Do not initialize ff_cos_* tables again in rdft_init, they are already
[FFMpeg-mirror/lagarith.git] / libavcodec / dsputil.h
blob50889bb1d13b3a4352e986e307fc3099085b9049
1 /*
2 * DSP utils
3 * Copyright (c) 2000, 2001, 2002 Fabrice Bellard
4 * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/dsputil.h
25 * DSP utils.
26 * note, many functions in here may use MMX which trashes the FPU state, it is
27 * absolutely necessary to call emms_c() between dsp & float/double code
30 #ifndef AVCODEC_DSPUTIL_H
31 #define AVCODEC_DSPUTIL_H
33 #include "libavutil/intreadwrite.h"
34 #include "avcodec.h"
37 //#define DEBUG
38 /* dct code */
39 typedef short DCTELEM;
40 typedef int DWTELEM;
41 typedef short IDWTELEM;
43 void fdct_ifast (DCTELEM *data);
44 void fdct_ifast248 (DCTELEM *data);
45 void ff_jpeg_fdct_islow (DCTELEM *data);
46 void ff_fdct248_islow (DCTELEM *data);
48 void j_rev_dct (DCTELEM *data);
49 void j_rev_dct4 (DCTELEM *data);
50 void j_rev_dct2 (DCTELEM *data);
51 void j_rev_dct1 (DCTELEM *data);
52 void ff_wmv2_idct_c(DCTELEM *data);
54 void ff_fdct_mmx(DCTELEM *block);
55 void ff_fdct_mmx2(DCTELEM *block);
56 void ff_fdct_sse2(DCTELEM *block);
58 void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride);
59 void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride);
60 void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
61 void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride);
62 void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block);
63 void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block);
64 void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
65 void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
66 void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
67 void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);
69 void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1,
70 const float *win, float add_bias, int len);
71 void ff_float_to_int16_c(int16_t *dst, const float *src, long len);
72 void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels);
74 /* encoding scans */
75 extern const uint8_t ff_alternate_horizontal_scan[64];
76 extern const uint8_t ff_alternate_vertical_scan[64];
77 extern const uint8_t ff_zigzag_direct[64];
78 extern const uint8_t ff_zigzag248_direct[64];
80 /* pixel operations */
81 #define MAX_NEG_CROP 1024
83 /* temporary */
84 extern uint32_t ff_squareTbl[512];
85 extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP];
87 /* VP3 DSP functions */
88 void ff_vp3_idct_c(DCTELEM *block/* align 16*/);
89 void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
90 void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
92 void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
93 void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values);
95 /* VP6 DSP functions */
96 void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride,
97 const int16_t *h_weights, const int16_t *v_weights);
99 /* 1/2^n downscaling functions from imgconvert.c */
100 void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
101 void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
102 void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
103 void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
105 void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy,
106 int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
108 /* minimum alignment rules ;)
109 If you notice errors in the align stuff, need more alignment for some ASM code
110 for some CPU or need to use a function with less aligned data then send a mail
111 to the ffmpeg-devel mailing list, ...
113 !warning These alignments might not match reality, (missing attribute((align))
114 stuff somewhere possible).
115 I (Michael) did not check them, these are just the alignments which I think
116 could be reached easily ...
118 !future video codecs might need functions with less strict alignment
122 void get_pixels_c(DCTELEM *block, const uint8_t *pixels, int line_size);
123 void diff_pixels_c(DCTELEM *block, const uint8_t *s1, const uint8_t *s2, int stride);
124 void put_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
125 void add_pixels_clamped_c(const DCTELEM *block, uint8_t *pixels, int line_size);
126 void clear_blocks_c(DCTELEM *blocks);
129 /* add and put pixel (decoding) */
130 // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16
131 //h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4
132 typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h);
133 typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h);
134 typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
135 typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y);
136 typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset);
137 typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset);
139 #define DEF_OLD_QPEL(name)\
140 void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
141 void ff_put_no_rnd_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\
142 void ff_avg_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);
144 DEF_OLD_QPEL(qpel16_mc11_old_c)
145 DEF_OLD_QPEL(qpel16_mc31_old_c)
146 DEF_OLD_QPEL(qpel16_mc12_old_c)
147 DEF_OLD_QPEL(qpel16_mc32_old_c)
148 DEF_OLD_QPEL(qpel16_mc13_old_c)
149 DEF_OLD_QPEL(qpel16_mc33_old_c)
150 DEF_OLD_QPEL(qpel8_mc11_old_c)
151 DEF_OLD_QPEL(qpel8_mc31_old_c)
152 DEF_OLD_QPEL(qpel8_mc12_old_c)
153 DEF_OLD_QPEL(qpel8_mc32_old_c)
154 DEF_OLD_QPEL(qpel8_mc13_old_c)
155 DEF_OLD_QPEL(qpel8_mc33_old_c)
157 #define CALL_2X_PIXELS(a, b, n)\
158 static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\
159 b(block , pixels , line_size, h);\
160 b(block+n, pixels+n, line_size, h);\
163 /* motion estimation */
164 // h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2
165 // although currently h<4 is not used as functions with width <8 are neither used nor implemented
166 typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/;
169 // for snow slices
170 typedef struct slice_buffer_s slice_buffer;
173 * Scantable.
