Simplify stereo rematrixing by only using one temporary variable. It is also
[FFMpeg-mirror/lagarith.git] / libavcodec / ac3dec.c
blob91b82cfa7dacd0e0d72208ed48f3c73fe7aaaf69
1 /*
2 * AC-3 Audio Decoder
3 * This code was developed as part of Google Summer of Code 2006.
4 * E-AC-3 support was added as part of Google Summer of Code 2007.
6 * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
7 * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
8 * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
10 * This file is part of FFmpeg.
12 * FFmpeg is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
17 * FFmpeg is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with FFmpeg; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <stdio.h>
28 #include <stddef.h>
29 #include <math.h>
30 #include <string.h>
32 #include "libavutil/crc.h"
33 #include "internal.h"
34 #include "aac_ac3_parser.h"
35 #include "ac3_parser.h"
36 #include "ac3dec.h"
37 #include "ac3dec_data.h"
39 /** Large enough for maximum possible frame size when the specification limit is ignored */
40 #define AC3_FRAME_BUFFER_SIZE 32768
42 /**
43 * table for ungrouping 3 values in 7 bits.
44 * used for exponents and bap=2 mantissas
46 static uint8_t ungroup_3_in_7_bits_tab[128][3];
49 /** tables for ungrouping mantissas */
50 static int b1_mantissas[32][3];
51 static int b2_mantissas[128][3];
52 static int b3_mantissas[8];
53 static int b4_mantissas[128][2];
54 static int b5_mantissas[16];
56 /**
57 * Quantization table: levels for symmetric. bits for asymmetric.
58 * reference: Table 7.18 Mapping of bap to Quantizer
60 static const uint8_t quantization_tab[16] = {
61 0, 3, 5, 7, 11, 15,
62 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
65 /** dynamic range table. converts codes to scale factors. */
66 static float dynamic_range_tab[256];
68 /** Adjustments in dB gain */
69 #define LEVEL_PLUS_3DB 1.4142135623730950
70 #define LEVEL_PLUS_1POINT5DB 1.1892071150027209
71 #define LEVEL_MINUS_1POINT5DB 0.8408964152537145
72 #define LEVEL_MINUS_3DB 0.7071067811865476
73 #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
74 #define LEVEL_MINUS_6DB 0.5000000000000000
75 #define LEVEL_MINUS_9DB 0.3535533905932738
76 #define LEVEL_ZERO 0.0000000000000000
77 #define LEVEL_ONE 1.0000000000000000
79 static const float gain_levels[9] = {
80 LEVEL_PLUS_3DB,
81 LEVEL_PLUS_1POINT5DB,
82 LEVEL_ONE,
83 LEVEL_MINUS_1POINT5DB,
84 LEVEL_MINUS_3DB,
85 LEVEL_MINUS_4POINT5DB,
86 LEVEL_MINUS_6DB,
87 LEVEL_ZERO,
88 LEVEL_MINUS_9DB
91 /**
92 * Table for center mix levels
93 * reference: Section 5.4.2.4 cmixlev
95 static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
97 /**
98 * Table for surround mix levels
99 * reference: Section 5.4.2.5 surmixlev
101 static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
104 * Table for default stereo downmixing coefficients
105 * reference: Section 7.8.2 Downmixing Into Two Channels
107 static const uint8_t ac3_default_coeffs[8][5][2] = {
108 { { 2, 7 }, { 7, 2 }, },
109 { { 4, 4 }, },
110 { { 2, 7 }, { 7, 2 }, },
111 { { 2, 7 }, { 5, 5 }, { 7, 2 }, },
112 { { 2, 7 }, { 7, 2 }, { 6, 6 }, },
113 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
114 { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
115 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
119 * Symmetrical Dequantization
120 * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
121 * Tables 7.19 to 7.23
123 static inline int
124 symmetric_dequant(int code, int levels)
126 return ((code - (levels >> 1)) << 24) / levels;
130 * Initialize tables at runtime.
