Add function to compute ceil(log2(x)).
[FFMpeg-mirror/lagarith.git] / libavcodec / vp3.c
blobd47bc1a411375ac10d85513662865be4924ba111
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 /**
22 * @file libavcodec/vp3.c
23 * On2 VP3 Video Decoder
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
29 * Theora decoder by Alex Beregszaszi
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
36 #include "avcodec.h"
37 #include "dsputil.h"
38 #include "get_bits.h"
40 #include "vp3data.h"
41 #include "xiph.h"
43 #define FRAGMENT_PIXELS 8
45 typedef struct Coeff {
46 struct Coeff *next;
47 DCTELEM coeff;
48 uint8_t index;
49 } Coeff;
51 //FIXME split things out into their own arrays
52 typedef struct Vp3Fragment {
53 Coeff *next_coeff;
54 /* address of first pixel taking into account which plane the fragment
55 * lives on as well as the plane stride */
56 int first_pixel;
57 /* this is the macroblock that the fragment belongs to */
58 uint16_t macroblock;
59 uint8_t coding_method;
60 int8_t motion_x;
61 int8_t motion_y;
62 uint8_t qpi;
63 } Vp3Fragment;
65 #define SB_NOT_CODED 0
66 #define SB_PARTIALLY_CODED 1
67 #define SB_FULLY_CODED 2
69 #define MODE_INTER_NO_MV 0
70 #define MODE_INTRA 1
71 #define MODE_INTER_PLUS_MV 2
72 #define MODE_INTER_LAST_MV 3
73 #define MODE_INTER_PRIOR_LAST 4
74 #define MODE_USING_GOLDEN 5
75 #define MODE_GOLDEN_MV 6
76 #define MODE_INTER_FOURMV 7
77 #define CODING_MODE_COUNT 8
79 /* special internal mode */
80 #define MODE_COPY 8
82 /* There are 6 preset schemes, plus a free-form scheme */
83 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
85 /* scheme 1: Last motion vector dominates */
86 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
87 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
88 MODE_INTRA, MODE_USING_GOLDEN,
89 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
91 /* scheme 2 */
92 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
93 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
94 MODE_INTRA, MODE_USING_GOLDEN,
95 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
97 /* scheme 3 */
98 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
99 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
100 MODE_INTRA, MODE_USING_GOLDEN,
101 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
103 /* scheme 4 */
104 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
105 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
106 MODE_INTRA, MODE_USING_GOLDEN,
107 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
109 /* scheme 5: No motion vector dominates */
110 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
111 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
112 MODE_INTRA, MODE_USING_GOLDEN,
113 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
115 /* scheme 6 */
116 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
117 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
118 MODE_INTER_PLUS_MV, MODE_INTRA,
119 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
123 #define MIN_DEQUANT_VAL 2
125 typedef struct Vp3DecodeContext {
126 AVCodecContext *avctx;
127 int theora, theora_tables;
128 int version;
129 int width, height;
130 AVFrame golden_frame;
131 AVFrame last_frame;
132 AVFrame current_frame;
133 int keyframe;
134 DSPContext dsp;
135 int flipped_image;
137 int qps[3];
138 int nqps;
139 int last_qps[3];
141 int superblock_count;
142 int y_superblock_width;
143 int y_superblock_height;
144 int c_superblock_width;
145 int c_superblock_height;
146 int u_superblock_start;
147 int v_superblock_start;
148 unsigned char *superblock_coding;
150 int macroblock_count;
151 int macroblock_width;
152 int macroblock_height;
154 int fragment_count;
155 int fragment_width;
156 int fragment_height;
158 Vp3Fragment *all_fragments;
159 uint8_t *coeff_counts;
160 Coeff *coeffs;
161 Coeff *next_coeff;
162 int fragment_start[3];
164 ScanTable scantable;
166 /* tables */
167 uint16_t coded_dc_scale_factor[64];
168 uint32_t coded_ac_scale_factor[64];
169 uint8_t base_matrix[384][64];
170 uint8_t qr_count[2][3];
171 uint8_t qr_size [2][3][64];
172 uint16_t qr_base[2][3][64];
174 /* this is a list of indexes into the all_fragments array indicating
175 * which of the fragments are coded */
176 int *coded_fragment_list;
177 int coded_fragment_list_index;
178 int pixel_addresses_initialized;
180 VLC dc_vlc[16];
181 VLC ac_vlc_1[16];
182 VLC ac_vlc_2[16];
183 VLC ac_vlc_3[16];
184 VLC ac_vlc_4[16];
186 VLC superblock_run_length_vlc;
187 VLC fragment_run_length_vlc;
188 VLC mode_code_vlc;
189 VLC motion_vector_vlc;
191 /* these arrays need to be on 16-byte boundaries since SSE2 operations
192 * index into them */
193 DECLARE_ALIGNED_16(int16_t, qmat[3][2][3][64]); //<qmat[qpi][is_inter][plane]
195 /* This table contains superblock_count * 16 entries. Each set of 16
196 * numbers corresponds to the fragment indexes 0..15 of the superblock.
197 * An entry will be -1 to indicate that no entry corresponds to that
198 * index. */
199 int *superblock_fragments;
201 /* This table contains superblock_count * 4 entries. Each set of 4
202 * numbers corresponds to the macroblock indexes 0..3 of the superblock.
203 * An entry will be -1 to indicate that no entry corresponds to that
204 * index. */
205 int *superblock_macroblocks;
207 /* This table contains macroblock_count * 6 entries. Each set of 6
208 * numbers corresponds to the fragment indexes 0..5 which comprise
209 * the macroblock (4 Y fragments and 2 C fragments). */
210 int *macroblock_fragments;
211 /* This is an array that indicates how a particular macroblock
212 * is coded. */
213 unsigned char *macroblock_coding;
215 int first_coded_y_fragment;
216 int first_coded_c_fragment;
217 int last_coded_y_fragment;
218 int last_coded_c_fragment;
220 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
221 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
223 /* Huffman decode */
224 int hti;
225 unsigned int hbits;
226 int entries;
227 int huff_code_size;
228 uint16_t huffman_table[80][32][2];
230 uint8_t filter_limit_values[64];
231 DECLARE_ALIGNED_8(int, bounding_values_array[256+2]);
232 } Vp3DecodeContext;
234 /************************************************************************
235 * VP3 specific functions
236 ************************************************************************/
239 * This function sets up all of the various blocks mappings:
240 * superblocks <-> fragments, macroblocks <-> fragments,
241 * superblocks <-> macroblocks
243 * Returns 0 is successful; returns 1 if *anything* went wrong.
