oggenc: return error value from ogg_build_flac_headers()
[FFMpeg-mirror/lagarith.git] / libavcodec / sonic.c
blob00ae83587373502f0064dd70af1546387b28182e
1 /*
2 * Simple free lossless/lossy audio codec
3 * Copyright (c) 2004 Alex Beregszaszi
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "avcodec.h"
22 #include "get_bits.h"
23 #include "golomb.h"
25 /**
26 * @file libavcodec/sonic.c
27 * Simple free lossless/lossy audio codec
28 * Based on Paul Francis Harrison's Bonk (http://www.logarithmic.net/pfh/bonk)
29 * Written and designed by Alex Beregszaszi
31 * TODO:
32 * - CABAC put/get_symbol
33 * - independent quantizer for channels
34 * - >2 channels support
35 * - more decorrelation types
36 * - more tap_quant tests
37 * - selectable intlist writers/readers (bonk-style, golomb, cabac)
40 #define MAX_CHANNELS 2
42 #define MID_SIDE 0
43 #define LEFT_SIDE 1
44 #define RIGHT_SIDE 2
46 typedef struct SonicContext {
47 int lossless, decorrelation;
49 int num_taps, downsampling;
50 double quantization;
52 int channels, samplerate, block_align, frame_size;
54 int *tap_quant;
55 int *int_samples;
56 int *coded_samples[MAX_CHANNELS];
58 // for encoding
59 int *tail;
60 int tail_size;
61 int *window;
62 int window_size;
64 // for decoding
65 int *predictor_k;
66 int *predictor_state[MAX_CHANNELS];
67 } SonicContext;
69 #define LATTICE_SHIFT 10
70 #define SAMPLE_SHIFT 4
71 #define LATTICE_FACTOR (1 << LATTICE_SHIFT)
72 #define SAMPLE_FACTOR (1 << SAMPLE_SHIFT)
74 #define BASE_QUANT 0.6
75 #define RATE_VARIATION 3.0
77 static inline int divide(int a, int b)
79 if (a < 0)
80 return -( (-a + b/2)/b );
81 else
82 return (a + b/2)/b;
85 static inline int shift(int a,int b)
87 return (a+(1<<(b-1))) >> b;
90 static inline int shift_down(int a,int b)
92 return (a>>b)+((a<0)?1:0);
95 #if 1
96 static inline int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
98 int i;
100 for (i = 0; i < entries; i++)
101 set_se_golomb(pb, buf[i]);
103 return 1;
106 static inline int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
108 int i;
110 for (i = 0; i < entries; i++)
111 buf[i] = get_se_golomb(gb);
113 return 1;
116 #else
118 #define ADAPT_LEVEL 8
120 static int bits_to_store(uint64_t x)
122 int res = 0;
124 while(x)
126 res++;
127 x >>= 1;
129 return res;
132 static void write_uint_max(PutBitContext *pb, unsigned int value, unsigned int max)
134 int i, bits;
136 if (!max)
137 return;
139 bits = bits_to_store(max);
141 for (i = 0; i < bits-1; i++)
142 put_bits(pb, 1, value & (1 << i));
144 if ( (value | (1 << (bits-1))) <= max)
145 put_bits(pb, 1, value & (1 << (bits-1)));
148 static unsigned int read_uint_max(GetBitContext *gb, int max)
150 int i, bits, value = 0;
152 if (!max)
153 return 0;
155 bits = bits_to_store(max);
157 for (i = 0; i < bits-1; i++)
158 if (get_bits1(gb))
159 value += 1 << i;
161 if ( (value | (1<<(bits-1))) <= max)
162 if (get_bits1(gb))
163 value += 1 << (bits-1);
165 return value;
168 static int intlist_write(PutBitContext *pb, int *buf, int entries, int base_2_part)
170 int i, j, x = 0, low_bits = 0, max = 0;
171 int step = 256, pos = 0, dominant = 0, any = 0;