175 typedef struct ScanTable{
176 const uint8_t *scantable;
177 uint8_t permutated[64];
178 uint8_t raster_end[64];
179 #if ARCH_PPC
180 /** Used by dct_quantize_altivec to find last-non-zero */
181 DECLARE_ALIGNED(16, uint8_t, inverse[64]);
182 #endif
183 } ScanTable;
185 void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable);
187 void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize,
188 int block_w, int block_h,
189 int src_x, int src_y, int w, int h);
192 * DSPContext.
194 typedef struct DSPContext {
195 /* pixel ops : interface with DCT */
196 void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size);
197 void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride);
198 void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
199 void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
200 void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size);
201 void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size);
202 void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size);
203 int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/);
205 * translational global motion compensation.
207 void (*gmc1)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x16, int y16, int rounder);
209 * global motion compensation.
211 void (*gmc )(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int ox, int oy,
212 int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height);
213 void (*clear_block)(DCTELEM *block/*align 16*/);
214 void (*clear_blocks)(DCTELEM *blocks/*align 16*/);
215 int (*pix_sum)(uint8_t * pix, int line_size);
216 int (*pix_norm1)(uint8_t * pix, int line_size);
217 // 16x16 8x8 4x4 2x2 16x8 8x4 4x2 8x16 4x8 2x4
219 me_cmp_func sad[6]; /* identical to pix_absAxA except additional void * */
220 me_cmp_func sse[6];
221 me_cmp_func hadamard8_diff[6];
222 me_cmp_func dct_sad[6];
223 me_cmp_func quant_psnr[6];
224 me_cmp_func bit[6];
225 me_cmp_func rd[6];
226 me_cmp_func vsad[6];
227 me_cmp_func vsse[6];
228 me_cmp_func nsse[6];
229 me_cmp_func w53[6];
230 me_cmp_func w97[6];
231 me_cmp_func dct_max[6];
232 me_cmp_func dct264_sad[6];
234 me_cmp_func me_pre_cmp[6];
235 me_cmp_func me_cmp[6];
236 me_cmp_func me_sub_cmp[6];
237 me_cmp_func mb_cmp[6];
238 me_cmp_func ildct_cmp[6]; //only width 16 used
239 me_cmp_func frame_skip_cmp[6]; //only width 8 used
241 int (*ssd_int8_vs_int16)(const int8_t *pix1, const int16_t *pix2,
242 int size);
245 * Halfpel motion compensation with rounding (a+b+1)>>1.
246 * this is an array[4][4] of motion compensation functions for 4
247 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
248 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
249 * @param block destination where the result is stored
250 * @param pixels source
251 * @param line_size number of bytes in a horizontal line of block
252 * @param h height
254 op_pixels_func put_pixels_tab[4][4];
257 * Halfpel motion compensation with rounding (a+b+1)>>1.
258 * This is an array[4][4] of motion compensation functions for 4
259 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
260 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
261 * @param block destination into which the result is averaged (a+b+1)>>1
262 * @param pixels source
263 * @param line_size number of bytes in a horizontal line of block
264 * @param h height
266 op_pixels_func avg_pixels_tab[4][4];
269 * Halfpel motion compensation with no rounding (a+b)>>1.
270 * this is an array[2][4] of motion compensation functions for 2
271 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
272 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
273 * @param block destination where the result is stored
274 * @param pixels source
275 * @param line_size number of bytes in a horizontal line of block
276 * @param h height
278 op_pixels_func put_no_rnd_pixels_tab[4][4];
281 * Halfpel motion compensation with no rounding (a+b)>>1.