245 static int init_block_mapping(Vp3DecodeContext *s)
247 int i, j;
248 signed int hilbert_walk_mb[4];
250 int current_fragment = 0;
251 int current_width = 0;
252 int current_height = 0;
253 int right_edge = 0;
254 int bottom_edge = 0;
255 int superblock_row_inc = 0;
256 int mapping_index = 0;
258 int current_macroblock;
259 int c_fragment;
261 signed char travel_width[16] = {
262 1, 1, 0, -1,
263 0, 0, 1, 0,
264 1, 0, 1, 0,
265 0, -1, 0, 1
268 signed char travel_height[16] = {
269 0, 0, 1, 0,
270 1, 1, 0, -1,
271 0, 1, 0, -1,
272 -1, 0, -1, 0
275 signed char travel_width_mb[4] = {
276 1, 0, 1, 0
279 signed char travel_height_mb[4] = {
280 0, 1, 0, -1
283 hilbert_walk_mb[0] = 1;
284 hilbert_walk_mb[1] = s->macroblock_width;
285 hilbert_walk_mb[2] = 1;
286 hilbert_walk_mb[3] = -s->macroblock_width;
288 /* iterate through each superblock (all planes) and map the fragments */
289 for (i = 0; i < s->superblock_count; i++) {
290 /* time to re-assign the limits? */
291 if (i == 0) {
293 /* start of Y superblocks */
294 right_edge = s->fragment_width;
295 bottom_edge = s->fragment_height;
296 current_width = -1;
297 current_height = 0;
298 superblock_row_inc = 3 * s->fragment_width -
299 (s->y_superblock_width * 4 - s->fragment_width);
301 /* the first operation for this variable is to advance by 1 */
302 current_fragment = -1;
304 } else if (i == s->u_superblock_start) {
306 /* start of U superblocks */
307 right_edge = s->fragment_width / 2;
308 bottom_edge = s->fragment_height / 2;
309 current_width = -1;
310 current_height = 0;
311 superblock_row_inc = 3 * (s->fragment_width / 2) -
312 (s->c_superblock_width * 4 - s->fragment_width / 2);
314 /* the first operation for this variable is to advance by 1 */
315 current_fragment = s->fragment_start[1] - 1;
317 } else if (i == s->v_superblock_start) {
319 /* start of V superblocks */
320 right_edge = s->fragment_width / 2;
321 bottom_edge = s->fragment_height / 2;
322 current_width = -1;
323 current_height = 0;
324 superblock_row_inc = 3 * (s->fragment_width / 2) -
325 (s->c_superblock_width * 4 - s->fragment_width / 2);
327 /* the first operation for this variable is to advance by 1 */
328 current_fragment = s->fragment_start[2] - 1;
332 if (current_width >= right_edge - 1) {
333 /* reset width and move to next superblock row */
334 current_width = -1;
335 current_height += 4;
337 /* fragment is now at the start of a new superblock row */
338 current_fragment += superblock_row_inc;
341 /* iterate through all 16 fragments in a superblock */
342 for (j = 0; j < 16; j++) {
343 current_fragment += travel_width[j] + right_edge * travel_height[j];
344 current_width += travel_width[j];
345 current_height += travel_height[j];
347 /* check if the fragment is in bounds */
348 if ((current_width < right_edge) &&
349 (current_height < bottom_edge)) {
350 s->superblock_fragments[mapping_index] = current_fragment;
351 } else {
352 s->superblock_fragments[mapping_index] = -1;
355 mapping_index++;
359 /* initialize the superblock <-> macroblock mapping; iterate through
360 * all of the Y plane superblocks to build this mapping */
361 right_edge = s->macroblock_width;
362 bottom_edge = s->macroblock_height;
363 current_width = -1;
364 current_height = 0;
365 superblock_row_inc = s->macroblock_width -
366 (s->y_superblock_width * 2 - s->macroblock_width);
367 mapping_index = 0;
368 current_macroblock = -1;
369 for (i = 0; i < s->u_superblock_start; i++) {
371 if (current_width >= right_edge - 1) {
372 /* reset width and move to next superblock row */
373 current_width = -1;
374 current_height += 2;
376 /* macroblock is now at the start of a new superblock row */
377 current_macroblock += superblock_row_inc;
380 /* iterate through each potential macroblock in the superblock */
381 for (j = 0; j < 4; j++) {
382 current_macroblock += hilbert_walk_mb[j];
383 current_width += travel_width_mb[j];
384 current_height += travel_height_mb[j];
386 /* check if the macroblock is in bounds */
387 if ((current_width < right_edge) &&
388 (current_height < bottom_edge)) {
389 s->superblock_macroblocks[mapping_index] = current_macroblock;
390 } else {
391 s->superblock_macroblocks[mapping_index] = -1;
394 mapping_index++;
398 /* initialize the macroblock <-> fragment mapping */
399 current_fragment = 0;
400 current_macroblock = 0;
401 mapping_index = 0;
402 for (i = 0; i < s->fragment_height; i += 2) {
404 for (j = 0; j < s->fragment_width; j += 2) {
406 s->all_fragments[current_fragment].macroblock = current_macroblock;
407 s->macroblock_fragments[mapping_index++] = current_fragment;
409 if (j + 1 < s->fragment_width) {
410 s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
411 s->macroblock_fragments[mapping_index++] = current_fragment + 1;
412 } else
413 s->macroblock_fragments[mapping_index++] = -1;
415 if (i + 1 < s->fragment_height) {
416 s->all_fragments[current_fragment + s->fragment_width].macroblock =
417 current_macroblock;
418 s->macroblock_fragments[mapping_index++] =
419 current_fragment + s->fragment_width;
420 } else
421 s->macroblock_fragments[mapping_index++] = -1;
423 if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
424 s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
425 current_macroblock;
426 s->macroblock_fragments[mapping_index++] =
427 current_fragment + s->fragment_width + 1;
428 } else
429 s->macroblock_fragments[mapping_index++] = -1;
431 /* C planes */
432 c_fragment = s->fragment_start[1] +
433 (i * s->fragment_width / 4) + (j / 2);
434 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
435 s->macroblock_fragments[mapping_index++] = c_fragment;
437 c_fragment = s->fragment_start[2] +
438 (i * s->fragment_width / 4) + (j / 2);
439 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
440 s->macroblock_fragments[mapping_index++] = c_fragment;
442 if (j + 2 <= s->fragment_width)
443 current_fragment += 2;
444 else
445 current_fragment++;
446 current_macroblock++;
449 current_fragment += s->fragment_width;
452 return 0; /* successful path out */
456 * This function wipes out all of the fragment data.
458 static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
460 int i;
462 /* zero out all of the fragment information */
463 s->coded_fragment_list_index = 0;
464 for (i = 0; i < s->fragment_count; i++) {
465 s->coeff_counts[i] = 0;
466 s->all_fragments[i].motion_x = 127;
467 s->all_fragments[i].motion_y = 127;
468 s->all_fragments[i].next_coeff= NULL;
469 s->all_fragments[i].qpi = 0;
470 s->coeffs[i].index=
471 s->coeffs[i].coeff=0;
472 s->coeffs[i].next= NULL;
477 * This function sets up the dequantization tables used for a particular
478 * frame.
480 static void init_dequantizer(Vp3DecodeContext *s, int qpi)
482 int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
483 int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
484 int i, plane, inter, qri, bmi, bmj, qistart;
486 for(inter=0; inter<2; inter++){
487 for(plane=0; plane<3; plane++){
488 int sum=0;
489 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
490 sum+= s->qr_size[inter][plane][qri];
491 if(s->qps[qpi] <= sum)
492 break;
494 qistart= sum - s->qr_size[inter][plane][qri];
495 bmi= s->qr_base[inter][plane][qri ];
496 bmj= s->qr_base[inter][plane][qri+1];
497 for(i=0; i<64; i++){
498 int coeff= ( 2*(sum -s->qps[qpi])*s->base_matrix[bmi][i]
499 - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
500 + s->qr_size[inter][plane][qri])
501 / (2*s->qr_size[inter][plane][qri]);
503 int qmin= 8<<(inter + !i);
504 int qscale= i ? ac_scale_factor : dc_scale_factor;
506 s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
508 // all DC coefficients use the same quant so as not to interfere with DC prediction
509 s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
513 memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
517 * This function initializes the loop filter boundary limits if the frame's
518 * quality index is different from the previous frame's.
520 * The filter_limit_values may not be larger than 127.
522 static void init_loop_filter(Vp3DecodeContext *s)
524 int *bounding_values= s->bounding_values_array+127;
525 int filter_limit;
526 int x;
527 int value;
529 filter_limit = s->filter_limit_values[s->qps[0]];
531 /* set up the bounding values */
532 memset(s->bounding_values_array, 0, 256 * sizeof(int));
533 for (x = 0; x < filter_limit; x++) {
534 bounding_values[-x] = -x;
535 bounding_values[x] = x;
537 for (x = value = filter_limit; x < 128 && value; x++, value--) {
538 bounding_values[ x] = value;
539 bounding_values[-x] = -value;
541 if (value)
542 bounding_values[128] = value;
543 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
547 * This function unpacks all of the superblock/macroblock/fragment coding
548 * information from the bitstream.