172 int *copy, *bits;
174 copy = av_mallocz(4* entries);
175 if (!copy)
176 return -1;
178 if (base_2_part)
180 int energy = 0;
182 for (i = 0; i < entries; i++)
183 energy += abs(buf[i]);
185 low_bits = bits_to_store(energy / (entries * 2));
186 if (low_bits > 15)
187 low_bits = 15;
189 put_bits(pb, 4, low_bits);
192 for (i = 0; i < entries; i++)
194 put_bits(pb, low_bits, abs(buf[i]));
195 copy[i] = abs(buf[i]) >> low_bits;
196 if (copy[i] > max)
197 max = abs(copy[i]);
200 bits = av_mallocz(4* entries*max);
201 if (!bits)
203 // av_free(copy);
204 return -1;
207 for (i = 0; i <= max; i++)
209 for (j = 0; j < entries; j++)
210 if (copy[j] >= i)
211 bits[x++] = copy[j] > i;
214 // store bitstream
215 while (pos < x)
217 int steplet = step >> 8;
219 if (pos + steplet > x)
220 steplet = x - pos;
222 for (i = 0; i < steplet; i++)
223 if (bits[i+pos] != dominant)
224 any = 1;
226 put_bits(pb, 1, any);
228 if (!any)
230 pos += steplet;
231 step += step / ADAPT_LEVEL;
233 else
235 int interloper = 0;
237 while (((pos + interloper) < x) && (bits[pos + interloper] == dominant))
238 interloper++;
240 // note change
241 write_uint_max(pb, interloper, (step >> 8) - 1);
243 pos += interloper + 1;
244 step -= step / ADAPT_LEVEL;
247 if (step < 256)
249 step = 65536 / step;
250 dominant = !dominant;
254 // store signs
255 for (i = 0; i < entries; i++)
256 if (buf[i])
257 put_bits(pb, 1, buf[i] < 0);
259 // av_free(bits);
260 // av_free(copy);
262 return 0;
265 static int intlist_read(GetBitContext *gb, int *buf, int entries, int base_2_part)
267 int i, low_bits = 0, x = 0;
268 int n_zeros = 0, step = 256, dominant = 0;
269 int pos = 0, level = 0;
270 int *bits = av_mallocz(4* entries);
272 if (!bits)
273 return -1;
275 if (base_2_part)
277 low_bits = get_bits(gb, 4);
279 if (low_bits)
280 for (i = 0; i < entries; i++)
281 buf[i] = get_bits(gb, low_bits);
284 // av_log(NULL, AV_LOG_INFO, "entries: %d, low bits: %d\n", entries, low_bits);
286 while (n_zeros < entries)
288 int steplet = step >> 8;
290 if (!get_bits1(gb))
292 for (i = 0; i < steplet; i++)
293 bits[x++] = dominant;
295 if (!dominant)
296 n_zeros += steplet;
298 step += step / ADAPT_LEVEL;
300 else
302 int actual_run = read_uint_max(gb, steplet-1);
304 // av_log(NULL, AV_LOG_INFO, "actual run: %d\n", actual_run);
306 for (i = 0; i < actual_run; i++)
307 bits[x++] = dominant;
309 bits[x++] = !dominant;
311 if (!dominant)
312 n_zeros += actual_run;
313 else
314 n_zeros++;
316 step -= step / ADAPT_LEVEL;
319 if (step < 256)
321 step = 65536 / step;
322 dominant = !dominant;
326 // reconstruct unsigned values
327 n_zeros = 0;
328 for (i = 0; n_zeros < entries; i++)
330 while(1)
332 if (pos >= entries)
334 pos = 0;
335 level += 1 << low_bits;
338 if (buf[pos] >= level)
339 break;
341 pos++;
344 if (bits[i])
345 buf[pos] += 1 << low_bits;
346 else
347 n_zeros++;
349 pos++;
351 // av_free(bits);
353 // read signs
354 for (i = 0; i < entries; i++)
355 if (buf[i] && get_bits1(gb))
356 buf[i] = -buf[i];
358 // av_log(NULL, AV_LOG_INFO, "zeros: %d pos: %d\n", n_zeros, pos);
360 return 0;
362 #endif
364 static void predictor_init_state(int *k, int *state, int order)