132 static av_cold void ac3_tables_init(void)
134 int i;
136 /* generate table for ungrouping 3 values in 7 bits
137 reference: Section 7.1.3 Exponent Decoding */
138 for(i=0; i<128; i++) {
139 ungroup_3_in_7_bits_tab[i][0] = i / 25;
140 ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
141 ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
144 /* generate grouped mantissa tables
145 reference: Section 7.3.5 Ungrouping of Mantissas */
146 for(i=0; i<32; i++) {
147 /* bap=1 mantissas */
148 b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
149 b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
150 b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
152 for(i=0; i<128; i++) {
153 /* bap=2 mantissas */
154 b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
155 b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
156 b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
158 /* bap=4 mantissas */
159 b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
160 b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
162 /* generate ungrouped mantissa tables
163 reference: Tables 7.21 and 7.23 */
164 for(i=0; i<7; i++) {
165 /* bap=3 mantissas */
166 b3_mantissas[i] = symmetric_dequant(i, 7);
168 for(i=0; i<15; i++) {
169 /* bap=5 mantissas */
170 b5_mantissas[i] = symmetric_dequant(i, 15);
173 /* generate dynamic range table
174 reference: Section 7.7.1 Dynamic Range Control */
175 for(i=0; i<256; i++) {
176 int v = (i >> 5) - ((i >> 7) << 3) - 5;
177 dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
183 * AVCodec initialization
185 static av_cold int ac3_decode_init(AVCodecContext *avctx)
187 AC3DecodeContext *s = avctx->priv_data;
188 s->avctx = avctx;
190 ac3_common_init();
191 ac3_tables_init();
192 ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
193 ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
194 ff_kbd_window_init(s->window, 5.0, 256);
195 dsputil_init(&s->dsp, avctx);
196 av_lfg_init(&s->dith_state, 0);
198 /* set bias values for float to int16 conversion */
199 if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
200 s->add_bias = 385.0f;
201 s->mul_bias = 1.0f;
202 } else {
203 s->add_bias = 0.0f;
204 s->mul_bias = 32767.0f;
207 /* allow downmixing to stereo or mono */
208 if (avctx->channels > 0 && avctx->request_channels > 0 &&
209 avctx->request_channels < avctx->channels &&
210 avctx->request_channels <= 2) {
211 avctx->channels = avctx->request_channels;
213 s->downmixed = 1;
215 /* allocate context input buffer */
216 if (avctx->error_recognition >= FF_ER_CAREFUL) {
217 s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
218 if (!s->input_buffer)
219 return AVERROR_NOMEM;
222 avctx->sample_fmt = SAMPLE_FMT_S16;
223 return 0;
227 * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
228 * GetBitContext within AC3DecodeContext must point to
229 * the start of the synchronized AC-3 bitstream.
231 static int ac3_parse_header(AC3DecodeContext *s)
233 GetBitContext *gbc = &s->gbc;
234 int i;
236 /* read the rest of the bsi. read twice for dual mono mode. */
237 i = !(s->channel_mode);
238 do {
239 skip_bits(gbc, 5); // skip dialog normalization
240 if (get_bits1(gbc))
241 skip_bits(gbc, 8); //skip compression
242 if (get_bits1(gbc))
243 skip_bits(gbc, 8); //skip language code
244 if (get_bits1(gbc))
245 skip_bits(gbc, 7); //skip audio production information
246 } while (i--);
248 skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
250 /* skip the timecodes (or extra bitstream information for Alternate Syntax)
251 TODO: read & use the xbsi1 downmix levels */
252 if (get_bits1(gbc))
253 skip_bits(gbc, 14); //skip timecode1 / xbsi1
254 if (get_bits1(gbc))
255 skip_bits(gbc, 14); //skip timecode2 / xbsi2
257 /* skip additional bitstream info */
258 if (get_bits1(gbc)) {
259 i = get_bits(gbc, 6);
260 do {
261 skip_bits(gbc, 8);
262 } while(i--);
265 return 0;
269 * Common function to parse AC-3 or E-AC-3 frame header
271 static int parse_frame_header(AC3DecodeContext *s)
273 AC3HeaderInfo hdr;
274 int err;
276 err = ff_ac3_parse_header(&s->gbc, &hdr);
277 if(err)
278 return err;
280 /* get decoding parameters from header info */
281 s->bit_alloc_params.sr_code = hdr.sr_code;
282 s->channel_mode = hdr.channel_mode;
283 s->channel_layout = hdr.channel_layout;
284 s->lfe_on = hdr.lfe_on;
285 s->bit_alloc_params.sr_shift = hdr.sr_shift;
286 s->sample_rate = hdr.sample_rate;
287 s->bit_rate = hdr.bit_rate;
288 s->channels = hdr.channels;
289 s->fbw_channels = s->channels - s->lfe_on;
290 s->lfe_ch = s->fbw_channels + 1;
291 s->frame_size = hdr.frame_size;
292 s->center_mix_level = hdr.center_mix_level;
293 s->surround_mix_level = hdr.surround_mix_level;
294 s->num_blocks = hdr.num_blocks;
295 s->frame_type = hdr.frame_type;
296 s->substreamid = hdr.substreamid;
298 if(s->lfe_on) {
299 s->start_freq[s->lfe_ch] = 0;
300 s->end_freq[s->lfe_ch] = 7;
301 s->num_exp_groups[s->lfe_ch] = 2;
302 s->channel_in_cpl[s->lfe_ch] = 0;
305 if (hdr.bitstream_id <= 10) {
306 s->eac3 = 0;
307 s->snr_offset_strategy = 2;
308 s->block_switch_syntax = 1;
309 s->dither_flag_syntax = 1;
310 s->bit_allocation_syntax = 1;
311 s->fast_gain_syntax = 0;
312 s->first_cpl_leak = 0;
313 s->dba_syntax = 1;
314 s->skip_syntax = 1;
315 memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
316 return ac3_parse_header(s);
317 } else if (CONFIG_EAC3_DECODER) {
318 s->eac3 = 1;
319 return ff_eac3_parse_header(s);
320 } else {
321 av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
322 return -1;
327 * Set stereo downmixing coefficients based on frame header info.