550 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
552 int bit = 0;
553 int current_superblock = 0;
554 int current_run = 0;
555 int decode_fully_flags = 0;
556 int decode_partial_blocks = 0;
557 int first_c_fragment_seen;
559 int i, j;
560 int current_fragment;
562 if (s->keyframe) {
563 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
565 } else {
567 /* unpack the list of partially-coded superblocks */
568 bit = get_bits1(gb);
569 /* toggle the bit because as soon as the first run length is
570 * fetched the bit will be toggled again */
571 bit ^= 1;
572 while (current_superblock < s->superblock_count) {
573 if (current_run-- == 0) {
574 bit ^= 1;
575 current_run = get_vlc2(gb,
576 s->superblock_run_length_vlc.table, 6, 2);
577 if (current_run == 33)
578 current_run += get_bits(gb, 12);
580 /* if any of the superblocks are not partially coded, flag
581 * a boolean to decode the list of fully-coded superblocks */
582 if (bit == 0) {
583 decode_fully_flags = 1;
584 } else {
586 /* make a note of the fact that there are partially coded
587 * superblocks */
588 decode_partial_blocks = 1;
591 s->superblock_coding[current_superblock++] = bit;
594 /* unpack the list of fully coded superblocks if any of the blocks were
595 * not marked as partially coded in the previous step */
596 if (decode_fully_flags) {
598 current_superblock = 0;
599 current_run = 0;
600 bit = get_bits1(gb);
601 /* toggle the bit because as soon as the first run length is
602 * fetched the bit will be toggled again */
603 bit ^= 1;
604 while (current_superblock < s->superblock_count) {
606 /* skip any superblocks already marked as partially coded */
607 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
609 if (current_run-- == 0) {
610 bit ^= 1;
611 current_run = get_vlc2(gb,
612 s->superblock_run_length_vlc.table, 6, 2);
613 if (current_run == 33)
614 current_run += get_bits(gb, 12);
616 s->superblock_coding[current_superblock] = 2*bit;
618 current_superblock++;
622 /* if there were partial blocks, initialize bitstream for
623 * unpacking fragment codings */
624 if (decode_partial_blocks) {
626 current_run = 0;
627 bit = get_bits1(gb);
628 /* toggle the bit because as soon as the first run length is
629 * fetched the bit will be toggled again */
630 bit ^= 1;
634 /* figure out which fragments are coded; iterate through each
635 * superblock (all planes) */
636 s->coded_fragment_list_index = 0;
637 s->next_coeff= s->coeffs + s->fragment_count;
638 s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
639 s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
640 first_c_fragment_seen = 0;
641 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
642 for (i = 0; i < s->superblock_count; i++) {
644 /* iterate through all 16 fragments in a superblock */
645 for (j = 0; j < 16; j++) {
647 /* if the fragment is in bounds, check its coding status */
648 current_fragment = s->superblock_fragments[i * 16 + j];
649 if (current_fragment >= s->fragment_count) {
650 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
651 current_fragment, s->fragment_count);
652 return 1;
654 if (current_fragment != -1) {
655 if (s->superblock_coding[i] == SB_NOT_CODED) {
657 /* copy all the fragments from the prior frame */
658 s->all_fragments[current_fragment].coding_method =
659 MODE_COPY;
661 } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
663 /* fragment may or may not be coded; this is the case
664 * that cares about the fragment coding runs */
665 if (current_run-- == 0) {
666 bit ^= 1;
667 current_run = get_vlc2(gb,
668 s->fragment_run_length_vlc.table, 5, 2);
671 if (bit) {
672 /* default mode; actual mode will be decoded in
673 * the next phase */
674 s->all_fragments[current_fragment].coding_method =
675 MODE_INTER_NO_MV;
676 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
677 s->coded_fragment_list[s->coded_fragment_list_index] =
678 current_fragment;
679 if ((current_fragment >= s->fragment_start[1]) &&
680 (s->last_coded_y_fragment == -1) &&
681 (!first_c_fragment_seen)) {
682 s->first_coded_c_fragment = s->coded_fragment_list_index;
683 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
684 first_c_fragment_seen = 1;
686 s->coded_fragment_list_index++;
687 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
688 } else {
689 /* not coded; copy this fragment from the prior frame */
690 s->all_fragments[current_fragment].coding_method =
691 MODE_COPY;
694 } else {
696 /* fragments are fully coded in this superblock; actual
697 * coding will be determined in next step */
698 s->all_fragments[current_fragment].coding_method =
699 MODE_INTER_NO_MV;
700 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
701 s->coded_fragment_list[s->coded_fragment_list_index] =
702 current_fragment;
703 if ((current_fragment >= s->fragment_start[1]) &&
704 (s->last_coded_y_fragment == -1) &&
705 (!first_c_fragment_seen)) {
706 s->first_coded_c_fragment = s->coded_fragment_list_index;
707 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
708 first_c_fragment_seen = 1;
710 s->coded_fragment_list_index++;
711 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
717 if (!first_c_fragment_seen)
718 /* only Y fragments coded in this frame */
719 s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
720 else
721 /* end the list of coded C fragments */
722 s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
724 return 0;
728 * This function unpacks all the coding mode data for individual macroblocks
729 * from the bitstream.
731 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
733 int i, j, k;
734 int scheme;
735 int current_macroblock;
736 int current_fragment;
737 int coding_mode;
738 int custom_mode_alphabet[CODING_MODE_COUNT];
740 if (s->keyframe) {
741 for (i = 0; i < s->fragment_count; i++)
742 s->all_fragments[i].coding_method = MODE_INTRA;
744 } else {
746 /* fetch the mode coding scheme for this frame */
747 scheme = get_bits(gb, 3);
749 /* is it a custom coding scheme? */
750 if (scheme == 0) {
751 for (i = 0; i < 8; i++)
752 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
753 for (i = 0; i < 8; i++)
754 custom_mode_alphabet[get_bits(gb, 3)] = i;
757 /* iterate through all of the macroblocks that contain 1 or more
758 * coded fragments */
759 for (i = 0; i < s->u_superblock_start; i++) {
761 for (j = 0; j < 4; j++) {
762 current_macroblock = s->superblock_macroblocks[i * 4 + j];
763 if ((current_macroblock == -1) ||
764 (s->macroblock_coding[current_macroblock] == MODE_COPY))
765 continue;
766 if (current_macroblock >= s->macroblock_count) {
767 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
768 current_macroblock, s->macroblock_count);
769 return 1;
772 /* mode 7 means get 3 bits for each coding mode */
773 if (scheme == 7)
774 coding_mode = get_bits(gb, 3);
775 else if(scheme == 0)
776 coding_mode = custom_mode_alphabet
777 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
778 else
779 coding_mode = ModeAlphabet[scheme-1]
780 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
782 s->macroblock_coding[current_macroblock] = coding_mode;
783 for (k = 0; k < 6; k++) {
784 current_fragment =
785 s->macroblock_fragments[current_macroblock * 6 + k];
786 if (current_fragment == -1)
787 continue;
788 if (current_fragment >= s->fragment_count) {
789 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
790 current_fragment, s->fragment_count);
791 return 1;
793 if (s->all_fragments[current_fragment].coding_method !=
794 MODE_COPY)
795 s->all_fragments[current_fragment].coding_method =
796 coding_mode;
802 return 0;
806 * This function unpacks all the motion vectors for the individual
807 * macroblocks from the bitstream.
809 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
811 int i, j, k, l;
812 int coding_mode;
813 int motion_x[6];
814 int motion_y[6];
815 int last_motion_x = 0;
816 int last_motion_y = 0;
817 int prior_last_motion_x = 0;
818 int prior_last_motion_y = 0;
819 int current_macroblock;
820 int current_fragment;
822 if (s->keyframe)
823 return 0;
825 memset(motion_x, 0, 6 * sizeof(int));
826 memset(motion_y, 0, 6 * sizeof(int));
828 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
829 coding_mode = get_bits1(gb);
831 /* iterate through all of the macroblocks that contain 1 or more
832 * coded fragments */
833 for (i = 0; i < s->u_superblock_start; i++) {
835 for (j = 0; j < 4; j++) {
836 current_macroblock = s->superblock_macroblocks[i * 4 + j];
837 if ((current_macroblock == -1) ||
838 (s->macroblock_coding[current_macroblock] == MODE_COPY))
839 continue;
840 if (current_macroblock >= s->macroblock_count) {
841 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
842 current_macroblock, s->macroblock_count);
843 return 1;
846 current_fragment = s->macroblock_fragments[current_macroblock * 6];
847 if (current_fragment >= s->fragment_count) {
848 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
849 current_fragment, s->fragment_count);
850 return 1;
852 switch (s->macroblock_coding[current_macroblock]) {
854 case MODE_INTER_PLUS_MV:
855 case MODE_GOLDEN_MV:
