3);
743 /* is it a custom coding scheme? */
744 if (scheme == 0) {
745 for (i = 0; i < 8; i++)
746 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
747 for (i = 0; i < 8; i++)
748 custom_mode_alphabet[get_bits(gb, 3)] = i;
751 /* iterate through all of the macroblocks that contain 1 or more
752 * coded fragments */
753 for (i = 0; i < s->u_superblock_start; i++) {
755 for (j = 0; j < 4; j++) {
756 current_macroblock = s->superblock_macroblocks[i * 4 + j];
757 if ((current_macroblock == -1) ||
758 (s->macroblock_coding[current_macroblock] == MODE_COPY))
759 continue;
760 if (current_macroblock >= s->macroblock_count) {
761 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
762 current_macroblock, s->macroblock_count);
763 return 1;
766 /* mode 7 means get 3 bits for each coding mode */
767 if (scheme == 7)
768 coding_mode = get_bits(gb, 3);
769 else if(scheme == 0)
770 coding_mode = custom_mode_alphabet
771 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
772 else
773 coding_mode = ModeAlphabet[scheme-1]
774 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
776 s->macroblock_coding[current_macroblock] = coding_mode;
777 for (k = 0; k < 6; k++) {
778 current_fragment =
779 s->macroblock_fragments[current_macroblock * 6 + k];
780 if (current_fragment == -1)
781 continue;
782 if (current_fragment >= s->fragment_count) {
783 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
784 current_fragment, s->fragment_count);
785 return 1;
787 if (s->all_fragments[current_fragment].coding_method !=
788 MODE_COPY)
789 s->all_fragments[current_fragment].coding_method =
790 coding_mode;
796 return 0;
800 * This function unpacks all the motion vectors for the individual
801 * macroblocks from the bitstream.
803 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
805 int i, j, k, l;
806 int coding_mode;
807 int motion_x[6];
808 int motion_y[6];
809 int last_motion_x = 0;
810 int last_motion_y = 0;
811 int prior_last_motion_x = 0;
812 int prior_last_motion_y = 0;
813 int current_macroblock;
814 int current_fragment;
816 if (s->keyframe)
817 return 0;
819 memset(motion_x, 0, 6 * sizeof(int));
820 memset(motion_y, 0, 6 * sizeof(int));
822 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
823 coding_mode = get_bits1(gb);
825 /* iterate through all of the macroblocks that contain 1 or more
826 * coded fragments */
827 for (i = 0; i < s->u_superblock_start; i++) {
829 for (j = 0; j < 4; j++) {
830 current_macroblock = s->superblock_macroblocks[i * 4 + j];
831 if ((current_macroblock == -1) ||
832 (s->macroblock_coding[current_macroblock] == MODE_COPY))
833 continue;
834 if (current_macroblock >= s->macroblock_count) {
835 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
836 current_macroblock, s->macroblock_count);
837 return 1;
840 current_fragment = s->macroblock_fragments[current_macroblock * 6];
841 if (current_fragment >= s->fragment_count) {
842 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
843 current_fragment, s->fragment_count);
844 return 1;
846 switch (s->macroblock_coding[current_macroblock]) {
848 case MODE_INTER_PLUS_MV:
849 case MODE_GOLDEN_MV:
850 /* all 6 fragments use the same motion vector */
851 if (coding_mode == 0) {
852 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
853 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
854 } else {
855 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
856 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
859 for (k = 1; k < 6; k++) {
860 motion_x[k] = motion_x[0];
861 motion_y[k] = motion_y[0];
864 /* vector maintenance, only on MODE_INTER_PLUS_MV */
865 if (s->macroblock_coding[current_macroblock] ==
866 MODE_INTER_PLUS_MV) {
867 prior_last_motion_x = last_motion_x;
868 prior_last_motion_y = last_motion_y;
869 last_motion_x = motion_x[0];
870 last_motion_y = motion_y[0];
872 break;
874 case MODE_INTER_FOURMV:
875 /* vector maintenance */
876 prior_last_motion_x = last_motion_x;
877 prior_last_motion_y = last_motion_y;
879 /* fetch 4 vectors from the bitstream, one for each
880 * Y fragment, then average for the C fragment vectors */
881 motion_x[4] = motion_y[4] = 0;
882 for (k = 0; k < 4; k++) {
883 for (l = 0; l < s->coded_fragment_list_index; l++)
884 if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k])
885 break;
886 if (l < s->coded_fragment_list_index) {
887 if (coding_mode == 0) {
888 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
889 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
890 } else {
891 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
892 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
894 last_motion_x = motion_x[k];
895 last_motion_y = motion_y[k];
896 } else {
897 motion_x[k] = 0;
898 motion_y[k] = 0;
900 motion_x[4] += motion_x[k];
901 motion_y[4] += motion_y[k];
904 motion_x[5]=
905 motion_x[4]= RSHIFT(motion_x[4], 2);
906 motion_y[5]=
907 motion_y[4]= RSHIFT(motion_y[4], 2);
908 break;
910 case MODE_INTER_LAST_MV:
911 /* all 6 fragments use the last motion vector */
912 motion_x[0] = last_motion_x;
913 motion_y[0] = last_motion_y;
914 for (k = 1; k < 6; k++) {
915 motion_x[k] = motion_x[0];
916 motion_y[k] = motion_y[0];
919 /* no vector maintenance (last vector remains the
920 * last vector) */
921 break;
923 case MODE_INTER_PRIOR_LAST:
924 /* all 6 fragments use the motion vector prior to the
925 * last motion vector */
926 motion_x[0] = prior_last_motion_x;
927 motion_y[0] = prior_last_motion_y;
928 for (k = 1; k < 6; k++) {
929 motion_x[k] = motion_x[0];
930 motion_y[k] = motion_y[0];
933 /* vector maintenance */
934 prior_last_motion_x = last_motion_x;
935 prior_last_motion_y = last_motion_y;
936 last_motion_x = motion_x[0];
937 last_motion_y = motion_y[0];
938 break;
940 default:
941 /* covers intra, inter without MV, golden without MV */
942 memset(motion_x, 0, 6 * sizeof(int));
943 memset(motion_y, 0, 6 * sizeof(int));
945 /* no vector maintenance */
946 break;
949 /* assign the motion vectors to the correct fragments */
950 for (k = 0; k < 6; k++) {
951 current_fragment =
952 s->macroblock_fragments[current_macroblock * 6 + k];
953 if (current_fragment == -1)
954 continue;
955 if (current_fragment >= s->fragment_count) {
956 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
957 current_fragment, s->fragment_count);
958 return 1;
960 s->all_fragments[current_fragment].motion_x = motion_x[k];
961 s->all_fragments[current_fragment].motion_y = motion_y[k];
966 return 0;
969 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
971 int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
972 int num_blocks = s->coded_fragment_list_index;
974 for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
975 i = blocks_decoded = num_blocks_at_qpi = 0;
977 bit = get_bits1(gb);
979 do {
980 run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
981 if (run_length == 34)
982 run_length += get_bits(gb, 12);
983 blocks_decoded += run_length;
985 if (!bit)
986 num_blocks_at_qpi += run_length;
988 for (j = 0; j < run_length; i++) {
989 if (i > s->coded_fragment_list_index)
990 return -1;
992 if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) {
993 s->all_fragments[s->coded_fragment_list[i]].qpi += bit;
994 j++;
998 if (run_length == 4129)
999 bit = get_bits1(gb);
1000 else
1001 bit ^= 1;
1002 } while (blocks_decoded < num_blocks);
1004 num_blocks -= num_blocks_at_qpi;
1007 return 0;
1011 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1012 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1013 * data. This function unpacks all the VLCs for either the Y plane or both
1014 * C planes, and is called for DC coefficients or different AC coefficient
1015 * levels (since different coefficient types require different VLC tables.