328 * reference: Section 7.8.2 Downmixing Into Two Channels
330 static void set_downmix_coeffs(AC3DecodeContext *s)
332 int i;
333 float cmix = gain_levels[center_levels[s->center_mix_level]];
334 float smix = gain_levels[surround_levels[s->surround_mix_level]];
335 float norm0, norm1;
337 for(i=0; i<s->fbw_channels; i++) {
338 s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
339 s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
341 if(s->channel_mode > 1 && s->channel_mode & 1) {
342 s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
344 if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
345 int nf = s->channel_mode - 2;
346 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
348 if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
349 int nf = s->channel_mode - 4;
350 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
353 /* renormalize */
354 norm0 = norm1 = 0.0;
355 for(i=0; i<s->fbw_channels; i++) {
356 norm0 += s->downmix_coeffs[i][0];
357 norm1 += s->downmix_coeffs[i][1];
359 norm0 = 1.0f / norm0;
360 norm1 = 1.0f / norm1;
361 for(i=0; i<s->fbw_channels; i++) {
362 s->downmix_coeffs[i][0] *= norm0;
363 s->downmix_coeffs[i][1] *= norm1;
366 if(s->output_mode == AC3_CHMODE_MONO) {
367 for(i=0; i<s->fbw_channels; i++)
368 s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
373 * Decode the grouped exponents according to exponent strategy.
374 * reference: Section 7.1.3 Exponent Decoding
376 static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
377 uint8_t absexp, int8_t *dexps)
379 int i, j, grp, group_size;
380 int dexp[256];
381 int expacc, prevexp;
383 /* unpack groups */
384 group_size = exp_strategy + (exp_strategy == EXP_D45);
385 for(grp=0,i=0; grp<ngrps; grp++) {
386 expacc = get_bits(gbc, 7);
387 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
388 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
389 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
392 /* convert to absolute exps and expand groups */
393 prevexp = absexp;
394 for(i=0,j=0; i<ngrps*3; i++) {
395 prevexp += dexp[i] - 2;
396 if (prevexp > 24U)
397 return -1;
398 switch (group_size) {
399 case 4: dexps[j++] = prevexp;
400 dexps[j++] = prevexp;
401 case 2: dexps[j++] = prevexp;
402 case 1: dexps[j++] = prevexp;
405 return 0;
409 * Generate transform coefficients for each coupled channel in the coupling
410 * range using the coupling coefficients and coupling coordinates.
411 * reference: Section 7.4.3 Coupling Coordinate Format
413 static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
415 int bin, band, ch;
417 bin = s->start_freq[CPL_CH];
418 for (band = 0; band < s->num_cpl_bands; band++) {
419 int band_start = bin;
420 int band_end = bin + s->cpl_band_sizes[band];
421 for (ch = 1; ch <= s->fbw_channels; ch++) {
422 if (s->channel_in_cpl[ch]) {
423 int64_t cpl_coord = s->cpl_coords[ch][band];
424 for (bin = band_start; bin < band_end; bin++) {
425 s->fixed_coeffs[ch][bin] = ((int64_t)s->fixed_coeffs[CPL_CH][bin] *
426 cpl_coord) >> 23;
428 if (ch == 2 && s->phase_flags[band]) {
429 for (bin = band_start; bin < band_end; bin++)
430 s->fixed_coeffs[2][bin] = -s->fixed_coeffs[2][bin];
434 bin = band_end;
439 * Grouped mantissas for 3-level 5-level and 11-level quantization
441 typedef struct {
442 int b1_mant[2];
443 int b2_mant[2];
444 int b4_mant;
445 int b1;
446 int b2;
447 int b4;
448 } mant_groups;
451 * Decode the transform coefficients for a particular channel
452 * reference: Section 7.3 Quantization and Decoding of Mantissas
454 static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
456 int start_freq = s->start_freq[ch_index];
457 int end_freq = s->end_freq[ch_index];
458 uint8_t *baps = s->bap[ch_index];
459 int8_t *exps = s->dexps[ch_index];
460 int *coeffs = s->fixed_coeffs[ch_index];
461 int dither = (ch_index == CPL_CH) || s->dither_flag[ch_index];
462 GetBitContext *gbc = &s->gbc;
463 int freq;
465 for(freq = start_freq; freq < end_freq; freq++){
466 int bap = baps[freq];
467 int mantissa;
468 switch(bap){
469 case 0:
470 if (dither)
471 mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
472 else
473 mantissa = 0;
474 break;
475 case 1:
476 if(m->b1){
477 m->b1--;
478 mantissa = m->b1_mant[m->b1];
480 else{
481 int bits = get_bits(gbc, 5);
482 mantissa = b1_mantissas[bits][0];
483 m->b1_mant[1] = b1_mantissas[bits][1];
484 m->b1_mant[0] = b1_mantissas[bits][2];
485 m->b1 = 2;
487 break;
488 case 2:
489 if(m->b2){
490 m->b2--;
491 mantissa = m->b2_mant[m->b2];
493 else{
494 int bits = get_bits(gbc, 7);
495 mantissa = b2_mantissas[bits][0];
496 m->b2_mant[1] = b2_mantissas[bits][1];
497 m->b2_mant[0] = b2_mantissas[bits][2];
498 m->b2 = 2;
500 break;
501 case 3:
502 mantissa = b3_mantissas[get_bits(gbc, 3)];
503 break;
504 case 4:
505 if(m->b4){
506 m->b4 = 0;
507 mantissa = m->b4_mant;
509 else{
510 int bits = get_bits(gbc, 7);
511 mantissa = b4_mantissas[bits][0];
512 m->b4_mant = b4_mantissas[bits][1];
513 m->b4 = 1;
515 break;
516 case 5:
517 mantissa = b5_mantissas[get_bits(gbc, 4)];
518 break;
519 default: /* 6 to 15 */
520 mantissa = get_bits(gbc, quantization_tab[bap]);
521 /* Shift mantissa and sign-extend it. */
522 mantissa = (mantissa << (32-quantization_tab[bap]))>>8;
523 break;
525 coeffs[freq] = mantissa >> exps[freq];
530 * Remove random dithering from coupling range coefficients with zero-bit
531 * mantissas for coupled channels which do not use dithering.