856 /* all 6 fragments use the same motion vector */
857 if (coding_mode == 0) {
858 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
859 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
860 } else {
861 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
862 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
865 for (k = 1; k < 6; k++) {
866 motion_x[k] = motion_x[0];
867 motion_y[k] = motion_y[0];
870 /* vector maintenance, only on MODE_INTER_PLUS_MV */
871 if (s->macroblock_coding[current_macroblock] ==
872 MODE_INTER_PLUS_MV) {
873 prior_last_motion_x = last_motion_x;
874 prior_last_motion_y = last_motion_y;
875 last_motion_x = motion_x[0];
876 last_motion_y = motion_y[0];
878 break;
880 case MODE_INTER_FOURMV:
881 /* vector maintenance */
882 prior_last_motion_x = last_motion_x;
883 prior_last_motion_y = last_motion_y;
885 /* fetch 4 vectors from the bitstream, one for each
886 * Y fragment, then average for the C fragment vectors */
887 motion_x[4] = motion_y[4] = 0;
888 for (k = 0; k < 4; k++) {
889 for (l = 0; l < s->coded_fragment_list_index; l++)
890 if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k])
891 break;
892 if (l < s->coded_fragment_list_index) {
893 if (coding_mode == 0) {
894 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
895 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
896 } else {
897 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
898 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
900 last_motion_x = motion_x[k];
901 last_motion_y = motion_y[k];
902 } else {
903 motion_x[k] = 0;
904 motion_y[k] = 0;
906 motion_x[4] += motion_x[k];
907 motion_y[4] += motion_y[k];
910 motion_x[5]=
911 motion_x[4]= RSHIFT(motion_x[4], 2);
912 motion_y[5]=
913 motion_y[4]= RSHIFT(motion_y[4], 2);
914 break;
916 case MODE_INTER_LAST_MV:
917 /* all 6 fragments use the last motion vector */
918 motion_x[0] = last_motion_x;
919 motion_y[0] = last_motion_y;
920 for (k = 1; k < 6; k++) {
921 motion_x[k] = motion_x[0];
922 motion_y[k] = motion_y[0];
925 /* no vector maintenance (last vector remains the
926 * last vector) */
927 break;
929 case MODE_INTER_PRIOR_LAST:
930 /* all 6 fragments use the motion vector prior to the
931 * last motion vector */
932 motion_x[0] = prior_last_motion_x;
933 motion_y[0] = prior_last_motion_y;
934 for (k = 1; k < 6; k++) {
935 motion_x[k] = motion_x[0];
936 motion_y[k] = motion_y[0];
939 /* vector maintenance */
940 prior_last_motion_x = last_motion_x;
941 prior_last_motion_y = last_motion_y;
942 last_motion_x = motion_x[0];
943 last_motion_y = motion_y[0];
944 break;
946 default:
947 /* covers intra, inter without MV, golden without MV */
948 memset(motion_x, 0, 6 * sizeof(int));
949 memset(motion_y, 0, 6 * sizeof(int));
951 /* no vector maintenance */
952 break;
955 /* assign the motion vectors to the correct fragments */
956 for (k = 0; k < 6; k++) {
957 current_fragment =
958 s->macroblock_fragments[current_macroblock * 6 + k];
959 if (current_fragment == -1)
960 continue;
961 if (current_fragment >= s->fragment_count) {
962 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
963 current_fragment, s->fragment_count);
964 return 1;
966 s->all_fragments[current_fragment].motion_x = motion_x[k];
967 s->all_fragments[current_fragment].motion_y = motion_y[k];
972 return 0;
975 static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
977 int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
978 int num_blocks = s->coded_fragment_list_index;
980 for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
981 i = blocks_decoded = num_blocks_at_qpi = 0;
983 bit = get_bits1(gb);
985 do {
986 run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
987 if (run_length == 34)
988 run_length += get_bits(gb, 12);
989 blocks_decoded += run_length;
991 if (!bit)
992 num_blocks_at_qpi += run_length;
994 for (j = 0; j < run_length; i++) {
995 if (i > s->coded_fragment_list_index)
996 return -1;
998 if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) {
999 s->all_fragments[s->coded_fragment_list[i]].qpi += bit;
1000 j++;
1004 if (run_length == 4129)
1005 bit = get_bits1(gb);
1006 else
1007 bit ^= 1;
1008 } while (blocks_decoded < num_blocks);
1010 num_blocks -= num_blocks_at_qpi;
1013 return 0;
1017 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1018 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1019 * data. This function unpacks all the VLCs for either the Y plane or both
1020 * C planes, and is called for DC coefficients or different AC coefficient
1021 * levels (since different coefficient types require different VLC tables.
1023 * This function returns a residual eob run. E.g, if a particular token gave
1024 * instructions to EOB the next 5 fragments and there were only 2 fragments
1025 * left in the current fragment range, 3 would be returned so that it could
1026 * be passed into the next call to this same function.
1028 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1029 VLC *table, int coeff_index,
1030 int first_fragment, int last_fragment,
1031 int eob_run)
1033 int i;
1034 int token;
1035 int zero_run = 0;
1036 DCTELEM coeff = 0;
1037 Vp3Fragment *fragment;
1038 uint8_t *perm= s->scantable.permutated;
1039 int bits_to_get;
1041 if ((first_fragment >= s->fragment_count) ||
1042 (last_fragment >= s->fragment_count)) {
1044 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1045 first_fragment, last_fragment);
1046 return 0;
1049 for (i = first_fragment; i <= last_fragment; i++) {
1050 int fragment_num = s->coded_fragment_list[i];
1052 if (s->coeff_counts[fragment_num] > coeff_index)
1053 continue;
1054 fragment = &s->all_fragments[fragment_num];
1056 if (!eob_run) {
1057 /* decode a VLC into a token */
1058 token = get_vlc2(gb, table->table, 5, 3);
1059 /* use the token to get a zero run, a coefficient, and an eob run */
1060 if (token <= 6) {
1061 eob_run = eob_run_base[token];
1062 if (eob_run_get_bits[token])
1063 eob_run += get_bits(gb, eob_run_get_bits[token]);
1064 coeff = zero_run = 0;
1065 } else {
1066 bits_to_get = coeff_get_bits[token];
1067 if (!bits_to_get)
1068 coeff = coeff_tables[token][0];
1069 else
1070 coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
1072 zero_run = zero_run_base[token];
1073 if (zero_run_get_bits[token])
1074 zero_run += get_bits(gb, zero_run_get_bits[token]);
1078 if (!eob_run) {
1079 s->coeff_counts[fragment_num] += zero_run;
1080 if (s->coeff_counts[fragment_num] < 64){
1081 fragment->next_coeff->coeff= coeff;
1082 fragment->next_coeff->index= perm[s->coeff_counts[fragment_num]++]; //FIXME perm here already?
1083 fragment->next_coeff->next= s->next_coeff;
1084 s->next_coeff->next=NULL;
1085 fragment->next_coeff= s->next_coeff++;
1087 } else {
1088 s->coeff_counts[fragment_num] |= 128;
1089 eob_run--;
1093 return eob_run;
1097 * This function unpacks all of the DCT coefficient data from the
1098 * bitstream.
1100 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1102 int i;
1103 int dc_y_table;
1104 int dc_c_table;
1105 int ac_y_table;
1106 int ac_c_table;
1107 int residual_eob_run = 0;
1109 /* fetch the DC table indexes */
1110 dc_y_table = get_bits(gb, 4);
1111 dc_c_table = get_bits(gb, 4);
1113 /* unpack the Y plane DC coefficients */
1114 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1115 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1117 /* unpack the C plane DC coefficients */
1118 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1119 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1121 /* fetch the AC table indexes */
1122 ac_y_table = get_bits(gb, 4);
1123 ac_c_table = get_bits(gb, 4);
1125 /* unpack the group 1 AC coefficients (coeffs 1-5) */
1126 for (i = 1; i <= 5; i++) {
1127 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1128 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1130 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1131 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1134 /* unpack the group 2 AC coefficients (coeffs 6-14) */
1135 for (i = 6; i <= 14; i++) {
1136 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1137 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1139 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1140 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1143 /* unpack the group 3 AC coefficients (coeffs 15-27) */
1144 for (i = 15; i <= 27; i++) {
1145 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1146 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1148 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1149 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1152 /* unpack the group 4 AC coefficients (coeffs 28-63) */
1153 for (i = 28; i <= 63; i++) {
1154 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1155 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1157 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1158 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1161 return 0;
1165 * This function reverses the DC prediction for each coded fragment in
1166 * the frame. Much of this function is adapted directly from the original
1167 * VP3 source code.