282 * this is an array[2][4] of motion compensation functions for 2
283 * horizontal blocksizes (8,16) and the 4 halfpel positions<br>
284 * *pixels_tab[ 0->16xH 1->8xH ][ xhalfpel + 2*yhalfpel ]
285 * @param block destination into which the result is averaged (a+b)>>1
286 * @param pixels source
287 * @param line_size number of bytes in a horizontal line of block
288 * @param h height
290 op_pixels_func avg_no_rnd_pixels_tab[4][4];
292 void (*put_no_rnd_pixels_l2[2])(uint8_t *block/*align width (8 or 16)*/, const uint8_t *a/*align 1*/, const uint8_t *b/*align 1*/, int line_size, int h);
295 * Thirdpel motion compensation with rounding (a+b+1)>>1.
296 * this is an array[12] of motion compensation functions for the 9 thirdpe
297 * positions<br>
298 * *pixels_tab[ xthirdpel + 4*ythirdpel ]
299 * @param block destination where the result is stored
300 * @param pixels source
301 * @param line_size number of bytes in a horizontal line of block
302 * @param h height
304 tpel_mc_func put_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
305 tpel_mc_func avg_tpel_pixels_tab[11]; //FIXME individual func ptr per width?
307 qpel_mc_func put_qpel_pixels_tab[2][16];
308 qpel_mc_func avg_qpel_pixels_tab[2][16];
309 qpel_mc_func put_no_rnd_qpel_pixels_tab[2][16];
310 qpel_mc_func avg_no_rnd_qpel_pixels_tab[2][16];
311 qpel_mc_func put_mspel_pixels_tab[8];
314 * h264 Chroma MC
316 h264_chroma_mc_func put_h264_chroma_pixels_tab[3];
317 h264_chroma_mc_func avg_h264_chroma_pixels_tab[3];
318 /* This is really one func used in VC-1 decoding */
319 h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3];
320 h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3];
322 qpel_mc_func put_h264_qpel_pixels_tab[4][16];
323 qpel_mc_func avg_h264_qpel_pixels_tab[4][16];
325 qpel_mc_func put_2tap_qpel_pixels_tab[4][16];
326 qpel_mc_func avg_2tap_qpel_pixels_tab[4][16];
328 h264_weight_func weight_h264_pixels_tab[10];
329 h264_biweight_func biweight_h264_pixels_tab[10];
331 /* AVS specific */
332 qpel_mc_func put_cavs_qpel_pixels_tab[2][16];
333 qpel_mc_func avg_cavs_qpel_pixels_tab[2][16];
334 void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
335 void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
336 void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
337 void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2);
338 void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride);
340 me_cmp_func pix_abs[2][4];
342 /* huffyuv specific */
343 void (*add_bytes)(uint8_t *dst/*align 16*/, uint8_t *src/*align 16*/, int w);
344 void (*add_bytes_l2)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 16*/, int w);
345 void (*diff_bytes)(uint8_t *dst/*align 16*/, uint8_t *src1/*align 16*/, uint8_t *src2/*align 1*/,int w);
347 * subtract huffyuv's variant of median prediction
348 * note, this might read from src1[-1], src2[-1]
350 void (*sub_hfyu_median_prediction)(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top);
351 void (*add_hfyu_median_prediction)(uint8_t *dst, uint8_t *top, uint8_t *diff, int w, int *left, int *left_top);
352 int (*add_hfyu_left_prediction)(uint8_t *dst, uint8_t *src, int w, int acc);
353 void (*add_hfyu_left_prediction_bgr32)(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue);
354 /* this might write to dst[w] */
355 void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp);
356 void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w);
358 void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0);
359 void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0);
360 /* v/h_loop_filter_luma_intra: align 16 */
361 void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
362 void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta);
363 void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0);
364 void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0);
365 void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
366 void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta);
367 // h264_loop_filter_strength: simd only. the C version is inlined in h264.c
368 void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2],
369 int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field);
371 void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale);
372 void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale);
374 void (*h261_loop_filter)(uint8_t *src, int stride);
376 void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale);
377 void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale);
379 void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values);
380 void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values);
382 void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride,
383 const int16_t *h_weights,const int16_t *v_weights);
385 /* assume len is a multiple of 4, and arrays are 16-byte aligned */
386 void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize);
387 void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len);
388 /* no alignment needed */
389 void (*flac_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc);
390 /* assume len is a multiple of 8, and arrays are 16-byte aligned */
391 void (*vector_fmul)(float *dst, const float *src, int len);
392 void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len);
393 /* assume len is a multiple of 8, and src arrays are 16-byte aligned */
394 void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len);
395 /* assume len is a multiple of 4, and arrays are 16-byte aligned */
396 void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len);
397 /* assume len is a multiple of 8, and arrays are 16-byte aligned */
398 void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len);
399 void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */);
401 * Multiply a vector of floats by a scalar float. Source and
402 * destination vectors must overlap exactly or not at all.