532 * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
534 static void remove_dithering(AC3DecodeContext *s) {
535 int ch, i;
537 for(ch=1; ch<=s->fbw_channels; ch++) {
538 if(!s->dither_flag[ch] && s->channel_in_cpl[ch]) {
539 for(i = s->start_freq[CPL_CH]; i<s->end_freq[CPL_CH]; i++) {
540 if(!s->bap[CPL_CH][i])
541 s->fixed_coeffs[ch][i] = 0;
547 static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
548 mant_groups *m)
550 if (!s->channel_uses_aht[ch]) {
551 ac3_decode_transform_coeffs_ch(s, ch, m);
552 } else {
553 /* if AHT is used, mantissas for all blocks are encoded in the first
554 block of the frame. */
555 int bin;
556 if (!blk && CONFIG_EAC3_DECODER)
557 ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
558 for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
559 s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
565 * Decode the transform coefficients.
567 static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
569 int ch, end;
570 int got_cplchan = 0;
571 mant_groups m;
573 m.b1 = m.b2 = m.b4 = 0;
575 for (ch = 1; ch <= s->channels; ch++) {
576 /* transform coefficients for full-bandwidth channel */
577 decode_transform_coeffs_ch(s, blk, ch, &m);
578 /* tranform coefficients for coupling channel come right after the
579 coefficients for the first coupled channel*/
580 if (s->channel_in_cpl[ch]) {
581 if (!got_cplchan) {
582 decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
583 calc_transform_coeffs_cpl(s);
584 got_cplchan = 1;
586 end = s->end_freq[CPL_CH];
587 } else {
588 end = s->end_freq[ch];
591 s->fixed_coeffs[ch][end] = 0;
592 while(++end < 256);
595 /* zero the dithered coefficients for appropriate channels */
596 remove_dithering(s);
600 * Stereo rematrixing.
601 * reference: Section 7.5.4 Rematrixing : Decoding Technique
603 static void do_rematrixing(AC3DecodeContext *s)
605 int bnd, i;
606 int end, bndend;
608 end = FFMIN(s->end_freq[1], s->end_freq[2]);
610 i = ff_ac3_rematrix_band_tab[0];
611 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
612 if(s->rematrixing_flags[bnd]) {
613 bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
614 for(; i<bndend; i++) {
615 int tmp0 = s->fixed_coeffs[1][i];
616 s->fixed_coeffs[1][i] -= s->fixed_coeffs[2][i];
617 s->fixed_coeffs[2][i] = tmp0 - s->fixed_coeffs[2][i];
624 * Inverse MDCT Transform.
625 * Convert frequency domain coefficients to time-domain audio samples.
626 * reference: Section 7.9.4 Transformation Equations
628 static inline void do_imdct(AC3DecodeContext *s, int channels)
630 int ch;
631 float add_bias = s->add_bias;
632 if(s->out_channels==1 && channels>1)
633 add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
635 for (ch=1; ch<=channels; ch++) {
636 if (s->block_switch[ch]) {
637 int i;
638 float *x = s->tmp_output+128;
639 for(i=0; i<128; i++)
640 x[i] = s->transform_coeffs[ch][2*i];
641 ff_imdct_half(&s->imdct_256, s->tmp_output, x);
642 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
643 for(i=0; i<128; i++)
644 x[i] = s->transform_coeffs[ch][2*i+1];
645 ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
646 } else {
647 ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
648 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
649 memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
655 * Downmix the output to mono or stereo.
657 void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
659 int i, j;
660 float v0, v1;
661 if(out_ch == 2) {
662 for(i=0; i<len; i++) {
663 v0 = v1 = 0.0f;
664 for(j=0; j<in_ch; j++) {
665 v0 += samples[j][i] * matrix[j][0];
666 v1 += samples[j][i] * matrix[j][1];
668 samples[0][i] = v0;
669 samples[1][i] = v1;
671 } else if(out_ch == 1) {
672 for(i=0; i<len; i++) {
673 v0 = 0.0f;
674 for(j=0; j<in_ch; j++)
675 v0 += samples[j][i] * matrix[j][0];
676 samples[0][i] = v0;
682 * Upmix delay samples from stereo to original channel layout.
