cosmetics: indentation after last commit
[FFMpeg-mirror/lagarith.git] / libavcodec / ac3dec.c
blobe2f0ff97ecae081f96a4a3b328c922ff023bef1b
1 /*
2 * AC-3 Audio Decoder
3 * This code was developed as part of Google Summer of Code 2006.
4 * E-AC-3 support was added as part of Google Summer of Code 2007.
6 * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
7 * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
8 * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
10 * Portions of this code are derived from liba52
11 * http://liba52.sourceforge.net
12 * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
13 * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
15 * This file is part of FFmpeg.
17 * FFmpeg is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public
19 * License as published by the Free Software Foundation; either
20 * version 2 of the License, or (at your option) any later version.
22 * FFmpeg is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25 * General Public License for more details.
27 * You should have received a copy of the GNU General Public
28 * License along with FFmpeg; if not, write to the Free Software
29 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
32 #include <stdio.h>
33 #include <stddef.h>
34 #include <math.h>
35 #include <string.h>
37 #include "libavutil/crc.h"
38 #include "internal.h"
39 #include "aac_ac3_parser.h"
40 #include "ac3_parser.h"
41 #include "ac3dec.h"
42 #include "ac3dec_data.h"
44 /** Large enough for maximum possible frame size when the specification limit is ignored */
45 #define AC3_FRAME_BUFFER_SIZE 32768
47 /**
48 * table for ungrouping 3 values in 7 bits.
49 * used for exponents and bap=2 mantissas
51 static uint8_t ungroup_3_in_7_bits_tab[128][3];
54 /** tables for ungrouping mantissas */
55 static int b1_mantissas[32][3];
56 static int b2_mantissas[128][3];
57 static int b3_mantissas[8];
58 static int b4_mantissas[128][2];
59 static int b5_mantissas[16];
61 /**
62 * Quantization table: levels for symmetric. bits for asymmetric.
63 * reference: Table 7.18 Mapping of bap to Quantizer
65 static const uint8_t quantization_tab[16] = {
66 0, 3, 5, 7, 11, 15,
67 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
70 /** dynamic range table. converts codes to scale factors. */
71 static float dynamic_range_tab[256];
73 /** Adjustments in dB gain */
74 #define LEVEL_PLUS_3DB 1.4142135623730950
75 #define LEVEL_PLUS_1POINT5DB 1.1892071150027209
76 #define LEVEL_MINUS_1POINT5DB 0.8408964152537145
77 #define LEVEL_MINUS_3DB 0.7071067811865476
78 #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
79 #define LEVEL_MINUS_6DB 0.5000000000000000
80 #define LEVEL_MINUS_9DB 0.3535533905932738
81 #define LEVEL_ZERO 0.0000000000000000
82 #define LEVEL_ONE 1.0000000000000000
84 static const float gain_levels[9] = {
85 LEVEL_PLUS_3DB,
86 LEVEL_PLUS_1POINT5DB,
87 LEVEL_ONE,
88 LEVEL_MINUS_1POINT5DB,
89 LEVEL_MINUS_3DB,
90 LEVEL_MINUS_4POINT5DB,
91 LEVEL_MINUS_6DB,
92 LEVEL_ZERO,
93 LEVEL_MINUS_9DB
96 /**
97 * Table for center mix levels
98 * reference: Section 5.4.2.4 cmixlev
100 static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
103 * Table for surround mix levels
104 * reference: Section 5.4.2.5 surmixlev
106 static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
109 * Table for default stereo downmixing coefficients
110 * reference: Section 7.8.2 Downmixing Into Two Channels
112 static const uint8_t ac3_default_coeffs[8][5][2] = {
113 { { 2, 7 }, { 7, 2 }, },
114 { { 4, 4 }, },
115 { { 2, 7 }, { 7, 2 }, },
116 { { 2, 7 }, { 5, 5 }, { 7, 2 }, },
117 { { 2, 7 }, { 7, 2 }, { 6, 6 }, },
118 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
119 { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
120 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
124 * Symmetrical Dequantization
125 * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
126 * Tables 7.19 to 7.23
128 static inline int
129 symmetric_dequant(int code, int levels)
131 return ((code - (levels >> 1)) << 24) / levels;
135 * Initialize tables at runtime.