1017 * This function returns a residual eob run. E.g, if a particular token gave
1018 * instructions to EOB the next 5 fragments and there were only 2 fragments
1019 * left in the current fragment range, 3 would be returned so that it could
1020 * be passed into the next call to this same function.
1022 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1023 VLC *table, int coeff_index,
1024 int first_fragment, int last_fragment,
1025 int eob_run)
1027 int i;
1028 int token;
1029 int zero_run = 0;
1030 DCTELEM coeff = 0;
1031 Vp3Fragment *fragment;
1032 uint8_t *perm= s->scantable.permutated;
1033 int bits_to_get;
1035 if ((first_fragment >= s->fragment_count) ||
1036 (last_fragment >= s->fragment_count)) {
1038 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1039 first_fragment, last_fragment);
1040 return 0;
1043 for (i = first_fragment; i <= last_fragment; i++) {
1044 int fragment_num = s->coded_fragment_list[i];
1046 if (s->coeff_counts[fragment_num] > coeff_index)
1047 continue;
1048 fragment = &s->all_fragments[fragment_num];
1050 if (!eob_run) {
1051 /* decode a VLC into a token */
1052 token = get_vlc2(gb, table->table, 5, 3);
1053 /* use the token to get a zero run, a coefficient, and an eob run */
1054 if (token <= 6) {
1055 eob_run = eob_run_base[token];
1056 if (eob_run_get_bits[token])
1057 eob_run += get_bits(gb, eob_run_get_bits[token]);
1058 coeff = zero_run = 0;
1059 } else {
1060 bits_to_get = coeff_get_bits[token];
1061 if (!bits_to_get)
1062 coeff = coeff_tables[token][0];
1063 else
1064 coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
1066 zero_run = zero_run_base[token];
1067 if (zero_run_get_bits[token])
1068 zero_run += get_bits(gb, zero_run_get_bits[token]);
1072 if (!eob_run) {
1073 s->coeff_counts[fragment_num] += zero_run;
1074 if (s->coeff_counts[fragment_num] < 64){
1075 fragment->next_coeff->coeff= coeff;
1076 fragment->next_coeff->index= perm[s->coeff_counts[fragment_num]++]; //FIXME perm here already?
1077 fragment->next_coeff->next= s->next_coeff;
1078 s->next_coeff->next=NULL;
1079 fragment->next_coeff= s->next_coeff++;
1081 } else {
1082 s->coeff_counts[fragment_num] |= 128;
1083 eob_run--;
1087 return eob_run;
1091 * This function unpacks all of the DCT coefficient data from the
1092 * bitstream.
1094 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1096 int i;
1097 int dc_y_table;
1098 int dc_c_table;
1099 int ac_y_table;
1100 int ac_c_table;
1101 int residual_eob_run = 0;
1103 /* fetch the DC table indexes */
1104 dc_y_table = get_bits(gb, 4);
1105 dc_c_table = get_bits(gb, 4);
1107 /* unpack the Y plane DC coefficients */
1108 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1109 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1111 /* unpack the C plane DC coefficients */
1112 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1113 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1115 /* fetch the AC table indexes */
1116 ac_y_table = get_bits(gb, 4);
1117 ac_c_table = get_bits(gb, 4);
1119 /* unpack the group 1 AC coefficients (coeffs 1-5) */
1120 for (i = 1; i <= 5; i++) {
1121 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1122 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1124 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1125 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1128 /* unpack the group 2 AC coefficients (coeffs 6-14) */
1129 for (i = 6; i <= 14; i++) {
1130 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1131 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1133 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1134 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1137 /* unpack the group 3 AC coefficients (coeffs 15-27) */
1138 for (i = 15; i <= 27; i++) {
1139 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1140 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1142 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1143 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1146 /* unpack the group 4 AC coefficients (coeffs 28-63) */
1147 for (i = 28; i <= 63; i++) {
1148 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1149 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1151 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1152 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1155 return 0;
1159 * This function reverses the DC prediction for each coded fragment in
1160 * the frame. Much of this function is adapted directly from the original
1161 * VP3 source code.