684 static void ac3_upmix_delay(AC3DecodeContext *s)
686 int channel_data_size = sizeof(s->delay[0]);
687 switch(s->channel_mode) {
688 case AC3_CHMODE_DUALMONO:
689 case AC3_CHMODE_STEREO:
690 /* upmix mono to stereo */
691 memcpy(s->delay[1], s->delay[0], channel_data_size);
692 break;
693 case AC3_CHMODE_2F2R:
694 memset(s->delay[3], 0, channel_data_size);
695 case AC3_CHMODE_2F1R:
696 memset(s->delay[2], 0, channel_data_size);
697 break;
698 case AC3_CHMODE_3F2R:
699 memset(s->delay[4], 0, channel_data_size);
700 case AC3_CHMODE_3F1R:
701 memset(s->delay[3], 0, channel_data_size);
702 case AC3_CHMODE_3F:
703 memcpy(s->delay[2], s->delay[1], channel_data_size);
704 memset(s->delay[1], 0, channel_data_size);
705 break;
710 * Decode band structure for coupling, spectral extension, or enhanced coupling.
711 * The band structure defines how many subbands are in each band. For each
712 * subband in the range, 1 means it is combined with the previous band, and 0
713 * means that it starts a new band.
715 * @param[in] gbc bit reader context
716 * @param[in] blk block number
717 * @param[in] eac3 flag to indicate E-AC-3
718 * @param[in] ecpl flag to indicate enhanced coupling
719 * @param[in] start_subband subband number for start of range
720 * @param[in] end_subband subband number for end of range
721 * @param[in] default_band_struct default band structure table
722 * @param[out] num_bands number of bands (optionally NULL)
723 * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
725 static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
726 int ecpl, int start_subband, int end_subband,
727 const uint8_t *default_band_struct,
728 int *num_bands, uint8_t *band_sizes)
730 int subbnd, bnd, n_subbands, n_bands=0;
731 uint8_t bnd_sz[22];
732 uint8_t coded_band_struct[22];
733 const uint8_t *band_struct;
735 n_subbands = end_subband - start_subband;
737 /* decode band structure from bitstream or use default */
738 if (!eac3 || get_bits1(gbc)) {
739 for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
740 coded_band_struct[subbnd] = get_bits1(gbc);
742 band_struct = coded_band_struct;
743 } else if (!blk) {
744 band_struct = &default_band_struct[start_subband+1];
745 } else {
746 /* no change in band structure */
747 return;
750 /* calculate number of bands and band sizes based on band structure.
751 note that the first 4 subbands in enhanced coupling span only 6 bins
752 instead of 12. */
753 if (num_bands || band_sizes ) {
754 n_bands = n_subbands;
755 bnd_sz[0] = ecpl ? 6 : 12;
756 for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
757 int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
758 if (band_struct[subbnd-1]) {
759 n_bands--;
760 bnd_sz[bnd] += subbnd_size;
761 } else {
762 bnd_sz[++bnd] = subbnd_size;
767 /* set optional output params */
768 if (num_bands)
769 *num_bands = n_bands;
770 if (band_sizes)
771 memcpy(band_sizes, bnd_sz, n_bands);
775 * Decode a single audio block from the AC-3 bitstream.
777 static int decode_audio_block(AC3DecodeContext *s, int blk)
779 int fbw_channels = s->fbw_channels;
780 int channel_mode = s->channel_mode;
781 int i, bnd, seg, ch;
782 int different_transforms;
783 int downmix_output;
784 int cpl_in_use;
785 GetBitContext *gbc = &s->gbc;
786 uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
788 memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
790 /* block switch flags */
791 different_transforms = 0;
792 if (s->block_switch_syntax) {
793 for (ch = 1; ch <= fbw_channels; ch++) {
794 s->block_switch[ch] = get_bits1(gbc);
795 if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
796 different_transforms = 1;
800 /* dithering flags */
801 if (s->dither_flag_syntax) {
802 for (ch = 1; ch <= fbw_channels; ch++) {
803 s->dither_flag[ch] = get_bits1(gbc);
807 /* dynamic range */
808 i = !(s->channel_mode);
809 do {
810 if(get_bits1(gbc)) {
811 s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
812 s->avctx->drc_scale)+1.0;
813 } else if(blk == 0) {
814 s->dynamic_range[i] = 1.0f;
816 } while(i--);
818 /* spectral extension strategy */
819 if (s->eac3 && (!blk || get_bits1(gbc))) {
820 if (get_bits1(gbc)) {
821 av_log_missing_feature(s->avctx, "Spectral extension", 1);
822 return -1;
824 /* TODO: parse spectral extension strategy info */
827 /* TODO: spectral extension coordinates */
829 /* coupling strategy */
830 if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
831 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
832 if (!s->eac3)
833 s->cpl_in_use[blk] = get_bits1(gbc);
834 if (s->cpl_in_use[blk]) {
835 /* coupling in use */
836 int cpl_start_subband, cpl_end_subband;
838 if (channel_mode < AC3_CHMODE_STEREO) {
839 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
840 return -1;
843 /* check for enhanced coupling */
844 if (s->eac3 && get_bits1(gbc)) {
845 /* TODO: parse enhanced coupling strategy info */
846 av_log_missing_feature(s->avctx, "Enhanced coupling", 1);
847 return -1;
850 /* determine which channels are coupled */
851 if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
852 s->channel_in_cpl[1] = 1;
853 s->channel_in_cpl[2] = 1;
854 } else {
855 for (ch = 1; ch <= fbw_channels; ch++)
856 s->channel_in_cpl[ch] = get_bits1(gbc);
859 /* phase flags in use */
860 if (channel_mode == AC3_CHMODE_STEREO)
861 s->phase_flags_in_use = get_bits1(gbc);
863 /* coupling frequency range */
864 /* TODO: modify coupling end freq if spectral extension is used */
865 cpl_start_subband = get_bits(gbc, 4);
866 cpl_end_subband = get_bits(gbc, 4) + 3;
867 if (cpl_start_subband >= cpl_end_subband) {