366 int i;
368 for (i = order-2; i >= 0; i--)
370 int j, p, x = state[i];
372 for (j = 0, p = i+1; p < order; j++,p++)
374 int tmp = x + shift_down(k[j] * state[p], LATTICE_SHIFT);
375 state[p] += shift_down(k[j]*x, LATTICE_SHIFT);
376 x = tmp;
381 static int predictor_calc_error(int *k, int *state, int order, int error)
383 int i, x = error - shift_down(k[order-1] * state[order-1], LATTICE_SHIFT);
385 #if 1
386 int *k_ptr = &(k[order-2]),
387 *state_ptr = &(state[order-2]);
388 for (i = order-2; i >= 0; i--, k_ptr--, state_ptr--)
390 int k_value = *k_ptr, state_value = *state_ptr;
391 x -= shift_down(k_value * state_value, LATTICE_SHIFT);
392 state_ptr[1] = state_value + shift_down(k_value * x, LATTICE_SHIFT);
394 #else
395 for (i = order-2; i >= 0; i--)
397 x -= shift_down(k[i] * state[i], LATTICE_SHIFT);
398 state[i+1] = state[i] + shift_down(k[i] * x, LATTICE_SHIFT);
400 #endif
402 // don't drift too far, to avoid overflows
403 if (x > (SAMPLE_FACTOR<<16)) x = (SAMPLE_FACTOR<<16);
404 if (x < -(SAMPLE_FACTOR<<16)) x = -(SAMPLE_FACTOR<<16);
406 state[0] = x;
408 return x;
411 #if CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER
412 // Heavily modified Levinson-Durbin algorithm which
413 // copes better with quantization, and calculates the
414 // actual whitened result as it goes.
416 static void modified_levinson_durbin(int *window, int window_entries,
417 int *out, int out_entries, int channels, int *tap_quant)
419 int i;
420 int *state = av_mallocz(4* window_entries);
422 memcpy(state, window, 4* window_entries);
424 for (i = 0; i < out_entries; i++)
426 int step = (i+1)*channels, k, j;
427 double xx = 0.0, xy = 0.0;
428 #if 1
429 int *x_ptr = &(window[step]), *state_ptr = &(state[0]);
430 j = window_entries - step;
431 for (;j>=0;j--,x_ptr++,state_ptr++)
433 double x_value = *x_ptr, state_value = *state_ptr;
434 xx += state_value*state_value;
435 xy += x_value*state_value;
437 #else
438 for (j = 0; j <= (window_entries - step); j++);
440 double stepval = window[step+j], stateval = window[j];
441 // xx += (double)window[j]*(double)window[j];
442 // xy += (double)window[step+j]*(double)window[j];
443 xx += stateval*stateval;
444 xy += stepval*stateval;
446 #endif
447 if (xx == 0.0)
448 k = 0;
449 else
450 k = (int)(floor(-xy/xx * (double)LATTICE_FACTOR / (double)(tap_quant[i]) + 0.5));
452 if (k > (LATTICE_FACTOR/tap_quant[i]))
453 k = LATTICE_FACTOR/tap_quant[i];
454 if (-k > (LATTICE_FACTOR/tap_quant[i]))
455 k = -(LATTICE_FACTOR/tap_quant[i]);
457 out[i] = k;
458 k *= tap_quant[i];
460 #if 1
461 x_ptr = &(window[step]);
462 state_ptr = &(state[0]);
463 j = window_entries - step;
464 for (;j>=0;j--,x_ptr++,state_ptr++)
466 int x_value = *x_ptr, state_value = *state_ptr;
467 *x_ptr = x_value + shift_down(k*state_value,LATTICE_SHIFT);
468 *state_ptr = state_value + shift_down(k*x_value, LATTICE_SHIFT);
470 #else
471 for (j=0; j <= (window_entries - step); j++)
473 int stepval = window[step+j], stateval=state[j];
474 window[step+j] += shift_down(k * stateval, LATTICE_SHIFT);
475 state[j] += shift_down(k * stepval, LATTICE_SHIFT);
477 #endif