403 * @param dst result vector, 16-byte aligned
404 * @param src input vector, 16-byte aligned
405 * @param mul scalar value
406 * @param len length of vector, multiple of 4
408 void (*vector_fmul_scalar)(float *dst, const float *src, float mul,
409 int len);
411 * Multiply a vector of floats by concatenated short vectors of
412 * floats and by a scalar float. Source and destination vectors
413 * must overlap exactly or not at all.
414 * [0]: short vectors of length 2, 8-byte aligned
415 * [1]: short vectors of length 4, 16-byte aligned
416 * @param dst output vector, 16-byte aligned
417 * @param src input vector, 16-byte aligned
418 * @param sv array of pointers to short vectors
419 * @param mul scalar value
420 * @param len number of elements in src and dst, multiple of 4
422 void (*vector_fmul_sv_scalar[2])(float *dst, const float *src,
423 const float **sv, float mul, int len);
425 * Multiply short vectors of floats by a scalar float, store
426 * concatenated result.
427 * [0]: short vectors of length 2, 8-byte aligned
428 * [1]: short vectors of length 4, 16-byte aligned
429 * @param dst output vector, 16-byte aligned
430 * @param sv array of pointers to short vectors
431 * @param mul scalar value
432 * @param len number of output elements, multiple of 4
434 void (*sv_fmul_scalar[2])(float *dst, const float **sv,
435 float mul, int len);
437 * Calculate the scalar product of two vectors of floats.
438 * @param v1 first vector, 16-byte aligned
439 * @param v2 second vector, 16-byte aligned
440 * @param len length of vectors, multiple of 4
442 float (*scalarproduct_float)(const float *v1, const float *v2, int len);
444 * Calculate the sum and difference of two vectors of floats.
445 * @param v1 first input vector, sum output, 16-byte aligned
446 * @param v2 second input vector, difference output, 16-byte aligned
447 * @param len length of vectors, multiple of 4
449 void (*butterflies_float)(float *restrict v1, float *restrict v2, int len);
451 /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767]
452 * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */
453 void (*float_to_int16)(int16_t *dst, const float *src, long len);
454 void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels);
456 /* (I)DCT */
457 void (*fdct)(DCTELEM *block/* align 16*/);
458 void (*fdct248)(DCTELEM *block/* align 16*/);
460 /* IDCT really*/
461 void (*idct)(DCTELEM *block/* align 16*/);
464 * block -> idct -> clip to unsigned 8 bit -> dest.
465 * (-1392, 0, 0, ...) -> idct -> (-174, -174, ...) -> put -> (0, 0, ...)
466 * @param line_size size in bytes of a horizontal line of dest
468 void (*idct_put)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
471 * block -> idct -> add dest -> clip to unsigned 8 bit -> dest.
472 * @param line_size size in bytes of a horizontal line of dest
474 void (*idct_add)(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/);
477 * idct input permutation.
478 * several optimized IDCTs need a permutated input (relative to the normal order of the reference
479 * IDCT)
480 * this permutation must be performed before the idct_put/add, note, normally this can be merged
481 * with the zigzag/alternate scan<br>
482 * an example to avoid confusion:
483 * - (->decode coeffs -> zigzag reorder -> dequant -> reference idct ->...)
484 * - (x -> referece dct -> reference idct -> x)
485 * - (x -> referece dct -> simple_mmx_perm = idct_permutation -> simple_idct_mmx -> x)
486 * - (->decode coeffs -> zigzag reorder -> simple_mmx_perm -> dequant -> simple_idct_mmx ->...)