868 av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
869 cpl_start_subband, cpl_end_subband);
870 return -1;
872 s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
873 s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37;
875 decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
876 cpl_end_subband,
877 ff_eac3_default_cpl_band_struct,
878 &s->num_cpl_bands, s->cpl_band_sizes);
879 } else {
880 /* coupling not in use */
881 for (ch = 1; ch <= fbw_channels; ch++) {
882 s->channel_in_cpl[ch] = 0;
883 s->first_cpl_coords[ch] = 1;
885 s->first_cpl_leak = s->eac3;
886 s->phase_flags_in_use = 0;
888 } else if (!s->eac3) {
889 if(!blk) {
890 av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
891 return -1;
892 } else {
893 s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
896 cpl_in_use = s->cpl_in_use[blk];
898 /* coupling coordinates */
899 if (cpl_in_use) {
900 int cpl_coords_exist = 0;
902 for (ch = 1; ch <= fbw_channels; ch++) {
903 if (s->channel_in_cpl[ch]) {
904 if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
905 int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
906 s->first_cpl_coords[ch] = 0;
907 cpl_coords_exist = 1;
908 master_cpl_coord = 3 * get_bits(gbc, 2);
909 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
910 cpl_coord_exp = get_bits(gbc, 4);
911 cpl_coord_mant = get_bits(gbc, 4);
912 if (cpl_coord_exp == 15)
913 s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
914 else
915 s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
916 s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
918 } else if (!blk) {
919 av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
920 return -1;
922 } else {
923 /* channel not in coupling */
924 s->first_cpl_coords[ch] = 1;
927 /* phase flags */
928 if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
929 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
930 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
935 /* stereo rematrixing strategy and band structure */
936 if (channel_mode == AC3_CHMODE_STEREO) {
937 if ((s->eac3 && !blk) || get_bits1(gbc)) {
938 s->num_rematrixing_bands = 4;
939 if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
940 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
941 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
942 s->rematrixing_flags[bnd] = get_bits1(gbc);
943 } else if (!blk) {
944 av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
945 return -1;
949 /* exponent strategies for each channel */
950 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
951 if (!s->eac3)
952 s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
953 if(s->exp_strategy[blk][ch] != EXP_REUSE)
954 bit_alloc_stages[ch] = 3;
957 /* channel bandwidth */
958 for (ch = 1; ch <= fbw_channels; ch++) {
959 s->start_freq[ch] = 0;
960 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
961 int group_size;
962 int prev = s->end_freq[ch];
963 if (s->channel_in_cpl[ch])
964 s->end_freq[ch] = s->start_freq[CPL_CH];
965 else {
966 int bandwidth_code = get_bits(gbc, 6);
967 if (bandwidth_code > 60) {
968 av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
969 return -1;
971 s->end_freq[ch] = bandwidth_code * 3 + 73;
973 group_size = 3 << (s->exp_strategy[blk][ch] - 1);
974 s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
975 if(blk > 0 && s->end_freq[ch] != prev)
976 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
979 if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
980 s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
981 (3 << (s->exp_strategy[blk][CPL_CH] - 1));
984 /* decode exponents for each channel */
985 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
986 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
987 s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
988 if (decode_exponents(gbc, s->exp_strategy[blk][ch],
989 s->num_exp_groups[ch], s->dexps[ch][0],
990 &s->dexps[ch][s->start_freq[ch]+!!ch])) {
991 av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
992 return -1;
994 if(ch != CPL_CH && ch != s->lfe_ch)
995 skip_bits(gbc, 2); /* skip gainrng */
999 /* bit allocation information */
1000 if (s->bit_allocation_syntax) {
1001 if (get_bits1(gbc)) {
1002 s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
1003 s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
1004 s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
1005 s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
1006 s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
1007 for(ch=!cpl_in_use; ch<=s->channels; ch++)
1008 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1009 } else if (!blk) {
1010 av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
1011 return -1;
1015 /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
1016 if(!s->eac3 || !blk){
1017 if(s->snr_offset_strategy && get_bits1(gbc)) {
1018 int snr = 0;
1019 int csnr;
1020 csnr = (get_bits(gbc, 6) - 15) << 4;
1021 for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
1022 /* snr offset */
1023 if (ch == i || s->snr_offset_strategy == 2)
1024 snr = (csnr + get_bits(gbc, 4)) << 2;
1025 /* run at least last bit allocation stage if snr offset changes */
1026 if(blk && s->snr_offset[ch] != snr) {
1027 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
1029 s->snr_offset[ch] = snr;
1031 /* fast gain (normal AC-3 only) */
1032 if (!s->eac3) {
1033 int prev = s->fast_gain[ch];
1034 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1035 /* run last 2 bit allocation stages if fast gain changes */
1036 if(blk && prev != s->fast_gain[ch])