1163 #define COMPATIBLE_FRAME(x) \
1164 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1165 #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1166 #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1168 static void reverse_dc_prediction(Vp3DecodeContext *s,
1169 int first_fragment,
1170 int fragment_width,
1171 int fragment_height)
1174 #define PUL 8
1175 #define PU 4
1176 #define PUR 2
1177 #define PL 1
1179 int x, y;
1180 int i = first_fragment;
1182 int predicted_dc;
1184 /* DC values for the left, up-left, up, and up-right fragments */
1185 int vl, vul, vu, vur;
1187 /* indexes for the left, up-left, up, and up-right fragments */
1188 int l, ul, u, ur;
1191 * The 6 fields mean:
1192 * 0: up-left multiplier
1193 * 1: up multiplier
1194 * 2: up-right multiplier
1195 * 3: left multiplier
1197 int predictor_transform[16][4] = {
1198 { 0, 0, 0, 0},
1199 { 0, 0, 0,128}, // PL
1200 { 0, 0,128, 0}, // PUR
1201 { 0, 0, 53, 75}, // PUR|PL
1202 { 0,128, 0, 0}, // PU
1203 { 0, 64, 0, 64}, // PU|PL
1204 { 0,128, 0, 0}, // PU|PUR
1205 { 0, 0, 53, 75}, // PU|PUR|PL
1206 {128, 0, 0, 0}, // PUL
1207 { 0, 0, 0,128}, // PUL|PL
1208 { 64, 0, 64, 0}, // PUL|PUR
1209 { 0, 0, 53, 75}, // PUL|PUR|PL
1210 { 0,128, 0, 0}, // PUL|PU
1211 {-104,116, 0,116}, // PUL|PU|PL
1212 { 24, 80, 24, 0}, // PUL|PU|PUR
1213 {-104,116, 0,116} // PUL|PU|PUR|PL
1216 /* This table shows which types of blocks can use other blocks for
1217 * prediction. For example, INTRA is the only mode in this table to
1218 * have a frame number of 0. That means INTRA blocks can only predict
1219 * from other INTRA blocks. There are 2 golden frame coding types;
1220 * blocks encoding in these modes can only predict from other blocks
1221 * that were encoded with these 1 of these 2 modes. */
1222 unsigned char compatible_frame[8] = {
1223 1, /* MODE_INTER_NO_MV */
1224 0, /* MODE_INTRA */
1225 1, /* MODE_INTER_PLUS_MV */
1226 1, /* MODE_INTER_LAST_MV */
1227 1, /* MODE_INTER_PRIOR_MV */
1228 2, /* MODE_USING_GOLDEN */
1229 2, /* MODE_GOLDEN_MV */
1230 1 /* MODE_INTER_FOUR_MV */
1232 int current_frame_type;
1234 /* there is a last DC predictor for each of the 3 frame types */
1235 short last_dc[3];
1237 int transform = 0;
1239 vul = vu = vur = vl = 0;
1240 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1242 /* for each fragment row... */
1243 for (y = 0; y < fragment_height; y++) {
1245 /* for each fragment in a row... */
1246 for (x = 0; x < fragment_width; x++, i++) {
1248 /* reverse prediction if this block was coded */
1249 if (s->all_fragments[i].coding_method != MODE_COPY) {
1251 current_frame_type =
1252 compatible_frame[s->all_fragments[i].coding_method];
1254 transform= 0;
1255 if(x){
1256 l= i-1;
1257 vl = DC_COEFF(l);
1258 if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
1259 transform |= PL;
1261 if(y){
1262 u= i-fragment_width;
1263 vu = DC_COEFF(u);
1264 if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
1265 transform |= PU;
1266 if(x){
1267 ul= i-fragment_width-1;
1268 vul = DC_COEFF(ul);
1269 if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
1270 transform |= PUL;
1272 if(x + 1 < fragment_width){
1273 ur= i-fragment_width+1;
1274 vur = DC_COEFF(ur);
1275 if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
1276 transform |= PUR;
1280 if (transform == 0) {
1282 /* if there were no fragments to predict from, use last
1283 * DC saved */
1284 predicted_dc = last_dc[current_frame_type];
1285 } else {
1287 /* apply the appropriate predictor transform */
1288 predicted_dc =
1289 (predictor_transform[transform][0] * vul) +
1290 (predictor_transform[transform][1] * vu) +
1291 (predictor_transform[transform][2] * vur) +
1292 (predictor_transform[transform][3] * vl);
1294 predicted_dc /= 128;
1296 /* check for outranging on the [ul u l] and
1297 * [ul u ur l] predictors */
1298 if ((transform == 13) || (transform == 15)) {
1299 if (FFABS(predicted_dc - vu) > 128)
1300 predicted_dc = vu;
1301 else if (FFABS(predicted_dc - vl) > 128)
1302 predicted_dc = vl;
1303 else if (FFABS(predicted_dc - vul) > 128)
1304 predicted_dc = vul;
1308 /* at long last, apply the predictor */
1309 if(s->coeffs[i].index){
1310 *s->next_coeff= s->coeffs[i];
1311 s->coeffs[i].index=0;
1312 s->coeffs[i].coeff=0;
1313 s->coeffs[i].next= s->next_coeff++;
1315 s->coeffs[i].coeff += predicted_dc;
1316 /* save the DC */
1317 last_dc[current_frame_type] = DC_COEFF(i);
1318 if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1319 s->coeff_counts[i]= 129;
1320 // s->all_fragments[i].next_coeff= s->next_coeff;
1321 s->coeffs[i].next= s->next_coeff;
1322 (s->next_coeff++)->next=NULL;
1330 * Perform the final rendering for a particular slice of data.
1331 * The slice number ranges from 0..(macroblock_height - 1).