480 av_free(state);
482 #endif /* CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER */
484 static const int samplerate_table[] =
485 { 44100, 22050, 11025, 96000, 48000, 32000, 24000, 16000, 8000 };
487 #if CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER
488 static inline int code_samplerate(int samplerate)
490 switch (samplerate)
492 case 44100: return 0;
493 case 22050: return 1;
494 case 11025: return 2;
495 case 96000: return 3;
496 case 48000: return 4;
497 case 32000: return 5;
498 case 24000: return 6;
499 case 16000: return 7;
500 case 8000: return 8;
502 return -1;
505 static av_cold int sonic_encode_init(AVCodecContext *avctx)
507 SonicContext *s = avctx->priv_data;
508 PutBitContext pb;
509 int i, version = 0;
511 if (avctx->channels > MAX_CHANNELS)
513 av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
514 return -1; /* only stereo or mono for now */
517 if (avctx->channels == 2)
518 s->decorrelation = MID_SIDE;
520 if (avctx->codec->id == CODEC_ID_SONIC_LS)
522 s->lossless = 1;
523 s->num_taps = 32;
524 s->downsampling = 1;
525 s->quantization = 0.0;
527 else
529 s->num_taps = 128;
530 s->downsampling = 2;
531 s->quantization = 1.0;
534 // max tap 2048
535 if ((s->num_taps < 32) || (s->num_taps > 1024) ||
536 ((s->num_taps>>5)<<5 != s->num_taps))
538 av_log(avctx, AV_LOG_ERROR, "Invalid number of taps\n");
539 return -1;
542 // generate taps
543 s->tap_quant = av_mallocz(4* s->num_taps);
544 for (i = 0; i < s->num_taps; i++)
545 s->tap_quant[i] = (int)(sqrt(i+1));
547 s->channels = avctx->channels;
548 s->samplerate = avctx->sample_rate;
550 s->block_align = (int)(2048.0*s->samplerate/44100)/s->downsampling;
551 s->frame_size = s->channels*s->block_align*s->downsampling;
553 s->tail = av_mallocz(4* s->num_taps*s->channels);
554 if (!s->tail)
555 return -1;
556 s->tail_size = s->num_taps*s->channels;
558 s->predictor_k = av_mallocz(4 * s->num_taps);
559 if (!s->predictor_k)
560 return -1;
562 for (i = 0; i < s->channels; i++)
564 s->coded_samples[i] = av_mallocz(4* s->block_align);
565 if (!s->coded_samples[i])
566 return -1;
569 s->int_samples = av_mallocz(4* s->frame_size);
571 s->window_size = ((2*s->tail_size)+s->frame_size);
572 s->window = av_mallocz(4* s->window_size);
573 if (!s->window)
574 return -1;
576 avctx->extradata = av_mallocz(16);
577 if (!avctx->extradata)
578 return -1;
579 init_put_bits(&pb, avctx->extradata, 16*8);
581 put_bits(&pb, 2, version); // version
582 if (version == 1)
584 put_bits(&pb, 2, s->channels);
585 put_bits(&pb, 4, code_samplerate(s->samplerate));
587 put_bits(&pb, 1, s->lossless);
588 if (!s->lossless)
589 put_bits(&pb, 3, SAMPLE_SHIFT); // XXX FIXME: sample precision
590 put_bits(&pb, 2, s->decorrelation);
591 put_bits(&pb, 2, s->downsampling);
592 put_bits(&pb, 5, (s->num_taps >> 5)-1); // 32..1024
593 put_bits(&pb, 1, 0); // XXX FIXME: no custom tap quant table
595 flush_put_bits(&pb);
596 avctx->extradata_size = put_bits_count(&pb)/8;
598 av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
599 version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
601 avctx->coded_frame = avcodec_alloc_frame();