1037 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1040 } else if (!s->eac3 && !blk) {
1041 av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
1042 return -1;
1046 /* fast gain (E-AC-3 only) */
1047 if (s->fast_gain_syntax && get_bits1(gbc)) {
1048 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
1049 int prev = s->fast_gain[ch];
1050 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1051 /* run last 2 bit allocation stages if fast gain changes */
1052 if(blk && prev != s->fast_gain[ch])
1053 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1055 } else if (s->eac3 && !blk) {
1056 for (ch = !cpl_in_use; ch <= s->channels; ch++)
1057 s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
1060 /* E-AC-3 to AC-3 converter SNR offset */
1061 if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
1062 skip_bits(gbc, 10); // skip converter snr offset
1065 /* coupling leak information */
1066 if (cpl_in_use) {
1067 if (s->first_cpl_leak || get_bits1(gbc)) {
1068 int fl = get_bits(gbc, 3);
1069 int sl = get_bits(gbc, 3);
1070 /* run last 2 bit allocation stages for coupling channel if
1071 coupling leak changes */
1072 if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
1073 sl != s->bit_alloc_params.cpl_slow_leak)) {
1074 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
1076 s->bit_alloc_params.cpl_fast_leak = fl;
1077 s->bit_alloc_params.cpl_slow_leak = sl;
1078 } else if (!s->eac3 && !blk) {
1079 av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
1080 return -1;
1082 s->first_cpl_leak = 0;
1085 /* delta bit allocation information */
1086 if (s->dba_syntax && get_bits1(gbc)) {
1087 /* delta bit allocation exists (strategy) */
1088 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1089 s->dba_mode[ch] = get_bits(gbc, 2);
1090 if (s->dba_mode[ch] == DBA_RESERVED) {
1091 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
1092 return -1;
1094 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1096 /* channel delta offset, len and bit allocation */
1097 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1098 if (s->dba_mode[ch] == DBA_NEW) {
1099 s->dba_nsegs[ch] = get_bits(gbc, 3);
1100 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
1101 s->dba_offsets[ch][seg] = get_bits(gbc, 5);
1102 s->dba_lengths[ch][seg] = get_bits(gbc, 4);
1103 s->dba_values[ch][seg] = get_bits(gbc, 3);
1105 /* run last 2 bit allocation stages if new dba values */
1106 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1109 } else if(blk == 0) {
1110 for(ch=0; ch<=s->channels; ch++) {
1111 s->dba_mode[ch] = DBA_NONE;
1115 /* Bit allocation */
1116 for(ch=!cpl_in_use; ch<=s->channels; ch++) {
1117 if(bit_alloc_stages[ch] > 2) {
1118 /* Exponent mapping into PSD and PSD integration */
1119 ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
1120 s->start_freq[ch], s->end_freq[ch],
1121 s->psd[ch], s->band_psd[ch]);
1123 if(bit_alloc_stages[ch] > 1) {
1124 /* Compute excitation function, Compute masking curve, and
1125 Apply delta bit allocation */
1126 if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
1127 s->start_freq[ch], s->end_freq[ch],
1128 s->fast_gain[ch], (ch == s->lfe_ch),
1129 s->dba_mode[ch], s->dba_nsegs[ch],
1130 s->dba_offsets[ch], s->dba_lengths[ch],
1131 s->dba_values[ch], s->mask[ch])) {
1132 av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
1133 return -1;
1136 if(bit_alloc_stages[ch] > 0) {
1137 /* Compute bit allocation */
1138 const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
1139 ff_eac3_hebap_tab : ff_ac3_bap_tab;
1140 ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
1141 s->start_freq[ch], s->end_freq[ch],
1142 s->snr_offset[ch],
1143 s->bit_alloc_params.floor,
1144 bap_tab, s->bap[ch]);
1148 /* unused dummy data */
1149 if (s->skip_syntax && get_bits1(gbc)) {
1150 int skipl = get_bits(gbc, 9);
1151 while(skipl--)
1152 skip_bits(gbc, 8);
1155 /* unpack the transform coefficients
1156 this also uncouples channels if coupling is in use. */
1157 decode_transform_coeffs(s, blk);
1159 /* TODO: generate enhanced coupling coordinates and uncouple */
1161 /* TODO: apply spectral extension */
1163 /* recover coefficients if rematrixing is in use */
1164 if(s->channel_mode == AC3_CHMODE_STEREO)
1165 do_rematrixing(s);
1167 /* apply scaling to coefficients (headroom, dynrng) */
1168 for(ch=1; ch<=s->channels; ch++) {
1169 float gain = s->mul_bias / 4194304.0f;
1170 if(s->channel_mode == AC3_CHMODE_DUALMONO) {
1171 gain *= s->dynamic_range[ch-1];
1172 } else {
1173 gain *= s->dynamic_range[0];
1175 s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
1178 /* downmix and MDCT. order depends on whether block switching is used for
1179 any channel in this block. this is because coefficients for the long
1180 and short transforms cannot be mixed. */
1181 downmix_output = s->channels != s->out_channels &&
1182 !((s->output_mode & AC3_OUTPUT_LFEON) &&
1183 s->fbw_channels == s->out_channels);
1184 if(different_transforms) {
1185 /* the delay samples have already been downmixed, so we upmix the delay
1186 samples in order to reconstruct all channels before downmixing. */
1187 if(s->downmixed) {
1188 s->downmixed = 0;
1189 ac3_upmix_delay(s);
1192 do_imdct(s, s->channels);
1194 if(downmix_output) {
1195 s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1197 } else {
1198 if(downmix_output) {
1199 s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1202 if(downmix_output && !s->downmixed) {
1203 s->downmixed = 1;
1204 s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
1207 do_imdct(s, s->out_channels);
1210 return 0;
1214 * Decode a single AC-3 frame.