1333 static void render_slice(Vp3DecodeContext *s, int slice)
1335 int x;
1336 int16_t *dequantizer;
1337 DECLARE_ALIGNED_16(DCTELEM, block[64]);
1338 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1339 int motion_halfpel_index;
1340 uint8_t *motion_source;
1341 int plane;
1342 int current_macroblock_entry = slice * s->macroblock_width * 6;
1344 if (slice >= s->macroblock_height)
1345 return;
1347 for (plane = 0; plane < 3; plane++) {
1348 uint8_t *output_plane = s->current_frame.data [plane];
1349 uint8_t * last_plane = s-> last_frame.data [plane];
1350 uint8_t *golden_plane = s-> golden_frame.data [plane];
1351 int stride = s->current_frame.linesize[plane];
1352 int plane_width = s->width >> !!plane;
1353 int plane_height = s->height >> !!plane;
1354 int y = slice * FRAGMENT_PIXELS << !plane ;
1355 int slice_height = y + (FRAGMENT_PIXELS << !plane);
1356 int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1358 if (!s->flipped_image) stride = -stride;
1361 if(FFABS(stride) > 2048)
1362 return; //various tables are fixed size
1364 /* for each fragment row in the slice (both of them)... */
1365 for (; y < slice_height; y += 8) {
1367 /* for each fragment in a row... */
1368 for (x = 0; x < plane_width; x += 8, i++) {
1370 if ((i < 0) || (i >= s->fragment_count)) {
1371 av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
1372 return;
1375 /* transform if this block was coded */
1376 if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1377 !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1379 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1380 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1381 motion_source= golden_plane;
1382 else
1383 motion_source= last_plane;
1385 motion_source += s->all_fragments[i].first_pixel;
1386 motion_halfpel_index = 0;
1388 /* sort out the motion vector if this fragment is coded
1389 * using a motion vector method */
1390 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1391 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1392 int src_x, src_y;
1393 motion_x = s->all_fragments[i].motion_x;
1394 motion_y = s->all_fragments[i].motion_y;
1395 if(plane){
1396 motion_x= (motion_x>>1) | (motion_x&1);
1397 motion_y= (motion_y>>1) | (motion_y&1);
1400 src_x= (motion_x>>1) + x;
1401 src_y= (motion_y>>1) + y;
1402 if ((motion_x == 127) || (motion_y == 127))
1403 av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1405 motion_halfpel_index = motion_x & 0x01;
1406 motion_source += (motion_x >> 1);
1408 motion_halfpel_index |= (motion_y & 0x01) << 1;
1409 motion_source += ((motion_y >> 1) * stride);
1411 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1412 uint8_t *temp= s->edge_emu_buffer;
1413 if(stride<0) temp -= 9*stride;
1414 else temp += 9*stride;
1416 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1417 motion_source= temp;
1422 /* first, take care of copying a block from either the
1423 * previous or the golden frame */
1424 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1425 /* Note, it is possible to implement all MC cases with
1426 put_no_rnd_pixels_l2 which would look more like the
1427 VP3 source but this would be slower as
1428 put_no_rnd_pixels_tab is better optimzed */
1429 if(motion_halfpel_index != 3){
1430 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1431 output_plane + s->all_fragments[i].first_pixel,
1432 motion_source, stride, 8);
1433 }else{
1434 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1435 s->dsp.put_no_rnd_pixels_l2[1](
1436 output_plane + s->all_fragments[i].first_pixel,
1437 motion_source - d,
1438 motion_source + stride + 1 + d,
1439 stride, 8);
1441 dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane];
1442 }else{
1443 dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane];
1446 /* dequantize the DCT coefficients */
1447 if(s->avctx->idct_algo==FF_IDCT_VP3){
1448 Coeff *coeff= s->coeffs + i;
1449 s->dsp.clear_block(block);
1450 while(coeff->next){
1451 block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1452 coeff= coeff->next;
1454 }else{
1455 Coeff *coeff= s->coeffs + i;
1456 s->dsp.clear_block(block);
1457 while(coeff->next){
1458 block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1459 coeff= coeff->next;
1463 /* invert DCT and place (or add) in final output */
1465 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1466 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1467 block[0] += 128<<3;
1468 s->dsp.idct_put(
1469 output_plane + s->all_fragments[i].first_pixel,
1470 stride,
1471 block);
1472 } else {
1473 s->dsp.idct_add(
1474 output_plane + s->all_fragments[i].first_pixel,
1475 stride,
1476 block);
1478 } else {
1480 /* copy directly from the previous frame */
1481 s->dsp.put_pixels_tab[1][0](
1482 output_plane + s->all_fragments[i].first_pixel,
1483 last_plane + s->all_fragments[i].first_pixel,
1484 stride, 8);
1487 #if 0
1488 /* perform the left edge filter if:
1489 * - the fragment is not on the left column
1490 * - the fragment is coded in this frame
1491 * - the fragment is not coded in this frame but the left
1492 * fragment is coded in this frame (this is done instead
1493 * of a right edge filter when rendering the left fragment
1494 * since this fragment is not available yet) */
1495 if ((x > 0) &&
1496 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1497 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1498 (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1499 horizontal_filter(
1500 output_plane + s->all_fragments[i].first_pixel + 7*stride,
1501 -stride, s->bounding_values_array + 127);
1504 /* perform the top edge filter if:
1505 * - the fragment is not on the top row
1506 * - the fragment is coded in this frame
1507 * - the fragment is not coded in this frame but the above
1508 * fragment is coded in this frame (this is done instead
1509 * of a bottom edge filter when rendering the above
1510 * fragment since this fragment is not available yet) */