488 uint8_t idct_permutation[64];
489 int idct_permutation_type;
490 #define FF_NO_IDCT_PERM 1
491 #define FF_LIBMPEG2_IDCT_PERM 2
492 #define FF_SIMPLE_IDCT_PERM 3
493 #define FF_TRANSPOSE_IDCT_PERM 4
494 #define FF_PARTTRANS_IDCT_PERM 5
495 #define FF_SSE2_IDCT_PERM 6
497 int (*try_8x8basis)(int16_t rem[64], int16_t weight[64], int16_t basis[64], int scale);
498 void (*add_8x8basis)(int16_t rem[64], int16_t basis[64], int scale);
499 #define BASIS_SHIFT 16
500 #define RECON_SHIFT 6
502 void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w);
503 #define EDGE_WIDTH 16
505 /* h264 functions */
506 /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them
507 NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them
508 The reason for above, is that no 2 out of one list may use a different permutation.
510 void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
511 void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
512 void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride);
513 void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride);
514 void (*h264_dct)(DCTELEM block[4][4]);
515 void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
516 void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
517 void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
518 void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]);
520 /* snow wavelet */
521 void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width);
522 void (*horizontal_compose97i)(IDWTELEM *b, int width);
523 void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8);
525 void (*prefetch)(void *mem, int stride, int h);
527 void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height);
529 /* mlp/truehd functions */
530 void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff,
531 int firorder, int iirorder,
532 unsigned int filter_shift, int32_t mask, int blocksize,
533 int32_t *sample_buffer);
535 /* vc1 functions */
536 void (*vc1_inv_trans_8x8)(DCTELEM *b);
537 void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block);
538 void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block);
539 void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block);
540 void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
541 void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
542 void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block);
543 void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block);
544 void (*vc1_v_overlap)(uint8_t* src, int stride);
545 void (*vc1_h_overlap)(uint8_t* src, int stride);
546 void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq);
547 void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq);
548 void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq);
549 void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq);
550 void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq);
551 void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq);
552 /* put 8x8 block with bicubic interpolation and quarterpel precision
553 * last argument is actually round value instead of height
555 op_pixels_func put_vc1_mspel_pixels_tab[16];
556 op_pixels_func avg_vc1_mspel_pixels_tab[16];
558 /* intrax8 functions */
559 void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize);
560 void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize,
561 int * range, int * sum, int edges);
563 /* ape functions */
565 * Add contents of the second vector to the first one.
566 * @param len length of vectors, should be multiple of 16
568 void (*add_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
570 * Add contents of the second vector to the first one.
571 * @param len length of vectors, should be multiple of 16
573 void (*sub_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len);
575 * Calculate scalar product of two vectors.
576 * @param len length of vectors, should be multiple of 16
577 * @param shift number of bits to discard from product
579 int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift);
581 /* rv30 functions */
582 qpel_mc_func put_rv30_tpel_pixels_tab[4][16];
583 qpel_mc_func avg_rv30_tpel_pixels_tab[4][16];
585 /* rv40 functions */
586 qpel_mc_func put_rv40_qpel_pixels_tab[4][16];
587 qpel_mc_func avg_rv40_qpel_pixels_tab[4][16];
588 h264_chroma_mc_func put_rv40_chroma_pixels_tab[3];
589 h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3];
590 } DSPContext;
592 void dsputil_static_init(void);
593 void dsputil_init(DSPContext* p, AVCodecContext *avctx);
595 int ff_check_alignment(void);
598 * permute block according to permuatation.
599 * @param last last non zero element in scantable order
601 void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scantable, int last);
603 void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type);
605 #define BYTE_VEC32(c) ((c)*0x01010101UL)
607 static inline uint32_t rnd_avg32(uint32_t a, uint32_t b)
609 return (a | b) - (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
612 static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b)
614 return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1);
617 static inline int get_penalty_factor(int lambda, int lambda2, int type){
618 switch(type&0xFF){
619 default:
620 case FF_CMP_SAD:
621 return lambda>>FF_LAMBDA_SHIFT;
622 case FF_CMP_DCT:
623 return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
624 case FF_CMP_W53:
625 return (4*lambda)>>(FF_LAMBDA_SHIFT);
626 case FF_CMP_W97:
627 return (2*lambda)>>(FF_LAMBDA_SHIFT);
628 case FF_CMP_SATD:
629 case FF_CMP_DCT264:
630 return (2*lambda)>>FF_LAMBDA_SHIFT;
631 case FF_CMP_RD:
632 case FF_CMP_PSNR:
633 case FF_CMP_SSE:
634 case FF_CMP_NSSE:
635 return lambda2>>FF_LAMBDA_SHIFT;
636 case FF_CMP_BIT:
637 return 1;
642 * Empty mmx state.