1216 static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
1217 AVPacket *avpkt)
1219 const uint8_t *buf = avpkt->data;
1220 int buf_size = avpkt->size;
1221 AC3DecodeContext *s = avctx->priv_data;
1222 int16_t *out_samples = (int16_t *)data;
1223 int blk, ch, err;
1224 const uint8_t *channel_map;
1225 const float *output[AC3_MAX_CHANNELS];
1227 /* initialize the GetBitContext with the start of valid AC-3 Frame */
1228 if (s->input_buffer) {
1229 /* copy input buffer to decoder context to avoid reading past the end
1230 of the buffer, which can be caused by a damaged input stream. */
1231 memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
1232 init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
1233 } else {
1234 init_get_bits(&s->gbc, buf, buf_size * 8);
1237 /* parse the syncinfo */
1238 *data_size = 0;
1239 err = parse_frame_header(s);
1241 /* check that reported frame size fits in input buffer */
1242 if(s->frame_size > buf_size) {
1243 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1244 err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
1247 /* check for crc mismatch */
1248 if(err != AAC_AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_recognition >= FF_ER_CAREFUL) {
1249 if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
1250 av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
1251 err = AAC_AC3_PARSE_ERROR_CRC;
1255 if(err && err != AAC_AC3_PARSE_ERROR_CRC) {
1256 switch(err) {
1257 case AAC_AC3_PARSE_ERROR_SYNC:
1258 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
1259 return -1;
1260 case AAC_AC3_PARSE_ERROR_BSID:
1261 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
1262 break;
1263 case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
1264 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
1265 break;
1266 case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
1267 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
1268 break;
1269 case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
1270 /* skip frame if CRC is ok. otherwise use error concealment. */
1271 /* TODO: add support for substreams and dependent frames */
1272 if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
1273 av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
1274 return s->frame_size;
1275 } else {
1276 av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
1278 break;
1279 default:
1280 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
1281 break;
1285 /* if frame is ok, set audio parameters */
1286 if (!err) {
1287 avctx->sample_rate = s->sample_rate;
1288 avctx->bit_rate = s->bit_rate;
1290 /* channel config */
1291 s->out_channels = s->channels;
1292 s->output_mode = s->channel_mode;
1293 if(s->lfe_on)
1294 s->output_mode |= AC3_OUTPUT_LFEON;
1295 if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
1296 avctx->request_channels < s->channels) {
1297 s->out_channels = avctx->request_channels;
1298 s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1299 s->channel_layout = ff_ac3_channel_layout_tab[s->output_mode];
1301 avctx->channels = s->out_channels;
1302 avctx->channel_layout = s->channel_layout;
1304 /* set downmixing coefficients if needed */
1305 if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
1306 s->fbw_channels == s->out_channels)) {
1307 set_downmix_coeffs(s);
1309 } else if (!s->out_channels) {
1310 s->out_channels = avctx->channels;
1311 if(s->out_channels < s->channels)
1312 s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1315 /* decode the audio blocks */
1316 channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
1317 for (ch = 0; ch < s->out_channels; ch++)
1318 output[ch] = s->output[channel_map[ch]];
1319 for (blk = 0; blk < s->num_blocks; blk++) {
1320 if (!err && decode_audio_block(s, blk)) {
1321 av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
1322 err = 1;
1324 s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
1325 out_samples += 256 * s->out_channels;
1327 *data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);
1328 return s->frame_size;
1332 * Uninitialize the AC-3 decoder.
1334 static av_cold int ac3_decode_end(AVCodecContext *avctx)
1336 AC3DecodeContext *s = avctx->priv_data;
1337 ff_mdct_end(&s->imdct_512);
1338 ff_mdct_end(&s->imdct_256);
1340 av_freep(&s->input_buffer);
1342 return 0;
1345 AVCodec ac3_decoder = {
1346 .name = "ac3",
1347 .type = CODEC_TYPE_AUDIO,
1348 .id = CODEC_ID_AC3,
1349 .priv_data_size = sizeof (AC3DecodeContext),
1350 .init = ac3_decode_init,
1351 .close = ac3_decode_end,
1352 .decode = ac3_decode_frame,
1353 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
1356 #if CONFIG_EAC3_DECODER
1357 AVCodec eac3_decoder = {
1358 .name = "eac3",
1359 .type = CODEC_TYPE_AUDIO,
1360 .id = CODEC_ID_EAC3,
1361 .priv_data_size = sizeof (AC3DecodeContext),
1362 .init = ac3_decode_init,
1363 .close = ac3_decode_end,
1364 .decode = ac3_decode_frame,
1365 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
1367 #endif