137 static av_cold void ac3_tables_init(void)
139 int i;
141 /* generate table for ungrouping 3 values in 7 bits
142 reference: Section 7.1.3 Exponent Decoding */
143 for(i=0; i<128; i++) {
144 ungroup_3_in_7_bits_tab[i][0] = i / 25;
145 ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
146 ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
149 /* generate grouped mantissa tables
150 reference: Section 7.3.5 Ungrouping of Mantissas */
151 for(i=0; i<32; i++) {
152 /* bap=1 mantissas */
153 b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
154 b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
155 b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
157 for(i=0; i<128; i++) {
158 /* bap=2 mantissas */
159 b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
160 b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
161 b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
163 /* bap=4 mantissas */
164 b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
165 b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
167 /* generate ungrouped mantissa tables
168 reference: Tables 7.21 and 7.23 */
169 for(i=0; i<7; i++) {
170 /* bap=3 mantissas */
171 b3_mantissas[i] = symmetric_dequant(i, 7);
173 for(i=0; i<15; i++) {
174 /* bap=5 mantissas */
175 b5_mantissas[i] = symmetric_dequant(i, 15);
178 /* generate dynamic range table
179 reference: Section 7.7.1 Dynamic Range Control */
180 for(i=0; i<256; i++) {
181 int v = (i >> 5) - ((i >> 7) << 3) - 5;
182 dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
188 * AVCodec initialization
190 static av_cold int ac3_decode_init(AVCodecContext *avctx)
192 AC3DecodeContext *s = avctx->priv_data;
193 s->avctx = avctx;
195 ac3_common_init();
196 ac3_tables_init();
197 ff_mdct_init(&s->imdct_256, 8, 1);
198 ff_mdct_init(&s->imdct_512, 9, 1);
199 ff_kbd_window_init(s->window, 5.0, 256);
200 dsputil_init(&s->dsp, avctx);
201 av_lfg_init(&s->dith_state, 0);
203 /* set bias values for float to int16 conversion */
204 if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
205 s->add_bias = 385.0f;
206 s->mul_bias = 1.0f;
207 } else {
208 s->add_bias = 0.0f;
209 s->mul_bias = 32767.0f;
212 /* allow downmixing to stereo or mono */
213 if (avctx->channels > 0 && avctx->request_channels > 0 &&
214 avctx->request_channels < avctx->channels &&
215 avctx->request_channels <= 2) {
216 avctx->channels = avctx->request_channels;
218 s->downmixed = 1;
220 /* allocate context input buffer */
221 if (avctx->error_recognition >= FF_ER_CAREFUL) {
222 s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
223 if (!s->input_buffer)
224 return AVERROR_NOMEM;
227 avctx->sample_fmt = SAMPLE_FMT_S16;
228 return 0;
232 * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
233 * GetBitContext within AC3DecodeContext must point to
234 * the start of the synchronized AC-3 bitstream.
236 static int ac3_parse_header(AC3DecodeContext *s)
238 GetBitContext *gbc = &s->gbc;
239 int i;
241 /* read the rest of the bsi. read twice for dual mono mode. */
242 i = !(s->channel_mode);
243 do {
244 skip_bits(gbc, 5); // skip dialog normalization
245 if (get_bits1(gbc))
246 skip_bits(gbc, 8); //skip compression
247 if (get_bits1(gbc))
248 skip_bits(gbc, 8); //skip language code
249 if (get_bits1(gbc))
250 skip_bits(gbc, 7); //skip audio production information
251 } while (i--);
253 skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
255 /* skip the timecodes (or extra bitstream information for Alternate Syntax)
256 TODO: read & use the xbsi1 downmix levels */
257 if (get_bits1(gbc))
258 skip_bits(gbc, 14); //skip timecode1 / xbsi1
259 if (get_bits1(gbc))
260 skip_bits(gbc, 14); //skip timecode2 / xbsi2
262 /* skip additional bitstream info */
263 if (get_bits1(gbc)) {
264 i = get_bits(gbc, 6);
265 do {
266 skip_bits(gbc, 8);
267 } while(i--);
270 return 0;
274 * Common function to parse AC-3 or E-AC-3 frame header
276 static int parse_frame_header(AC3DecodeContext *s)