602 if (!avctx->coded_frame)
603 return AVERROR(ENOMEM);
604 avctx->coded_frame->key_frame = 1;
605 avctx->frame_size = s->block_align*s->downsampling;
607 return 0;
610 static av_cold int sonic_encode_close(AVCodecContext *avctx)
612 SonicContext *s = avctx->priv_data;
613 int i;
615 av_freep(&avctx->coded_frame);
617 for (i = 0; i < s->channels; i++)
618 av_free(s->coded_samples[i]);
620 av_free(s->predictor_k);
621 av_free(s->tail);
622 av_free(s->tap_quant);
623 av_free(s->window);
624 av_free(s->int_samples);
626 return 0;
629 static int sonic_encode_frame(AVCodecContext *avctx,
630 uint8_t *buf, int buf_size, void *data)
632 SonicContext *s = avctx->priv_data;
633 PutBitContext pb;
634 int i, j, ch, quant = 0, x = 0;
635 short *samples = data;
637 init_put_bits(&pb, buf, buf_size*8);
639 // short -> internal
640 for (i = 0; i < s->frame_size; i++)
641 s->int_samples[i] = samples[i];
643 if (!s->lossless)
644 for (i = 0; i < s->frame_size; i++)
645 s->int_samples[i] = s->int_samples[i] << SAMPLE_SHIFT;
647 switch(s->decorrelation)
649 case MID_SIDE:
650 for (i = 0; i < s->frame_size; i += s->channels)
652 s->int_samples[i] += s->int_samples[i+1];
653 s->int_samples[i+1] -= shift(s->int_samples[i], 1);
655 break;
656 case LEFT_SIDE:
657 for (i = 0; i < s->frame_size; i += s->channels)
658 s->int_samples[i+1] -= s->int_samples[i];
659 break;
660 case RIGHT_SIDE:
661 for (i = 0; i < s->frame_size; i += s->channels)
662 s->int_samples[i] -= s->int_samples[i+1];
663 break;
666 memset(s->window, 0, 4* s->window_size);
668 for (i = 0; i < s->tail_size; i++)
669 s->window[x++] = s->tail[i];
671 for (i = 0; i < s->frame_size; i++)
672 s->window[x++] = s->int_samples[i];
674 for (i = 0; i < s->tail_size; i++)
675 s->window[x++] = 0;
677 for (i = 0; i < s->tail_size; i++)
678 s->tail[i] = s->int_samples[s->frame_size - s->tail_size + i];
680 // generate taps
681 modified_levinson_durbin(s->window, s->window_size,
682 s->predictor_k, s->num_taps, s->channels, s->tap_quant);
683 if (intlist_write(&pb, s->predictor_k, s->num_taps, 0) < 0)
684 return -1;
686 for (ch = 0; ch < s->channels; ch++)
688 x = s->tail_size+ch;
689 for (i = 0; i < s->block_align; i++)
691 int sum = 0;
692 for (j = 0; j < s->downsampling; j++, x += s->channels)
693 sum += s->window[x];
694 s->coded_samples[ch][i] = sum;
698 // simple rate control code
699 if (!s->lossless)
701 double energy1 = 0.0, energy2 = 0.0;
702 for (ch = 0; ch < s->channels; ch++)
704 for (i = 0; i < s->block_align; i++)
706 double sample = s->coded_samples[ch][i];
707 energy2 += sample*sample;
708 energy1 += fabs(sample);
712 energy2 = sqrt(energy2/(s->channels*s->block_align));
713 energy1 = sqrt(2.0)*energy1/(s->channels*s->block_align);
715 // increase bitrate when samples are like a gaussian distribution
716 // reduce bitrate when samples are like a two-tailed exponential distribution
718 if (energy2 > energy1)
719 energy2 += (energy2-energy1)*RATE_VARIATION;
721 quant = (int)(BASE_QUANT*s->quantization*energy2/SAMPLE_FACTOR);
722 // av_log(avctx, AV_LOG_DEBUG, "quant: %d energy: %f / %f\n", quant, energy1, energy2);
724 if (quant < 1)