1511 if ((y > 0) &&
1512 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1513 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1514 (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1515 vertical_filter(
1516 output_plane + s->all_fragments[i].first_pixel - stride,
1517 -stride, s->bounding_values_array + 127);
1519 #endif
1524 /* this looks like a good place for slice dispatch... */
1525 /* algorithm:
1526 * if (slice == s->macroblock_height - 1)
1527 * dispatch (both last slice & 2nd-to-last slice);
1528 * else if (slice > 0)
1529 * dispatch (slice - 1);
1532 emms_c();
1535 static void apply_loop_filter(Vp3DecodeContext *s)
1537 int plane;
1538 int x, y;
1539 int *bounding_values= s->bounding_values_array+127;
1541 #if 0
1542 int bounding_values_array[256];
1543 int filter_limit;
1545 /* find the right loop limit value */
1546 for (x = 63; x >= 0; x--) {
1547 if (vp31_ac_scale_factor[x] >= s->quality_index)
1548 break;
1550 filter_limit = vp31_filter_limit_values[s->quality_index];
1552 /* set up the bounding values */
1553 memset(bounding_values_array, 0, 256 * sizeof(int));
1554 for (x = 0; x < filter_limit; x++) {
1555 bounding_values[-x - filter_limit] = -filter_limit + x;
1556 bounding_values[-x] = -x;
1557 bounding_values[x] = x;
1558 bounding_values[x + filter_limit] = filter_limit - x;
1560 #endif
1562 for (plane = 0; plane < 3; plane++) {
1563 int width = s->fragment_width >> !!plane;
1564 int height = s->fragment_height >> !!plane;
1565 int fragment = s->fragment_start [plane];
1566 int stride = s->current_frame.linesize[plane];
1567 uint8_t *plane_data = s->current_frame.data [plane];
1568 if (!s->flipped_image) stride = -stride;
1570 for (y = 0; y < height; y++) {
1572 for (x = 0; x < width; x++) {
1573 /* do not perform left edge filter for left columns frags */
1574 if ((x > 0) &&
1575 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1576 s->dsp.vp3_h_loop_filter(
1577 plane_data + s->all_fragments[fragment].first_pixel,
1578 stride, bounding_values);
1581 /* do not perform top edge filter for top row fragments */
1582 if ((y > 0) &&
1583 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1584 s->dsp.vp3_v_loop_filter(
1585 plane_data + s->all_fragments[fragment].first_pixel,
1586 stride, bounding_values);
1589 /* do not perform right edge filter for right column
1590 * fragments or if right fragment neighbor is also coded
1591 * in this frame (it will be filtered in next iteration) */
1592 if ((x < width - 1) &&
1593 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1594 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1595 s->dsp.vp3_h_loop_filter(
1596 plane_data + s->all_fragments[fragment + 1].first_pixel,
1597 stride, bounding_values);
1600 /* do not perform bottom edge filter for bottom row
1601 * fragments or if bottom fragment neighbor is also coded
1602 * in this frame (it will be filtered in the next row) */
1603 if ((y < height - 1) &&
1604 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1605 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1606 s->dsp.vp3_v_loop_filter(
1607 plane_data + s->all_fragments[fragment + width].first_pixel,
1608 stride, bounding_values);
1611 fragment++;
1618 * This function computes the first pixel addresses for each fragment.
1619 * This function needs to be invoked after the first frame is allocated
1620 * so that it has access to the plane strides.
1622 static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1624 #define Y_INITIAL(chroma_shift) s->flipped_image ? 1 : s->fragment_height >> chroma_shift
1625 #define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0
1627 int i, x, y;
1628 const int y_inc = s->flipped_image ? 1 : -1;
1630 /* figure out the first pixel addresses for each of the fragments */
1631 /* Y plane */
1632 i = 0;
1633 for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) {
1634 for (x = 0; x < s->fragment_width; x++) {
1635 s->all_fragments[i++].first_pixel =
1636 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1637 s->golden_frame.linesize[0] +
1638 x * FRAGMENT_PIXELS;
1642 /* U plane */
1643 i = s->fragment_start[1];
1644 for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1645 for (x = 0; x < s->fragment_width / 2; x++) {
1646 s->all_fragments[i++].first_pixel =
1647 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1648 s->golden_frame.linesize[1] +
1649 x * FRAGMENT_PIXELS;
1653 /* V plane */
1654 i = s->fragment_start[2];
1655 for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1656 for (x = 0; x < s->fragment_width / 2; x++) {
1657 s->all_fragments[i++].first_pixel =
1658 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1659 s->golden_frame.linesize[2] +
1660 x * FRAGMENT_PIXELS;
1666 * This is the ffmpeg/libavcodec API init function.
1668 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1670 Vp3DecodeContext *s = avctx->priv_data;
1671 int i, inter, plane;
1672 int c_width;
1673 int c_height;
1674 int y_superblock_count;
1675 int c_superblock_count;
1677 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1678 s->version = 0;
1679 else
1680 s->version = 1;
1682 s->avctx = avctx;
1683 s->width = FFALIGN(avctx->width, 16);
1684 s->height = FFALIGN(avctx->height, 16);
1685 avctx->pix_fmt = PIX_FMT_YUV420P;
1686 avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1687 if(avctx->idct_algo==FF_IDCT_AUTO)
1688 avctx->idct_algo=FF_IDCT_VP3;
1689 dsputil_init(&s->dsp, avctx);
1691 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1693 /* initialize to an impossible value which will force a recalculation
1694 * in the first frame decode */
1695 for (i = 0; i < 3; i++)
1696 s->qps[i] = -1;
1698 s->y_superblock_width = (s->width + 31) / 32;
1699 s->y_superblock_height = (s->height + 31) / 32;
1700 y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1702 /* work out the dimensions for the C planes */
1703 c_width = s->width / 2;
1704 c_height = s->height / 2;