1169 #define COMPATIBLE_FRAME(x) \
1170 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1171 #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1172 #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1174 static void reverse_dc_prediction(Vp3DecodeContext *s,
1175 int first_fragment,
1176 int fragment_width,
1177 int fragment_height)
1180 #define PUL 8
1181 #define PU 4
1182 #define PUR 2
1183 #define PL 1
1185 int x, y;
1186 int i = first_fragment;
1188 int predicted_dc;
1190 /* DC values for the left, up-left, up, and up-right fragments */
1191 int vl, vul, vu, vur;
1193 /* indexes for the left, up-left, up, and up-right fragments */
1194 int l, ul, u, ur;
1197 * The 6 fields mean:
1198 * 0: up-left multiplier
1199 * 1: up multiplier
1200 * 2: up-right multiplier
1201 * 3: left multiplier
1203 int predictor_transform[16][4] = {
1204 { 0, 0, 0, 0},
1205 { 0, 0, 0,128}, // PL
1206 { 0, 0,128, 0}, // PUR
1207 { 0, 0, 53, 75}, // PUR|PL
1208 { 0,128, 0, 0}, // PU
1209 { 0, 64, 0, 64}, // PU|PL
1210 { 0,128, 0, 0}, // PU|PUR
1211 { 0, 0, 53, 75}, // PU|PUR|PL
1212 {128, 0, 0, 0}, // PUL
1213 { 0, 0, 0,128}, // PUL|PL
1214 { 64, 0, 64, 0}, // PUL|PUR
1215 { 0, 0, 53, 75}, // PUL|PUR|PL
1216 { 0,128, 0, 0}, // PUL|PU
1217 {-104,116, 0,116}, // PUL|PU|PL
1218 { 24, 80, 24, 0}, // PUL|PU|PUR
1219 {-104,116, 0,116} // PUL|PU|PUR|PL
1222 /* This table shows which types of blocks can use other blocks for
1223 * prediction. For example, INTRA is the only mode in this table to
1224 * have a frame number of 0. That means INTRA blocks can only predict
1225 * from other INTRA blocks. There are 2 golden frame coding types;
1226 * blocks encoding in these modes can only predict from other blocks
1227 * that were encoded with these 1 of these 2 modes. */
1228 unsigned char compatible_frame[8] = {
1229 1, /* MODE_INTER_NO_MV */
1230 0, /* MODE_INTRA */
1231 1, /* MODE_INTER_PLUS_MV */
1232 1, /* MODE_INTER_LAST_MV */
1233 1, /* MODE_INTER_PRIOR_MV */
1234 2, /* MODE_USING_GOLDEN */
1235 2, /* MODE_GOLDEN_MV */
1236 1 /* MODE_INTER_FOUR_MV */
1238 int current_frame_type;
1240 /* there is a last DC predictor for each of the 3 frame types */
1241 short last_dc[3];
1243 int transform = 0;
1245 vul = vu = vur = vl = 0;
1246 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1248 /* for each fragment row... */
1249 for (y = 0; y < fragment_height; y++) {
1251 /* for each fragment in a row... */
1252 for (x = 0; x < fragment_width; x++, i++) {
1254 /* reverse prediction if this block was coded */
1255 if (s->all_fragments[i].coding_method != MODE_COPY) {
1257 current_frame_type =
1258 compatible_frame[s->all_fragments[i].coding_method];
1260 transform= 0;
1261 if(x){
1262 l= i-1;
1263 vl = DC_COEFF(l);
1264 if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
1265 transform |= PL;
1267 if(y){
1268 u= i-fragment_width;
1269 vu = DC_COEFF(u);
1270 if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
1271 transform |= PU;
1272 if(x){
1273 ul= i-fragment_width-1;
1274 vul = DC_COEFF(ul);
1275 if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
1276 transform |= PUL;
1278 if(x + 1 < fragment_width){
1279 ur= i-fragment_width+1;
1280 vur = DC_COEFF(ur);
1281 if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
1282 transform |= PUR;
1286 if (transform == 0) {
1288 /* if there were no fragments to predict from, use last
1289 * DC saved */
1290 predicted_dc = last_dc[current_frame_type];
1291 } else {
1293 /* apply the appropriate predictor transform */
1294 predicted_dc =
1295 (predictor_transform[transform][0] * vul) +
1296 (predictor_transform[transform][1] * vu) +
1297 (predictor_transform[transform][2] * vur) +
1298 (predictor_transform[transform][3] * vl);
1300 predicted_dc /= 128;
1302 /* check for outranging on the [ul u l] and
1303 * [ul u ur l] predictors */
1304 if ((transform == 13) || (transform == 15)) {
1305 if (FFABS(predicted_dc - vu) > 128)
1306 predicted_dc = vu;
1307 else if (FFABS(predicted_dc - vl) > 128)
1308 predicted_dc = vl;
1309 else if (FFABS(predicted_dc - vul) > 128)
1310 predicted_dc = vul;
1314 /* at long last, apply the predictor */
1315 if(s->coeffs[i].index){
1316 *s->next_coeff= s->coeffs[i];
1317 s->coeffs[i].index=0;
1318 s->coeffs[i].coeff=0;
1319 s->coeffs[i].next= s->next_coeff++;
1321 s->coeffs[i].coeff += predicted_dc;
1322 /* save the DC */
1323 last_dc[current_frame_type] = DC_COEFF(i);
1324 if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1325 s->coeff_counts[i]= 129;
1326 // s->all_fragments[i].next_coeff= s->next_coeff;
1327 s->coeffs[i].next= s->next_coeff;
1328 (s->next_coeff++)->next=NULL;
1336 * Perform the final rendering for a particular slice of data.
1337 * The slice number ranges from 0..(macroblock_height - 1).
1339 static void render_slice(Vp3DecodeContext *s, int slice)
1341 int x;
1342 int16_t *dequantizer;
1343 DECLARE_ALIGNED_16(DCTELEM, block[64]);
1344 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1345 int motion_halfpel_index;
1346 uint8_t *motion_source;
1347 int plane;
1348 int current_macroblock_entry = slice * s->macroblock_width * 6;
1350 if (slice >= s->macroblock_height)
1351 return;
1353 for (plane = 0; plane < 3; plane++) {
1354 uint8_t *output_plane = s->current_frame.data [plane];
1355 uint8_t * last_plane = s-> last_frame.data [plane];
1356 uint8_t *golden_plane = s-> golden_frame.data [plane];
1357 int stride = s->current_frame.linesize[plane];
1358 int plane_width = s->width >> !!plane;
1359 int plane_height = s->height >> !!plane;
1360 int y = slice * FRAGMENT_PIXELS << !plane ;
1361 int slice_height = y + (FRAGMENT_PIXELS << !plane);
1362 int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1364 if (!s->flipped_image) stride = -stride;
1367 if(FFABS(stride) > 2048)
1368 return; //various tables are fixed size
1370 /* for each fragment row in the slice (both of them)... */
1371 for (; y < slice_height; y += 8) {
1373 /* for each fragment in a row... */
1374 for (x = 0; x < plane_width; x += 8, i++) {
1376 if ((i < 0) || (i >= s->fragment_count)) {
1377 av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
1378 return;
1381 /* transform if this block was coded */
1382 if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1383 !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1385 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1386 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1387 motion_source= golden_plane;
1388 else
1389 motion_source= last_plane;
1391 motion_source += s->all_fragments[i].first_pixel;
1392 motion_halfpel_index = 0;
1394 /* sort out the motion vector if this fragment is coded
1395 * using a motion vector method */
1396 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1397 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1398 int src_x, src_y;
1399 motion_x = s->all_fragments[i].motion_x;
1400 motion_y = s->all_fragments[i].motion_y;
1401 if(plane){
1402 motion_x= (motion_x>>1) | (motion_x&1);
1403 motion_y= (motion_y>>1) | (motion_y&1);
1406 src_x= (motion_x>>1) + x;
1407 src_y= (motion_y>>1) + y;
1408 if ((motion_x == 127) || (motion_y == 127))
1409 av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1411 motion_halfpel_index = motion_x & 0x01;
1412 motion_source += (motion_x >> 1);
1414 motion_halfpel_index |= (motion_y & 0x01) << 1;
1415 motion_source += ((motion_y >> 1) * stride);
1417 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1418 uint8_t *temp= s->edge_emu_buffer;
1419 if(stride<0) temp -= 9*stride;
1420 else temp += 9*stride;
1422 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1423 motion_source= temp;
1428 /* first, take care of copying a block from either the
1429 * previous or the golden frame */
1430 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1431 /* Note, it is possible to implement all MC cases with
1432 put_no_rnd_pixels_l2 which would look more like the
1433 VP3 source but this would be slower as
1434 put_no_rnd_pixels_tab is better optimzed */
1435 if(motion_halfpel_index != 3){
1436 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1437 output_plane + s->all_fragments[i].first_pixel,
1438 motion_source, stride, 8);
1439 }else{
1440 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1441 s->dsp.put_no_rnd_pixels_l2[1](
1442 output_plane + s->all_fragments[i].first_pixel,
1443 motion_source - d,
1444 motion_source + stride + 1 + d,
1445 stride, 8);
1447 dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane];
1448 }else{
1449 dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane];
1452 /* dequantize the DCT coefficients */
1453 if(s->avctx->idct_algo==FF_IDCT_VP3){
1454 Coeff *coeff= s->coeffs + i;