278 AC3HeaderInfo hdr;
279 int err;
281 err = ff_ac3_parse_header(&s->gbc, &hdr);
282 if(err)
283 return err;
285 /* get decoding parameters from header info */
286 s->bit_alloc_params.sr_code = hdr.sr_code;
287 s->channel_mode = hdr.channel_mode;
288 s->channel_layout = hdr.channel_layout;
289 s->lfe_on = hdr.lfe_on;
290 s->bit_alloc_params.sr_shift = hdr.sr_shift;
291 s->sample_rate = hdr.sample_rate;
292 s->bit_rate = hdr.bit_rate;
293 s->channels = hdr.channels;
294 s->fbw_channels = s->channels - s->lfe_on;
295 s->lfe_ch = s->fbw_channels + 1;
296 s->frame_size = hdr.frame_size;
297 s->center_mix_level = hdr.center_mix_level;
298 s->surround_mix_level = hdr.surround_mix_level;
299 s->num_blocks = hdr.num_blocks;
300 s->frame_type = hdr.frame_type;
301 s->substreamid = hdr.substreamid;
303 if(s->lfe_on) {
304 s->start_freq[s->lfe_ch] = 0;
305 s->end_freq[s->lfe_ch] = 7;
306 s->num_exp_groups[s->lfe_ch] = 2;
307 s->channel_in_cpl[s->lfe_ch] = 0;
310 if (hdr.bitstream_id <= 10) {
311 s->eac3 = 0;
312 s->snr_offset_strategy = 2;
313 s->block_switch_syntax = 1;
314 s->dither_flag_syntax = 1;
315 s->bit_allocation_syntax = 1;
316 s->fast_gain_syntax = 0;
317 s->first_cpl_leak = 0;
318 s->dba_syntax = 1;
319 s->skip_syntax = 1;
320 memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
321 return ac3_parse_header(s);
322 } else {
323 s->eac3 = 1;
324 return ff_eac3_parse_header(s);
329 * Set stereo downmixing coefficients based on frame header info.
330 * reference: Section 7.8.2 Downmixing Into Two Channels
332 static void set_downmix_coeffs(AC3DecodeContext *s)
334 int i;
335 float cmix = gain_levels[center_levels[s->center_mix_level]];
336 float smix = gain_levels[surround_levels[s->surround_mix_level]];
337 float norm0, norm1;
339 for(i=0; i<s->fbw_channels; i++) {
340 s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
341 s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
343 if(s->channel_mode > 1 && s->channel_mode & 1) {
344 s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
346 if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
347 int nf = s->channel_mode - 2;
348 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
350 if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
351 int nf = s->channel_mode - 4;
352 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
355 /* renormalize */
356 norm0 = norm1 = 0.0;
357 for(i=0; i<s->fbw_channels; i++) {
358 norm0 += s->downmix_coeffs[i][0];
359 norm1 += s->downmix_coeffs[i][1];
361 norm0 = 1.0f / norm0;
362 norm1 = 1.0f / norm1;
363 for(i=0; i<s->fbw_channels; i++) {
364 s->downmix_coeffs[i][0] *= norm0;
365 s->downmix_coeffs[i][1] *= norm1;
368 if(s->output_mode == AC3_CHMODE_MONO) {
369 for(i=0; i<s->fbw_channels; i++)
370 s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
375 * Decode the grouped exponents according to exponent strategy.
376 * reference: Section 7.1.3 Exponent Decoding
378 static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
379 uint8_t absexp, int8_t *dexps)
381 int i, j, grp, group_size;
382 int dexp[256];
383 int expacc, prevexp;
385 /* unpack groups */
386 group_size = exp_strategy + (exp_strategy == EXP_D45);
387 for(grp=0,i=0; grp<ngrps; grp++) {
388 expacc = get_bits(gbc, 7);
389 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
390 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
391 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
394 /* convert to absolute exps and expand groups */
395 prevexp = absexp;
396 for(i=0,j=0; i<ngrps*3; i++) {
397 prevexp += dexp[i] - 2;
398 if (prevexp > 24U)
399 return -1;
400 switch (group_size) {
401 case 4: dexps[j++] = prevexp;
402 dexps[j++] = prevexp;
403 case 2: dexps[j++] = prevexp;
404 case 1: dexps[j++] = prevexp;
407 return 0;
411 * Generate transform coefficients for each coupled channel in the coupling
412 * range using the coupling coefficients and coupling coordinates.