1705 s->c_superblock_width = (c_width + 31) / 32;
1706 s->c_superblock_height = (c_height + 31) / 32;
1707 c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1709 s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1710 s->u_superblock_start = y_superblock_count;
1711 s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1712 s->superblock_coding = av_malloc(s->superblock_count);
1714 s->macroblock_width = (s->width + 15) / 16;
1715 s->macroblock_height = (s->height + 15) / 16;
1716 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1718 s->fragment_width = s->width / FRAGMENT_PIXELS;
1719 s->fragment_height = s->height / FRAGMENT_PIXELS;
1721 /* fragment count covers all 8x8 blocks for all 3 planes */
1722 s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1723 s->fragment_start[1] = s->fragment_width * s->fragment_height;
1724 s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1726 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1727 s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1728 s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1729 s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1730 s->pixel_addresses_initialized = 0;
1732 if (!s->theora_tables)
1734 for (i = 0; i < 64; i++) {
1735 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1736 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1737 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1738 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1739 s->base_matrix[2][i] = vp31_inter_dequant[i];
1740 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1743 for(inter=0; inter<2; inter++){
1744 for(plane=0; plane<3; plane++){
1745 s->qr_count[inter][plane]= 1;
1746 s->qr_size [inter][plane][0]= 63;
1747 s->qr_base [inter][plane][0]=
1748 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1752 /* init VLC tables */
1753 for (i = 0; i < 16; i++) {
1755 /* DC histograms */
1756 init_vlc(&s->dc_vlc[i], 5, 32,
1757 &dc_bias[i][0][1], 4, 2,
1758 &dc_bias[i][0][0], 4, 2, 0);
1760 /* group 1 AC histograms */
1761 init_vlc(&s->ac_vlc_1[i], 5, 32,
1762 &ac_bias_0[i][0][1], 4, 2,
1763 &ac_bias_0[i][0][0], 4, 2, 0);
1765 /* group 2 AC histograms */
1766 init_vlc(&s->ac_vlc_2[i], 5, 32,
1767 &ac_bias_1[i][0][1], 4, 2,
1768 &ac_bias_1[i][0][0], 4, 2, 0);
1770 /* group 3 AC histograms */
1771 init_vlc(&s->ac_vlc_3[i], 5, 32,
1772 &ac_bias_2[i][0][1], 4, 2,
1773 &ac_bias_2[i][0][0], 4, 2, 0);
1775 /* group 4 AC histograms */
1776 init_vlc(&s->ac_vlc_4[i], 5, 32,
1777 &ac_bias_3[i][0][1], 4, 2,
1778 &ac_bias_3[i][0][0], 4, 2, 0);
1780 } else {
1781 for (i = 0; i < 16; i++) {
1783 /* DC histograms */
1784 init_vlc(&s->dc_vlc[i], 5, 32,
1785 &s->huffman_table[i][0][1], 4, 2,
1786 &s->huffman_table[i][0][0], 4, 2, 0);
1788 /* group 1 AC histograms */
1789 init_vlc(&s->ac_vlc_1[i], 5, 32,
1790 &s->huffman_table[i+16][0][1], 4, 2,
1791 &s->huffman_table[i+16][0][0], 4, 2, 0);
1793 /* group 2 AC histograms */
1794 init_vlc(&s->ac_vlc_2[i], 5, 32,
1795 &s->huffman_table[i+16*2][0][1], 4, 2,
1796 &s->huffman_table[i+16*2][0][0], 4, 2, 0);
1798 /* group 3 AC histograms */
1799 init_vlc(&s->ac_vlc_3[i], 5, 32,
1800 &s->huffman_table[i+16*3][0][1], 4, 2,
1801 &s->huffman_table[i+16*3][0][0], 4, 2, 0);
1803 /* group 4 AC histograms */
1804 init_vlc(&s->ac_vlc_4[i], 5, 32,
1805 &s->huffman_table[i+16*4][0][1], 4, 2,
1806 &s->huffman_table[i+16*4][0][0], 4, 2, 0);
1810 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1811 &superblock_run_length_vlc_table[0][1], 4, 2,
1812 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1814 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1815 &fragment_run_length_vlc_table[0][1], 4, 2,
1816 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1818 init_vlc(&s->mode_code_vlc, 3, 8,
1819 &mode_code_vlc_table[0][1], 2, 1,
1820 &mode_code_vlc_table[0][0], 2, 1, 0);
1822 init_vlc(&s->motion_vector_vlc, 6, 63,
1823 &motion_vector_vlc_table[0][1], 2, 1,
1824 &motion_vector_vlc_table[0][0], 2, 1, 0);
1826 /* work out the block mapping tables */
1827 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1828 s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
1829 s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
1830 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1831 init_block_mapping(s);
1833 for (i = 0; i < 3; i++) {
1834 s->current_frame.data[i] = NULL;
1835 s->last_frame.data[i] = NULL;
1836 s->golden_frame.data[i] = NULL;
1839 return 0;
1843 * This is the ffmpeg/libavcodec API frame decode function.
1845 static int vp3_decode_frame(AVCodecContext *avctx,
1846 void *data, int *data_size,
1847 AVPacket *avpkt)
1849 const uint8_t *buf = avpkt->data;
1850 int buf_size = avpkt->size;
1851 Vp3DecodeContext *s = avctx->priv_data;
1852 GetBitContext gb;
1853 static int counter = 0;
1854 int i;
1856 init_get_bits(&gb, buf, buf_size * 8);
1858 if (s->theora && get_bits1(&gb))
1860 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1861 return -1;
1864 s->keyframe = !get_bits1(&gb);
1865 if (!s->theora)
1866 skip_bits(&gb, 1);
1867 for (i = 0; i < 3; i++)
1868 s->last_qps[i] = s->qps[i];
1870 s->nqps=0;
1872 s->qps[s->nqps++]= get_bits(&gb, 6);
1873 } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1874 for (i = s->nqps; i < 3; i++)
1875 s->qps[i] = -1;
1877 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1878 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1879 s->keyframe?"key":"", counter, s->qps[0]);
1880 counter++;
1882 if (s->qps[0] != s->last_qps[0])
1883 init_loop_filter(s);
1885 for (i = 0; i < s->nqps; i++)
1886 // reinit all dequantizers if the first one changed, because
1887 // the DC of the first quantizer must be used for all matrices
1888 if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1889 init_dequantizer(s, i);
1891 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1892 return buf_size;
1894 if (s->keyframe) {
1895 if (!s->theora)
1897 skip_bits(&gb, 4); /* width code */