1455 s->dsp.clear_block(block);
1456 while(coeff->next){
1457 block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1458 coeff= coeff->next;
1460 }else{
1461 Coeff *coeff= s->coeffs + i;
1462 s->dsp.clear_block(block);
1463 while(coeff->next){
1464 block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1465 coeff= coeff->next;
1469 /* invert DCT and place (or add) in final output */
1471 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1472 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1473 block[0] += 128<<3;
1474 s->dsp.idct_put(
1475 output_plane + s->all_fragments[i].first_pixel,
1476 stride,
1477 block);
1478 } else {
1479 s->dsp.idct_add(
1480 output_plane + s->all_fragments[i].first_pixel,
1481 stride,
1482 block);
1484 } else {
1486 /* copy directly from the previous frame */
1487 s->dsp.put_pixels_tab[1][0](
1488 output_plane + s->all_fragments[i].first_pixel,
1489 last_plane + s->all_fragments[i].first_pixel,
1490 stride, 8);
1493 #if 0
1494 /* perform the left edge filter if:
1495 * - the fragment is not on the left column
1496 * - the fragment is coded in this frame
1497 * - the fragment is not coded in this frame but the left
1498 * fragment is coded in this frame (this is done instead
1499 * of a right edge filter when rendering the left fragment
1500 * since this fragment is not available yet) */
1501 if ((x > 0) &&
1502 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1503 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1504 (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1505 horizontal_filter(
1506 output_plane + s->all_fragments[i].first_pixel + 7*stride,
1507 -stride, s->bounding_values_array + 127);
1510 /* perform the top edge filter if:
1511 * - the fragment is not on the top row
1512 * - the fragment is coded in this frame
1513 * - the fragment is not coded in this frame but the above
1514 * fragment is coded in this frame (this is done instead
1515 * of a bottom edge filter when rendering the above
1516 * fragment since this fragment is not available yet) */
1517 if ((y > 0) &&
1518 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1519 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1520 (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1521 vertical_filter(
1522 output_plane + s->all_fragments[i].first_pixel - stride,
1523 -stride, s->bounding_values_array + 127);
1525 #endif
1530 /* this looks like a good place for slice dispatch... */
1531 /* algorithm:
1532 * if (slice == s->macroblock_height - 1)
1533 * dispatch (both last slice & 2nd-to-last slice);
1534 * else if (slice > 0)
1535 * dispatch (slice - 1);
1538 emms_c();
1541 static void apply_loop_filter(Vp3DecodeContext *s)
1543 int plane;
1544 int x, y;
1545 int *bounding_values= s->bounding_values_array+127;
1547 #if 0
1548 int bounding_values_array[256];
1549 int filter_limit;
1551 /* find the right loop limit value */
1552 for (x = 63; x >= 0; x--) {
1553 if (vp31_ac_scale_factor[x] >= s->quality_index)
1554 break;
1556 filter_limit = vp31_filter_limit_values[s->quality_index];
1558 /* set up the bounding values */
1559 memset(bounding_values_array, 0, 256 * sizeof(int));
1560 for (x = 0; x < filter_limit; x++) {
1561 bounding_values[-x - filter_limit] = -filter_limit + x;
1562 bounding_values[-x] = -x;
1563 bounding_values[x] = x;
1564 bounding_values[x + filter_limit] = filter_limit - x;
1566 #endif
1568 for (plane = 0; plane < 3; plane++) {
1569 int width = s->fragment_width >> !!plane;
1570 int height = s->fragment_height >> !!plane;
1571 int fragment = s->fragment_start [plane];
1572 int stride = s->current_frame.linesize[plane];
1573 uint8_t *plane_data = s->current_frame.data [plane];
1574 if (!s->flipped_image) stride = -stride;
1576 for (y = 0; y < height; y++) {
1578 for (x = 0; x < width; x++) {
1579 /* do not perform left edge filter for left columns frags */
1580 if ((x > 0) &&
1581 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1582 s->dsp.vp3_h_loop_filter(
1583 plane_data + s->all_fragments[fragment].first_pixel,
1584 stride, bounding_values);
1587 /* do not perform top edge filter for top row fragments */
1588 if ((y > 0) &&
1589 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1590 s->dsp.vp3_v_loop_filter(
1591 plane_data + s->all_fragments[fragment].first_pixel,
1592 stride, bounding_values);
1595 /* do not perform right edge filter for right column
1596 * fragments or if right fragment neighbor is also coded
1597 * in this frame (it will be filtered in next iteration) */
1598 if ((x < width - 1) &&
1599 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1600 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1601 s->dsp.vp3_h_loop_filter(
1602 plane_data + s->all_fragments[fragment + 1].first_pixel,
1603 stride, bounding_values);
1606 /* do not perform bottom edge filter for bottom row
1607 * fragments or if bottom fragment neighbor is also coded
1608 * in this frame (it will be filtered in the next row) */
1609 if ((y < height - 1) &&
1610 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1611 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1612 s->dsp.vp3_v_loop_filter(
1613 plane_data + s->all_fragments[fragment + width].first_pixel,
1614 stride, bounding_values);
1617 fragment++;
1624 * This function computes the first pixel addresses for each fragment.
1625 * This function needs to be invoked after the first frame is allocated
1626 * so that it has access to the plane strides.
1628 static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1630 #define Y_INITIAL(chroma_shift) s->flipped_image ? 1 : s->fragment_height >> chroma_shift
1631 #define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0
1633 int i, x, y;
1634 const int y_inc = s->flipped_image ? 1 : -1;
1636 /* figure out the first pixel addresses for each of the fragments */
1637 /* Y plane */
1638 i = 0;
1639 for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) {
1640 for (x = 0; x < s->fragment_width; x++) {
1641 s->all_fragments[i++].first_pixel =
1642 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1643 s->golden_frame.linesize[0] +
1644 x * FRAGMENT_PIXELS;
1648 /* U plane */
1649 i = s->fragment_start[1];
1650 for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1651 for (x = 0; x < s->fragment_width / 2; x++) {
1652 s->all_fragments[i++].first_pixel =
1653 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1654 s->golden_frame.linesize[1] +
1655 x * FRAGMENT_PIXELS;
1659 /* V plane */
1660 i = s->fragment_start[2];
1661 for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1662 for (x = 0; x < s->fragment_width / 2; x++) {
1663 s->all_fragments[i++].first_pixel =
1664 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1665 s->golden_frame.linesize[2] +
1666 x * FRAGMENT_PIXELS;
1672 * This is the ffmpeg/libavcodec API init function.
1674 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1676 Vp3DecodeContext *s = avctx->priv_data;
1677 int i, inter, plane;
1678 int c_width;
1679 int c_height;
1680 int y_superblock_count;
1681 int c_superblock_count;
1683 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1684 s->version = 0;
1685 else
1686 s->version = 1;
1688 s->avctx = avctx;
1689 s->width = FFALIGN(avctx->width, 16);
1690 s->height = FFALIGN(avctx->height, 16);
1691 avctx->pix_fmt = PIX_FMT_YUV420P;
1692 avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1693 if(avctx->idct_algo==FF_IDCT_AUTO)
1694 avctx->idct_algo=FF_IDCT_VP3;
1695 dsputil_init(&s->dsp, avctx);
1697 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1699 /* initialize to an impossible value which will force a recalculation
1700 * in the first frame decode */
1701 for (i = 0; i < 3; i++)
1702 s->qps[i] = -1;
1704 s->y_superblock_width = (s->width + 31) / 32;
1705 s->y_superblock_height = (s->height + 31) / 32;
1706 y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1708 /* work out the dimensions for the C planes */
1709 c_width = s->width / 2;
1710 c_height = s->height / 2;
1711 s->c_superblock_width = (c_width + 31) / 32;
1712 s->c_superblock_height = (c_height + 31) / 32;
1713 c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1715 s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1716 s->u_superblock_start = y_superblock_count;
1717 s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1718 s->superblock_coding = av_malloc(s->superblock_count);
1720 s->macroblock_width = (s->width + 15) / 16;
1721 s->macroblock_height = (s->height + 15) / 16;
1722 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1724 s->fragment_width = s->width / FRAGMENT_PIXELS;
1725 s->fragment_height = s->height / FRAGMENT_PIXELS;