725 quant = 1;
726 if (quant > 65535)
727 quant = 65535;
729 set_ue_golomb(&pb, quant);
731 quant *= SAMPLE_FACTOR;
734 // write out coded samples
735 for (ch = 0; ch < s->channels; ch++)
737 if (!s->lossless)
738 for (i = 0; i < s->block_align; i++)
739 s->coded_samples[ch][i] = divide(s->coded_samples[ch][i], quant);
741 if (intlist_write(&pb, s->coded_samples[ch], s->block_align, 1) < 0)
742 return -1;
745 // av_log(avctx, AV_LOG_DEBUG, "used bytes: %d\n", (put_bits_count(&pb)+7)/8);
747 flush_put_bits(&pb);
748 return (put_bits_count(&pb)+7)/8;
750 #endif /* CONFIG_SONIC_ENCODER || CONFIG_SONIC_LS_ENCODER */
752 #if CONFIG_SONIC_DECODER
753 static av_cold int sonic_decode_init(AVCodecContext *avctx)
755 SonicContext *s = avctx->priv_data;
756 GetBitContext gb;
757 int i, version;
759 s->channels = avctx->channels;
760 s->samplerate = avctx->sample_rate;
762 if (!avctx->extradata)
764 av_log(avctx, AV_LOG_ERROR, "No mandatory headers present\n");
765 return -1;
768 init_get_bits(&gb, avctx->extradata, avctx->extradata_size);
770 version = get_bits(&gb, 2);
771 if (version > 1)
773 av_log(avctx, AV_LOG_ERROR, "Unsupported Sonic version, please report\n");
774 return -1;
777 if (version == 1)
779 s->channels = get_bits(&gb, 2);
780 s->samplerate = samplerate_table[get_bits(&gb, 4)];
781 av_log(avctx, AV_LOG_INFO, "Sonicv2 chans: %d samprate: %d\n",
782 s->channels, s->samplerate);
785 if (s->channels > MAX_CHANNELS)
787 av_log(avctx, AV_LOG_ERROR, "Only mono and stereo streams are supported by now\n");
788 return -1;
791 s->lossless = get_bits1(&gb);
792 if (!s->lossless)
793 skip_bits(&gb, 3); // XXX FIXME
794 s->decorrelation = get_bits(&gb, 2);
796 s->downsampling = get_bits(&gb, 2);
797 s->num_taps = (get_bits(&gb, 5)+1)<<5;
798 if (get_bits1(&gb)) // XXX FIXME
799 av_log(avctx, AV_LOG_INFO, "Custom quant table\n");
801 s->block_align = (int)(2048.0*(s->samplerate/44100))/s->downsampling;
802 s->frame_size = s->channels*s->block_align*s->downsampling;
803 // avctx->frame_size = s->block_align;
805 av_log(avctx, AV_LOG_INFO, "Sonic: ver: %d ls: %d dr: %d taps: %d block: %d frame: %d downsamp: %d\n",
806 version, s->lossless, s->decorrelation, s->num_taps, s->block_align, s->frame_size, s->downsampling);
808 // generate taps
809 s->tap_quant = av_mallocz(4* s->num_taps);
810 for (i = 0; i < s->num_taps; i++)
811 s->tap_quant[i] = (int)(sqrt(i+1));
813 s->predictor_k = av_mallocz(4* s->num_taps);
815 for (i = 0; i < s->channels; i++)
817 s->predictor_state[i] = av_mallocz(4* s->num_taps);
818 if (!s->predictor_state[i])
819 return -1;
822 for (i = 0; i < s->channels; i++)
824 s->coded_samples[i] = av_mallocz(4* s->block_align);
825 if (!s->coded_samples[i])
826 return -1;
828 s->int_samples = av_mallocz(4* s->frame_size);
830 avctx->sample_fmt = SAMPLE_FMT_S16;
831 return 0;
834 static av_cold int sonic_decode_close(AVCodecContext *avctx)
836 SonicContext *s = avctx->priv_data;
837 int i;
839 av_free(s->int_samples);
840 av_free(s->tap_quant);
841 av_free(s->predictor_k);
843 for (i = 0; i < s->channels; i++)
845 av_free(s->predictor_state[i]);
846 av_free(s->coded_samples[i]);