1898 skip_bits(&gb, 4); /* height code */
1899 if (s->version)
1901 s->version = get_bits(&gb, 5);
1902 if (counter == 1)
1903 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1906 if (s->version || s->theora)
1908 if (get_bits1(&gb))
1909 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1910 skip_bits(&gb, 2); /* reserved? */
1913 if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1914 if (s->golden_frame.data[0])
1915 avctx->release_buffer(avctx, &s->golden_frame);
1916 s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1917 } else {
1918 if (s->golden_frame.data[0])
1919 avctx->release_buffer(avctx, &s->golden_frame);
1920 if (s->last_frame.data[0])
1921 avctx->release_buffer(avctx, &s->last_frame);
1924 s->golden_frame.reference = 3;
1925 if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1926 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1927 return -1;
1930 /* golden frame is also the current frame */
1931 s->current_frame= s->golden_frame;
1933 /* time to figure out pixel addresses? */
1934 if (!s->pixel_addresses_initialized)
1936 vp3_calculate_pixel_addresses(s);
1937 s->pixel_addresses_initialized = 1;
1939 } else {
1940 /* allocate a new current frame */
1941 s->current_frame.reference = 3;
1942 if (!s->pixel_addresses_initialized) {
1943 av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1944 return -1;
1946 if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1947 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1948 return -1;
1952 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1953 s->current_frame.qstride= 0;
1955 init_frame(s, &gb);
1957 if (unpack_superblocks(s, &gb)){
1958 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1959 return -1;
1961 if (unpack_modes(s, &gb)){
1962 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1963 return -1;
1965 if (unpack_vectors(s, &gb)){
1966 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1967 return -1;
1969 if (unpack_block_qpis(s, &gb)){
1970 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1971 return -1;
1973 if (unpack_dct_coeffs(s, &gb)){
1974 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1975 return -1;
1978 reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1979 if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
1980 reverse_dc_prediction(s, s->fragment_start[1],
1981 s->fragment_width / 2, s->fragment_height / 2);
1982 reverse_dc_prediction(s, s->fragment_start[2],
1983 s->fragment_width / 2, s->fragment_height / 2);
1986 for (i = 0; i < s->macroblock_height; i++)
1987 render_slice(s, i);
1989 apply_loop_filter(s);
1991 *data_size=sizeof(AVFrame);
1992 *(AVFrame*)data= s->current_frame;
1994 /* release the last frame, if it is allocated and if it is not the
1995 * golden frame */
1996 if ((s->last_frame.data[0]) &&
1997 (s->last_frame.data[0] != s->golden_frame.data[0]))
1998 avctx->release_buffer(avctx, &s->last_frame);
2000 /* shuffle frames (last = current) */
2001 s->last_frame= s->current_frame;
2002 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2004 return buf_size;
2008 * This is the ffmpeg/libavcodec API module cleanup function.
2010 static av_cold int vp3_decode_end(AVCodecContext *avctx)
2012 Vp3DecodeContext *s = avctx->priv_data;
2013 int i;
2015 av_free(s->superblock_coding);
2016 av_free(s->all_fragments);
2017 av_free(s->coeff_counts);
2018 av_free(s->coeffs);
2019 av_free(s->coded_fragment_list);
2020 av_free(s->superblock_fragments);
2021 av_free(s->superblock_macroblocks);
2022 av_free(s->macroblock_fragments);
2023 av_free(s->macroblock_coding);
2025 for (i = 0; i < 16; i++) {
2026 free_vlc(&s->dc_vlc[i]);
2027 free_vlc(&s->ac_vlc_1[i]);
2028 free_vlc(&s->ac_vlc_2[i]);
2029 free_vlc(&s->ac_vlc_3[i]);
2030 free_vlc(&s->ac_vlc_4[i]);
2033 free_vlc(&s->superblock_run_length_vlc);
2034 free_vlc(&s->fragment_run_length_vlc);
2035 free_vlc(&s->mode_code_vlc);
2036 free_vlc(&s->motion_vector_vlc);
2038 /* release all frames */
2039 if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2040 avctx->release_buffer(avctx, &s->golden_frame);
2041 if (s->last_frame.data[0])
2042 avctx->release_buffer(avctx, &s->last_frame);
2043 /* no need to release the current_frame since it will always be pointing
2044 * to the same frame as either the golden or last frame */
2046 return 0;
2049 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2051 Vp3DecodeContext *s = avctx->priv_data;
2053 if (get_bits1(gb)) {
2054 int token;
2055 if (s->entries >= 32) { /* overflow */
2056 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2057 return -1;
2059 token = get_bits(gb, 5);
2060 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2061 s->huffman_table[s->hti][token][0] = s->hbits;
2062 s->huffman_table[s->hti][token][1] = s->huff_code_size;
2063 s->entries++;
2065 else {
2066 if (s->huff_code_size >= 32) {/* overflow */
2067 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2068 return -1;
2070 s->huff_code_size++;
2071 s->hbits <<= 1;
2072 if (read_huffman_tree(avctx, gb))
2073 return -1;
2074 s->hbits |= 1;
2075 if (read_huffman_tree(avctx, gb))
2076 return -1;
2077 s->hbits >>= 1;
2078 s->huff_code_size--;
2080 return 0;
2083 #if CONFIG_THEORA_DECODER
2084 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2086 Vp3DecodeContext *s = avctx->priv_data;
2087 int visible_width, visible_height;
2089 s->theora = get_bits_long(gb, 24);
2090 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2092 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2093 /* but previous versions have the image flipped relative to vp3 */
2094 if (s->theora < 0x030200)
2096 s->flipped_image = 1;
2097 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2100 visible_width = s->width = get_bits(gb, 16) << 4;
2101 visible_height = s->height = get_bits(gb, 16) << 4;
2103 if(avcodec_check_dimensions(avctx, s->width, s->height)){
2104 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2105 s->width= s->height= 0;