1727 /* fragment count covers all 8x8 blocks for all 3 planes */
1728 s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1729 s->fragment_start[1] = s->fragment_width * s->fragment_height;
1730 s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1732 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1733 s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1734 s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1735 s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1736 s->pixel_addresses_initialized = 0;
1738 if (!s->theora_tables)
1740 for (i = 0; i < 64; i++) {
1741 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1742 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1743 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1744 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1745 s->base_matrix[2][i] = vp31_inter_dequant[i];
1746 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1749 for(inter=0; inter<2; inter++){
1750 for(plane=0; plane<3; plane++){
1751 s->qr_count[inter][plane]= 1;
1752 s->qr_size [inter][plane][0]= 63;
1753 s->qr_base [inter][plane][0]=
1754 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1758 /* init VLC tables */
1759 for (i = 0; i < 16; i++) {
1761 /* DC histograms */
1762 init_vlc(&s->dc_vlc[i], 5, 32,
1763 &dc_bias[i][0][1], 4, 2,
1764 &dc_bias[i][0][0], 4, 2, 0);
1766 /* group 1 AC histograms */
1767 init_vlc(&s->ac_vlc_1[i], 5, 32,
1768 &ac_bias_0[i][0][1], 4, 2,
1769 &ac_bias_0[i][0][0], 4, 2, 0);
1771 /* group 2 AC histograms */
1772 init_vlc(&s->ac_vlc_2[i], 5, 32,
1773 &ac_bias_1[i][0][1], 4, 2,
1774 &ac_bias_1[i][0][0], 4, 2, 0);
1776 /* group 3 AC histograms */
1777 init_vlc(&s->ac_vlc_3[i], 5, 32,
1778 &ac_bias_2[i][0][1], 4, 2,
1779 &ac_bias_2[i][0][0], 4, 2, 0);
1781 /* group 4 AC histograms */
1782 init_vlc(&s->ac_vlc_4[i], 5, 32,
1783 &ac_bias_3[i][0][1], 4, 2,
1784 &ac_bias_3[i][0][0], 4, 2, 0);
1786 } else {
1787 for (i = 0; i < 16; i++) {
1789 /* DC histograms */
1790 if (init_vlc(&s->dc_vlc[i], 5, 32,
1791 &s->huffman_table[i][0][1], 4, 2,
1792 &s->huffman_table[i][0][0], 4, 2, 0) < 0)
1793 goto vlc_fail;
1795 /* group 1 AC histograms */
1796 if (init_vlc(&s->ac_vlc_1[i], 5, 32,
1797 &s->huffman_table[i+16][0][1], 4, 2,
1798 &s->huffman_table[i+16][0][0], 4, 2, 0) < 0)
1799 goto vlc_fail;
1801 /* group 2 AC histograms */
1802 if (init_vlc(&s->ac_vlc_2[i], 5, 32,
1803 &s->huffman_table[i+16*2][0][1], 4, 2,
1804 &s->huffman_table[i+16*2][0][0], 4, 2, 0) < 0)
1805 goto vlc_fail;
1807 /* group 3 AC histograms */
1808 if (init_vlc(&s->ac_vlc_3[i], 5, 32,
1809 &s->huffman_table[i+16*3][0][1], 4, 2,
1810 &s->huffman_table[i+16*3][0][0], 4, 2, 0) < 0)
1811 goto vlc_fail;
1813 /* group 4 AC histograms */
1814 if (init_vlc(&s->ac_vlc_4[i], 5, 32,
1815 &s->huffman_table[i+16*4][0][1], 4, 2,
1816 &s->huffman_table[i+16*4][0][0], 4, 2, 0) < 0)
1817 goto vlc_fail;
1821 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1822 &superblock_run_length_vlc_table[0][1], 4, 2,
1823 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1825 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1826 &fragment_run_length_vlc_table[0][1], 4, 2,
1827 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1829 init_vlc(&s->mode_code_vlc, 3, 8,
1830 &mode_code_vlc_table[0][1], 2, 1,
1831 &mode_code_vlc_table[0][0], 2, 1, 0);
1833 init_vlc(&s->motion_vector_vlc, 6, 63,
1834 &motion_vector_vlc_table[0][1], 2, 1,
1835 &motion_vector_vlc_table[0][0], 2, 1, 0);
1837 /* work out the block mapping tables */
1838 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1839 s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
1840 s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
1841 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1842 init_block_mapping(s);
1844 for (i = 0; i < 3; i++) {
1845 s->current_frame.data[i] = NULL;
1846 s->last_frame.data[i] = NULL;
1847 s->golden_frame.data[i] = NULL;
1850 return 0;
1852 vlc_fail:
1853 av_log(avctx, AV_LOG_FATAL, "Invalid huffman table\n");
1854 return -1;
1858 * This is the ffmpeg/libavcodec API frame decode function.
1860 static int vp3_decode_frame(AVCodecContext *avctx,
1861 void *data, int *data_size,
1862 AVPacket *avpkt)
1864 const uint8_t *buf = avpkt->data;
1865 int buf_size = avpkt->size;
1866 Vp3DecodeContext *s = avctx->priv_data;
1867 GetBitContext gb;
1868 static int counter = 0;
1869 int i;
1871 init_get_bits(&gb, buf, buf_size * 8);
1873 if (s->theora && get_bits1(&gb))
1875 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1876 return -1;
1879 s->keyframe = !get_bits1(&gb);
1880 if (!s->theora)
1881 skip_bits(&gb, 1);
1882 for (i = 0; i < 3; i++)
1883 s->last_qps[i] = s->qps[i];
1885 s->nqps=0;
1887 s->qps[s->nqps++]= get_bits(&gb, 6);
1888 } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1889 for (i = s->nqps; i < 3; i++)
1890 s->qps[i] = -1;
1892 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1893 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1894 s->keyframe?"key":"", counter, s->qps[0]);
1895 counter++;
1897 if (s->qps[0] != s->last_qps[0])
1898 init_loop_filter(s);
1900 for (i = 0; i < s->nqps; i++)
1901 // reinit all dequantizers if the first one changed, because
1902 // the DC of the first quantizer must be used for all matrices
1903 if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1904 init_dequantizer(s, i);
1906 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1907 return buf_size;
1909 if (s->keyframe) {
1910 if (!s->theora)
1912 skip_bits(&gb, 4); /* width code */
1913 skip_bits(&gb, 4); /* height code */
1914 if (s->version)
1916 s->version = get_bits(&gb, 5);
1917 if (counter == 1)
1918 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1921 if (s->version || s->theora)
1923 if (get_bits1(&gb))
1924 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1925 skip_bits(&gb, 2); /* reserved? */
1928 if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1929 if (s->golden_frame.data[0])
1930 avctx->release_buffer(avctx, &s->golden_frame);
1931 s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1932 } else {
1933 if (s->golden_frame.data[0])
1934 avctx->release_buffer(avctx, &s->golden_frame);
1935 if (s->last_frame.data[0])
1936 avctx->release_buffer(avctx, &s->last_frame);
1939 s->golden_frame.reference = 3;
1940 if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1941 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1942 return -1;
1945 /* golden frame is also the current frame */
1946 s->current_frame= s->golden_frame;
1948 /* time to figure out pixel addresses? */
1949 if (!s->pixel_addresses_initialized)
1951 vp3_calculate_pixel_addresses(s);
1952 s->pixel_addresses_initialized = 1;
1954 } else {
1955 /* allocate a new current frame */
1956 s->current_frame.reference = 3;
1957 if (!s->pixel_addresses_initialized) {
1958 av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1959 return -1;
1961 if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1962 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1963 return -1;
1967 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1968 s->current_frame.qstride= 0;
1970 init_frame(s, &gb);
1972 if (unpack_superblocks(s, &gb)){
1973 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1974 return -1;
1976 if (unpack_modes(s, &gb)){
1977 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1978 return -1;
1980 if (unpack_vectors(s, &gb)){
1981 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1982 return -1;
1984 if (unpack_block_qpis(s, &gb)){
1985 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1986 return -1;
1988 if (unpack_dct_coeffs(s, &gb)){
1989 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1990 return -1;
1993 reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1994 if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
1995 reverse_dc_prediction(s, s->fragment_start[1],
1996 s->fragment_width / 2, s->fragment_height / 2);
1997 reverse_dc_prediction(s, s->fragment_start[2],
1998 s->fragment_width / 2, s->fragment_height / 2);
2001 for (i = 0; i < s->macroblock_height; i++)
2002 render_slice(s, i);
2004 apply_loop_filter(s);
2006 *data_size=sizeof(AVFrame);
2007 *(AVFrame*)data= s->current_frame;
2009 /* release the last frame, if it is allocated and if it is not the
2010 * golden frame */
2011 if ((s->last_frame.data[0]) &&
2012 (s->last_frame.data[0] != s->golden_frame.data[0]))
2013 avctx->release_buffer(avctx, &s->last_frame);
2015 /* shuffle frames (last = current) */
2016 s->last_frame= s->current_frame;
2017 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2019 return buf_size;
2023 * This is the ffmpeg/libavcodec API module cleanup function.