643 * this must be called between any dsp function and float/double code.
644 * for example sin(); dsp->idct_put(); emms_c(); cos()
646 #define emms_c()
648 /* should be defined by architectures supporting
649 one or more MultiMedia extension */
650 int mm_support(void);
651 extern int mm_flags;
653 void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx);
654 void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx);
655 void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx);
656 void dsputil_init_mlib(DSPContext* c, AVCodecContext *avctx);
657 void dsputil_init_mmi(DSPContext* c, AVCodecContext *avctx);
658 void dsputil_init_mmx(DSPContext* c, AVCodecContext *avctx);
659 void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx);
660 void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx);
661 void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx);
663 #define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v)
664 #define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(8, t, v)
666 #if HAVE_MMX
668 #undef emms_c
670 static inline void emms(void)
672 __asm__ volatile ("emms;":::"memory");
676 #define emms_c() \
678 if (mm_flags & FF_MM_MMX)\
679 emms();\
682 #elif ARCH_ARM
684 #if HAVE_NEON
685 # define STRIDE_ALIGN 16
686 #endif
688 #elif ARCH_PPC
690 #define STRIDE_ALIGN 16
692 #elif HAVE_MMI
694 #define STRIDE_ALIGN 16
696 #else
698 #define mm_flags 0
699 #define mm_support() 0
701 #endif
703 #ifndef STRIDE_ALIGN
704 # define STRIDE_ALIGN 8
705 #endif
707 /* PSNR */
708 void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3],
709 int orig_linesize[3], int coded_linesize,
710 AVCodecContext *avctx);
712 /* FFT computation */
714 /* NOTE: soon integer code will be added, so you must use the
715 FFTSample type */
716 typedef float FFTSample;
718 typedef struct FFTComplex {
719 FFTSample re, im;
720 } FFTComplex;
722 typedef struct FFTContext {
723 int nbits;
724 int inverse;
725 uint16_t *revtab;
726 FFTComplex *exptab;
727 FFTComplex *exptab1; /* only used by SSE code */
728 FFTComplex *tmp_buf;
729 int mdct_size; /* size of MDCT (i.e. number of input data * 2) */
730 int mdct_bits; /* n = 2^nbits */
731 /* pre/post rotation tables */
732 FFTSample *tcos;
733 FFTSample *tsin;
734 void (*fft_permute)(struct FFTContext *s, FFTComplex *z);
735 void (*fft_calc)(struct FFTContext *s, FFTComplex *z);
736 void (*imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
737 void (*imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
738 void (*mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input);
739 int split_radix;
740 int permutation;
741 #define FF_MDCT_PERM_NONE 0
742 #define FF_MDCT_PERM_INTERLEAVE 1
743 } FFTContext;
745 #if CONFIG_HARDCODED_TABLES
746 extern const FFTSample* const ff_cos_tabs[13];
747 #else
748 extern FFTSample* const ff_cos_tabs[13];
749 #endif
752 * Sets up a complex FFT.
753 * @param nbits log2 of the length of the input array
754 * @param inverse if 0 perform the forward transform, if 1 perform the inverse
756 int ff_fft_init(FFTContext *s, int nbits, int inverse);
757 void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
758 void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
760 void ff_fft_init_altivec(FFTContext *s);
761 void ff_fft_init_mmx(FFTContext *s);
762 void ff_fft_init_arm(FFTContext *s);
765 * Do the permutation needed BEFORE calling ff_fft_calc().
767 static inline void ff_fft_permute(FFTContext *s, FFTComplex *z)
769 s->fft_permute(s, z);
772 * Do a complex FFT with the parameters defined in ff_fft_init(). The
773 * input data must be permuted before. No 1.0/sqrt(n) normalization is done.
775 static inline void ff_fft_calc(FFTContext *s, FFTComplex *z)
777 s->fft_calc(s, z);
779 void ff_fft_end(FFTContext *s);
781 /* MDCT computation */
783 static inline void ff_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input)
785 s->imdct_calc(s, output, input);
787 static inline void ff_imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input)
789 s->imdct_half(s, output, input);
792 static inline void ff_mdct_calc(FFTContext *s, FFTSample *output,
793 const FFTSample *input)
795 s->mdct_calc(s, output, input);
799 * Generate a Kaiser-Bessel Derived Window.