849 return 0;
852 static int sonic_decode_frame(AVCodecContext *avctx,
853 void *data, int *data_size,
854 AVPacket *avpkt)
856 const uint8_t *buf = avpkt->data;
857 int buf_size = avpkt->size;
858 SonicContext *s = avctx->priv_data;
859 GetBitContext gb;
860 int i, quant, ch, j;
861 short *samples = data;
863 if (buf_size == 0) return 0;
865 // av_log(NULL, AV_LOG_INFO, "buf_size: %d\n", buf_size);
867 init_get_bits(&gb, buf, buf_size*8);
869 intlist_read(&gb, s->predictor_k, s->num_taps, 0);
871 // dequantize
872 for (i = 0; i < s->num_taps; i++)
873 s->predictor_k[i] *= s->tap_quant[i];
875 if (s->lossless)
876 quant = 1;
877 else
878 quant = get_ue_golomb(&gb) * SAMPLE_FACTOR;
880 // av_log(NULL, AV_LOG_INFO, "quant: %d\n", quant);
882 for (ch = 0; ch < s->channels; ch++)
884 int x = ch;
886 predictor_init_state(s->predictor_k, s->predictor_state[ch], s->num_taps);
888 intlist_read(&gb, s->coded_samples[ch], s->block_align, 1);
890 for (i = 0; i < s->block_align; i++)
892 for (j = 0; j < s->downsampling - 1; j++)
894 s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, 0);
895 x += s->channels;
898 s->int_samples[x] = predictor_calc_error(s->predictor_k, s->predictor_state[ch], s->num_taps, s->coded_samples[ch][i] * quant);
899 x += s->channels;
902 for (i = 0; i < s->num_taps; i++)
903 s->predictor_state[ch][i] = s->int_samples[s->frame_size - s->channels + ch - i*s->channels];
906 switch(s->decorrelation)
908 case MID_SIDE:
909 for (i = 0; i < s->frame_size; i += s->channels)
911 s->int_samples[i+1] += shift(s->int_samples[i], 1);
912 s->int_samples[i] -= s->int_samples[i+1];
914 break;
915 case LEFT_SIDE:
916 for (i = 0; i < s->frame_size; i += s->channels)
917 s->int_samples[i+1] += s->int_samples[i];
918 break;
919 case RIGHT_SIDE:
920 for (i = 0; i < s->frame_size; i += s->channels)
921 s->int_samples[i] += s->int_samples[i+1];
922 break;
925 if (!s->lossless)
926 for (i = 0; i < s->frame_size; i++)
927 s->int_samples[i] = shift(s->int_samples[i], SAMPLE_SHIFT);
929 // internal -> short
930 for (i = 0; i < s->frame_size; i++)
931 samples[i] = av_clip_int16(s->int_samples[i]);
933 align_get_bits(&gb);
935 *data_size = s->frame_size * 2;
937 return (get_bits_count(&gb)+7)/8;
939 #endif /* CONFIG_SONIC_DECODER */
941 #if CONFIG_SONIC_ENCODER
942 AVCodec sonic_encoder = {
943 "sonic",
944 CODEC_TYPE_AUDIO,
945 CODEC_ID_SONIC,
946 sizeof(SonicContext),
947 sonic_encode_init,
948 sonic_encode_frame,
949 sonic_encode_close,
950 NULL,
951 .long_name = NULL_IF_CONFIG_SMALL("Sonic"),
953 #endif
955 #if CONFIG_SONIC_LS_ENCODER
956 AVCodec sonic_ls_encoder = {
957 "sonicls",
958 CODEC_TYPE_AUDIO,
959 CODEC_ID_SONIC_LS,
960 sizeof(SonicContext),
961 sonic_encode_init,
962 sonic_encode_frame,
963 sonic_encode_close,
964 NULL,
965 .long_name = NULL_IF_CONFIG_SMALL("Sonic lossless"),
967 #endif
969 #if CONFIG_SONIC_DECODER
970 AVCodec sonic_decoder = {
971 "sonic",
972 CODEC_TYPE_AUDIO,
973 CODEC_ID_SONIC,
974 sizeof(SonicContext),
975 sonic_decode_init,
976 NULL,
977 sonic_decode_close,
978 sonic_decode_frame,
979 .long_name = NULL_IF_CONFIG_SMALL("Sonic"),
981 #endif