2025 static av_cold int vp3_decode_end(AVCodecContext *avctx)
2027 Vp3DecodeContext *s = avctx->priv_data;
2028 int i;
2030 av_free(s->superblock_coding);
2031 av_free(s->all_fragments);
2032 av_free(s->coeff_counts);
2033 av_free(s->coeffs);
2034 av_free(s->coded_fragment_list);
2035 av_free(s->superblock_fragments);
2036 av_free(s->superblock_macroblocks);
2037 av_free(s->macroblock_fragments);
2038 av_free(s->macroblock_coding);
2040 for (i = 0; i < 16; i++) {
2041 free_vlc(&s->dc_vlc[i]);
2042 free_vlc(&s->ac_vlc_1[i]);
2043 free_vlc(&s->ac_vlc_2[i]);
2044 free_vlc(&s->ac_vlc_3[i]);
2045 free_vlc(&s->ac_vlc_4[i]);
2048 free_vlc(&s->superblock_run_length_vlc);
2049 free_vlc(&s->fragment_run_length_vlc);
2050 free_vlc(&s->mode_code_vlc);
2051 free_vlc(&s->motion_vector_vlc);
2053 /* release all frames */
2054 if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2055 avctx->release_buffer(avctx, &s->golden_frame);
2056 if (s->last_frame.data[0])
2057 avctx->release_buffer(avctx, &s->last_frame);
2058 /* no need to release the current_frame since it will always be pointing
2059 * to the same frame as either the golden or last frame */
2061 return 0;
2064 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2066 Vp3DecodeContext *s = avctx->priv_data;
2068 if (get_bits1(gb)) {
2069 int token;
2070 if (s->entries >= 32) { /* overflow */
2071 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2072 return -1;
2074 token = get_bits(gb, 5);
2075 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2076 s->huffman_table[s->hti][token][0] = s->hbits;
2077 s->huffman_table[s->hti][token][1] = s->huff_code_size;
2078 s->entries++;
2080 else {
2081 if (s->huff_code_size >= 32) {/* overflow */
2082 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2083 return -1;
2085 s->huff_code_size++;
2086 s->hbits <<= 1;
2087 if (read_huffman_tree(avctx, gb))
2088 return -1;
2089 s->hbits |= 1;
2090 if (read_huffman_tree(avctx, gb))
2091 return -1;
2092 s->hbits >>= 1;
2093 s->huff_code_size--;
2095 return 0;
2098 #if CONFIG_THEORA_DECODER
2099 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2101 Vp3DecodeContext *s = avctx->priv_data;
2102 int visible_width, visible_height;
2104 s->theora = get_bits_long(gb, 24);
2105 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2107 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2108 /* but previous versions have the image flipped relative to vp3 */
2109 if (s->theora < 0x030200)
2111 s->flipped_image = 1;
2112 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2115 visible_width = s->width = get_bits(gb, 16) << 4;
2116 visible_height = s->height = get_bits(gb, 16) << 4;
2118 if(avcodec_check_dimensions(avctx, s->width, s->height)){
2119 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2120 s->width= s->height= 0;
2121 return -1;
2124 if (s->theora >= 0x030400)
2126 skip_bits(gb, 32); /* total number of superblocks in a frame */
2127 // fixme, the next field is 36bits long
2128 skip_bits(gb, 32); /* total number of blocks in a frame */
2129 skip_bits(gb, 4); /* total number of blocks in a frame */
2130 skip_bits(gb, 32); /* total number of macroblocks in a frame */
2133 if (s->theora >= 0x030200) {
2134 visible_width = get_bits_long(gb, 24);
2135 visible_height = get_bits_long(gb, 24);
2137 skip_bits(gb, 8); /* offset x */
2138 skip_bits(gb, 8); /* offset y */
2141 skip_bits(gb, 32); /* fps numerator */
2142 skip_bits(gb, 32); /* fps denumerator */
2143 skip_bits(gb, 24); /* aspect numerator */
2144 skip_bits(gb, 24); /* aspect denumerator */
2146 if (s->theora < 0x030200)
2147 skip_bits(gb, 5); /* keyframe frequency force */
2148 skip_bits(gb, 8); /* colorspace */
2149 if (s->theora >= 0x030400)
2150 skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2151 skip_bits(gb, 24); /* bitrate */
2153 skip_bits(gb, 6); /* quality hint */
2155 if (s->theora >= 0x030200)
2157 skip_bits(gb, 5); /* keyframe frequency force */
2159 if (s->theora < 0x030400)
2160 skip_bits(gb, 5); /* spare bits */
2163 // align_get_bits(gb);
2165 if ( visible_width <= s->width && visible_width > s->width-16
2166 && visible_height <= s->height && visible_height > s->height-16)
2167 avcodec_set_dimensions(avctx, visible_width, visible_height);
2168 else
2169 avcodec_set_dimensions(avctx, s->width, s->height);
2171 return 0;
2174 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2176 Vp3DecodeContext *s = avctx->priv_data;
2177 int i, n, matrices, inter, plane;
2179 if (s->theora >= 0x030200) {
2180 n = get_bits(gb, 3);
2181 /* loop filter limit values table */
2182 for (i = 0; i < 64; i++) {
2183 s->filter_limit_values[i] = get_bits(gb, n);
2184 if (s->filter_limit_values[i] > 127) {
2185 av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2186 s->filter_limit_values[i] = 127;
2191 if (s->theora >= 0x030200)
2192 n = get_bits(gb, 4) + 1;
2193 else
2194 n = 16;
2195 /* quality threshold table */
2196 for (i = 0; i < 64; i++)
2197 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2199 if (s->theora >= 0x030200)
2200 n = get_bits(gb, 4) + 1;
2201 else
2202 n = 16;
2203 /* dc scale factor table */
2204 for (i = 0; i < 64; i++)
2205 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2207 if (s->theora >= 0x030200)
2208 matrices = get_bits(gb, 9) + 1;
2209 else
2210 matrices = 3;
2212 if(matrices > 384){
2213 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2214 return -1;
2217 for(n=0; n<matrices; n++){
2218 for (i = 0; i < 64; i++)
2219 s->base_matrix[n][i]= get_bits(gb, 8);
2222 for (inter = 0; inter <= 1; inter++) {
2223 for (plane = 0; plane <= 2; plane++) {
2224 int newqr= 1;
2225 if (inter || plane > 0)
2226 newqr = get_bits1(gb);
2227 if (!newqr) {
2228 int qtj, plj;
2229 if(inter && get_bits1(gb)){
2230 qtj = 0;
2231 plj = plane;
2232 }else{
2233 qtj= (3*inter + plane - 1) / 3;
2234 plj= (plane + 2) % 3;
2236 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2237 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2238 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2239 } else {
2240 int qri= 0;
2241 int qi = 0;
2243 for(;;){
2244 i= get_bits(gb, av_log2(matrices-1)+1);
2245 if(i>= matrices){
2246 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2247 return -1;
2249 s->qr_base[inter][plane][qri]= i;
2250 if(qi >= 63)
2251 break;
2252 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2253 s->qr_size[inter][plane][qri++]= i;
2254 qi += i;
2257 if (qi > 63) {
2258 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2259 return -1;
2261 s->qr_count[inter][plane]= qri;
2266 /* Huffman tables */
2267 for (s->hti = 0; s->hti < 80; s->hti++) {
2268 s->entries = 0;
2269 s->huff_code_size = 1;
2270 if (!get_bits1(gb)) {
2271 s->hbits = 0;
2272 if(read_huffman_tree(avctx, gb))
2273 return -1;
2274 s->hbits = 1;
2275 if(read_huffman_tree(avctx, gb))
2276 return -1;
2280 s->theora_tables = 1;
2282 return 0;
2285 static av_cold int theora_decode_init(AVCodecContext *avctx)
2287 Vp3DecodeContext *s = avctx->priv_data;
2288 GetBitContext gb;
2289 int ptype;
2290 uint8_t *header_start[3];
2291 int header_len[3];
2292 int i;
2294 s->theora = 1;
2296 if (!avctx->extradata_size)
2298 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2299 return -1;
2302 if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2303 42, header_start, header_len) < 0) {
2304 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2305 return -1;
2308 for(i=0;i<3;i++) {
2309 init_get_bits(&gb, header_start[i], header_len[i]);
2311 ptype = get_bits(&gb, 8);
2313 if (!(ptype & 0x80))
2315 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2316 // return -1;
2319 // FIXME: Check for this as well.
2320 skip_bits_long(&gb, 6*8); /* "theora" */
2322 switch(ptype)
2324 case 0x80:
2325 theora_decode_header(avctx, &gb);
2326 break;
2327 case 0x81:
2328 // FIXME: is this needed? it breaks sometimes
2329 // theora_decode_comments(avctx, gb);
2330 break;
2331 case 0x82:
2332 if (theora_decode_tables(avctx, &gb))
2333 return -1;
2334 break;
2335 default:
2336 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2337 break;
2339 if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2340 av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2341 if (s->theora < 0x030200)
2342 break;
2345 return vp3_decode_init(avctx);
2348 AVCodec theora_decoder = {
2349 "theora",
2350 CODEC_TYPE_VIDEO,
2351 CODEC_ID_THEORA,
2352 sizeof(Vp3DecodeContext),
2353 theora_decode_init,
2354 NULL,
2355 vp3_decode_end,
2356 vp3_decode_frame,
2357 CODEC_CAP_DR1,
2358 NULL,
2359 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2361 #endif
2363 AVCodec vp3_decoder = {
2364 "vp3",
2365 CODEC_TYPE_VIDEO,
2366 CODEC_ID_VP3,
2367 sizeof(Vp3DecodeContext),
2368 vp3_decode_init,
2369 NULL,
2370 vp3_decode_end,
2371 vp3_decode_frame,
2372 CODEC_CAP_DR1,
2373 NULL,
2374 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),