800 * @param window pointer to half window
801 * @param alpha determines window shape
802 * @param n size of half window
804 void ff_kbd_window_init(float *window, float alpha, int n);
807 * Generate a sine window.
808 * @param window pointer to half window
809 * @param n size of half window
811 void ff_sine_window_init(float *window, int n);
812 extern float ff_sine_32 [ 32];
813 extern float ff_sine_64 [ 64];
814 extern float ff_sine_128 [ 128];
815 extern float ff_sine_256 [ 256];
816 extern float ff_sine_512 [ 512];
817 extern float ff_sine_1024[1024];
818 extern float ff_sine_2048[2048];
819 extern float ff_sine_4096[4096];
820 extern float * const ff_sine_windows[13];
822 int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale);
823 void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
824 void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input);
825 void ff_mdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input);
826 void ff_mdct_end(FFTContext *s);
828 /* Real Discrete Fourier Transform */
830 enum RDFTransformType {
831 RDFT,
832 IRDFT,
833 RIDFT,
834 IRIDFT,
837 typedef struct {
838 int nbits;
839 int inverse;
840 int sign_convention;
842 /* pre/post rotation tables */
843 const FFTSample *tcos;
844 FFTSample *tsin;
845 FFTContext fft;
846 } RDFTContext;
849 * Sets up a real FFT.
850 * @param nbits log2 of the length of the input array
851 * @param trans the type of transform
853 int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans);
854 void ff_rdft_calc(RDFTContext *s, FFTSample *data);
855 void ff_rdft_end(RDFTContext *s);
857 #define WRAPPER8_16(name8, name16)\
858 static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
859 return name8(s, dst , src , stride, h)\
860 +name8(s, dst+8 , src+8 , stride, h);\
863 #define WRAPPER8_16_SQ(name8, name16)\
864 static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\
865 int score=0;\
866 score +=name8(s, dst , src , stride, 8);\
867 score +=name8(s, dst+8 , src+8 , stride, 8);\
868 if(h==16){\
869 dst += 8*stride;\
870 src += 8*stride;\
871 score +=name8(s, dst , src , stride, 8);\
872 score +=name8(s, dst+8 , src+8 , stride, 8);\
874 return score;\
878 static inline void copy_block2(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
880 int i;
881 for(i=0; i<h; i++)
883 AV_WN16(dst , AV_RN16(src ));
884 dst+=dstStride;
885 src+=srcStride;
889 static inline void copy_block4(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
891 int i;
892 for(i=0; i<h; i++)
894 AV_WN32(dst , AV_RN32(src ));
895 dst+=dstStride;
896 src+=srcStride;
900 static inline void copy_block8(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
902 int i;
903 for(i=0; i<h; i++)
905 AV_WN32(dst , AV_RN32(src ));
906 AV_WN32(dst+4 , AV_RN32(src+4 ));
907 dst+=dstStride;
908 src+=srcStride;
912 static inline void copy_block9(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
914 int i;
915 for(i=0; i<h; i++)
917 AV_WN32(dst , AV_RN32(src ));
918 AV_WN32(dst+4 , AV_RN32(src+4 ));
919 dst[8]= src[8];
920 dst+=dstStride;
921 src+=srcStride;
925 static inline void copy_block16(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
927 int i;
928 for(i=0; i<h; i++)
930 AV_WN32(dst , AV_RN32(src ));
931 AV_WN32(dst+4 , AV_RN32(src+4 ));
932 AV_WN32(dst+8 , AV_RN32(src+8 ));
933 AV_WN32(dst+12, AV_RN32(src+12));
934 dst+=dstStride;
935 src+=srcStride;
939 static inline void copy_block17(uint8_t *dst, const uint8_t *src, int dstStride, int srcStride, int h)
941 int i;
942 for(i=0; i<h; i++)
944 AV_WN32(dst , AV_RN32(src ));
945 AV_WN32(dst+4 , AV_RN32(src+4 ));
946 AV_WN32(dst+8 , AV_RN32(src+8 ));
947 AV_WN32(dst+12, AV_RN32(src+12));
948 dst[16]= src[16];
949 dst+=dstStride;
950 src+=srcStride;
954 #endif /* AVCODEC_DSPUTIL_H */