2106 return -1;
2109 if (s->theora >= 0x030400)
2111 skip_bits(gb, 32); /* total number of superblocks in a frame */
2112 // fixme, the next field is 36bits long
2113 skip_bits(gb, 32); /* total number of blocks in a frame */
2114 skip_bits(gb, 4); /* total number of blocks in a frame */
2115 skip_bits(gb, 32); /* total number of macroblocks in a frame */
2118 if (s->theora >= 0x030200) {
2119 visible_width = get_bits_long(gb, 24);
2120 visible_height = get_bits_long(gb, 24);
2122 skip_bits(gb, 8); /* offset x */
2123 skip_bits(gb, 8); /* offset y */
2126 skip_bits(gb, 32); /* fps numerator */
2127 skip_bits(gb, 32); /* fps denumerator */
2128 skip_bits(gb, 24); /* aspect numerator */
2129 skip_bits(gb, 24); /* aspect denumerator */
2131 if (s->theora < 0x030200)
2132 skip_bits(gb, 5); /* keyframe frequency force */
2133 skip_bits(gb, 8); /* colorspace */
2134 if (s->theora >= 0x030400)
2135 skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2136 skip_bits(gb, 24); /* bitrate */
2138 skip_bits(gb, 6); /* quality hint */
2140 if (s->theora >= 0x030200)
2142 skip_bits(gb, 5); /* keyframe frequency force */
2144 if (s->theora < 0x030400)
2145 skip_bits(gb, 5); /* spare bits */
2148 // align_get_bits(gb);
2150 if ( visible_width <= s->width && visible_width > s->width-16
2151 && visible_height <= s->height && visible_height > s->height-16)
2152 avcodec_set_dimensions(avctx, visible_width, visible_height);
2153 else
2154 avcodec_set_dimensions(avctx, s->width, s->height);
2156 return 0;
2159 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2161 Vp3DecodeContext *s = avctx->priv_data;
2162 int i, n, matrices, inter, plane;
2164 if (s->theora >= 0x030200) {
2165 n = get_bits(gb, 3);
2166 /* loop filter limit values table */
2167 for (i = 0; i < 64; i++)
2168 s->filter_limit_values[i] = get_bits(gb, n);
2171 if (s->theora >= 0x030200)
2172 n = get_bits(gb, 4) + 1;
2173 else
2174 n = 16;
2175 /* quality threshold table */
2176 for (i = 0; i < 64; i++)
2177 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2179 if (s->theora >= 0x030200)
2180 n = get_bits(gb, 4) + 1;
2181 else
2182 n = 16;
2183 /* dc scale factor table */
2184 for (i = 0; i < 64; i++)
2185 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2187 if (s->theora >= 0x030200)
2188 matrices = get_bits(gb, 9) + 1;
2189 else
2190 matrices = 3;
2192 if(matrices > 384){
2193 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2194 return -1;
2197 for(n=0; n<matrices; n++){
2198 for (i = 0; i < 64; i++)
2199 s->base_matrix[n][i]= get_bits(gb, 8);
2202 for (inter = 0; inter <= 1; inter++) {
2203 for (plane = 0; plane <= 2; plane++) {
2204 int newqr= 1;
2205 if (inter || plane > 0)
2206 newqr = get_bits1(gb);
2207 if (!newqr) {
2208 int qtj, plj;
2209 if(inter && get_bits1(gb)){
2210 qtj = 0;
2211 plj = plane;
2212 }else{
2213 qtj= (3*inter + plane - 1) / 3;
2214 plj= (plane + 2) % 3;
2216 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2217 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2218 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2219 } else {
2220 int qri= 0;
2221 int qi = 0;
2223 for(;;){
2224 i= get_bits(gb, av_log2(matrices-1)+1);
2225 if(i>= matrices){
2226 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2227 return -1;
2229 s->qr_base[inter][plane][qri]= i;
2230 if(qi >= 63)
2231 break;
2232 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2233 s->qr_size[inter][plane][qri++]= i;
2234 qi += i;
2237 if (qi > 63) {
2238 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2239 return -1;
2241 s->qr_count[inter][plane]= qri;
2246 /* Huffman tables */
2247 for (s->hti = 0; s->hti < 80; s->hti++) {
2248 s->entries = 0;
2249 s->huff_code_size = 1;
2250 if (!get_bits1(gb)) {
2251 s->hbits = 0;
2252 if(read_huffman_tree(avctx, gb))
2253 return -1;
2254 s->hbits = 1;
2255 if(read_huffman_tree(avctx, gb))
2256 return -1;
2260 s->theora_tables = 1;
2262 return 0;
2265 static av_cold int theora_decode_init(AVCodecContext *avctx)
2267 Vp3DecodeContext *s = avctx->priv_data;
2268 GetBitContext gb;
2269 int ptype;
2270 uint8_t *header_start[3];
2271 int header_len[3];
2272 int i;
2274 s->theora = 1;
2276 if (!avctx->extradata_size)
2278 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2279 return -1;
2282 if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2283 42, header_start, header_len) < 0) {
2284 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2285 return -1;
2288 for(i=0;i<3;i++) {
2289 init_get_bits(&gb, header_start[i], header_len[i]);
2291 ptype = get_bits(&gb, 8);
2293 if (!(ptype & 0x80))
2295 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2296 // return -1;
2299 // FIXME: Check for this as well.
2300 skip_bits_long(&gb, 6*8); /* "theora" */
2302 switch(ptype)
2304 case 0x80:
2305 theora_decode_header(avctx, &gb);
2306 break;
2307 case 0x81:
2308 // FIXME: is this needed? it breaks sometimes
2309 // theora_decode_comments(avctx, gb);
2310 break;
2311 case 0x82:
2312 if (theora_decode_tables(avctx, &gb))
2313 return -1;
2314 break;
2315 default:
2316 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2317 break;
2319 if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2320 av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2321 if (s->theora < 0x030200)
2322 break;
2325 vp3_decode_init(avctx);
2326 return 0;
2329 AVCodec theora_decoder = {
2330 "theora",
2331 CODEC_TYPE_VIDEO,
2332 CODEC_ID_THEORA,
2333 sizeof(Vp3DecodeContext),
2334 theora_decode_init,
2335 NULL,
2336 vp3_decode_end,
2337 vp3_decode_frame,
2338 CODEC_CAP_DR1,
2339 NULL,
2340 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2342 #endif
2344 AVCodec vp3_decoder = {
2345 "vp3",
2346 CODEC_TYPE_VIDEO,
2347 CODEC_ID_VP3,
2348 sizeof(Vp3DecodeContext),
2349 vp3_decode_init,
2350 NULL,
2351 vp3_decode_end,
2352 vp3_decode_frame,
2353 CODEC_CAP_DR1,
2354 NULL,
2355 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),