413 * reference: Section 7.4.3 Coupling Coordinate Format
415 static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
417 int i, j, ch, bnd, subbnd;
419 subbnd = -1;
420 i = s->start_freq[CPL_CH];
421 for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
422 do {
423 subbnd++;
424 for(j=0; j<12; j++) {
425 for(ch=1; ch<=s->fbw_channels; ch++) {
426 if(s->channel_in_cpl[ch]) {
427 s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
428 if (ch == 2 && s->phase_flags[bnd])
429 s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
432 i++;
434 } while(s->cpl_band_struct[subbnd]);
439 * Grouped mantissas for 3-level 5-level and 11-level quantization
441 typedef struct {
442 int b1_mant[3];
443 int b2_mant[3];
444 int b4_mant[2];
445 int b1ptr;
446 int b2ptr;
447 int b4ptr;
448 } mant_groups;
451 * Decode the transform coefficients for a particular channel
452 * reference: Section 7.3 Quantization and Decoding of Mantissas
454 static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
456 GetBitContext *gbc = &s->gbc;
457 int i, gcode, tbap, start, end;
458 uint8_t *exps;
459 uint8_t *bap;
460 int *coeffs;
462 exps = s->dexps[ch_index];
463 bap = s->bap[ch_index];
464 coeffs = s->fixed_coeffs[ch_index];
465 start = s->start_freq[ch_index];
466 end = s->end_freq[ch_index];
468 for (i = start; i < end; i++) {
469 tbap = bap[i];
470 switch (tbap) {
471 case 0:
472 coeffs[i] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
473 break;
475 case 1:
476 if(m->b1ptr > 2) {
477 gcode = get_bits(gbc, 5);
478 m->b1_mant[0] = b1_mantissas[gcode][0];
479 m->b1_mant[1] = b1_mantissas[gcode][1];
480 m->b1_mant[2] = b1_mantissas[gcode][2];
481 m->b1ptr = 0;
483 coeffs[i] = m->b1_mant[m->b1ptr++];
484 break;
486 case 2:
487 if(m->b2ptr > 2) {
488 gcode = get_bits(gbc, 7);
489 m->b2_mant[0] = b2_mantissas[gcode][0];
490 m->b2_mant[1] = b2_mantissas[gcode][1];
491 m->b2_mant[2] = b2_mantissas[gcode][2];
492 m->b2ptr = 0;
494 coeffs[i] = m->b2_mant[m->b2ptr++];
495 break;
497 case 3:
498 coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
499 break;
501 case 4:
502 if(m->b4ptr > 1) {
503 gcode = get_bits(gbc, 7);
504 m->b4_mant[0] = b4_mantissas[gcode][0];
505 m->b4_mant[1] = b4_mantissas[gcode][1];
506 m->b4ptr = 0;
508 coeffs[i] = m->b4_mant[m->b4ptr++];
509 break;
511 case 5:
512 coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
513 break;
515 default: {
516 /* asymmetric dequantization */
517 int qlevel = quantization_tab[tbap];
518 coeffs[i] = get_sbits(gbc, qlevel) << (24 - qlevel);
519 break;
522 coeffs[i] >>= exps[i];
527 * Remove random dithering from coefficients with zero-bit mantissas
528 * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
530 static void remove_dithering(AC3DecodeContext *s) {
531 int ch, i;
532 int end=0;
533 int *coeffs;
534 uint8_t *bap;
536 for(ch=1; ch<=s->fbw_channels; ch++) {
537 if(!s->dither_flag[ch]) {
538 coeffs = s->fixed_coeffs[ch];
539 bap = s->bap[ch];
540 if(s->channel_in_cpl[ch])
541 end = s->start_freq[CPL_CH];
542 else
543 end = s->end_freq[ch];
544 for(i=0; i<end; i++) {
545 if(!bap[i])
546 coeffs[i] = 0;
548 if(s->channel_in_cpl[ch]) {
549 bap = s->bap[CPL_CH];
550 for(; i<s->end_freq[CPL_CH]; i++) {
551 if(!bap[i])
552 coeffs[i] = 0;
559 static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
560 mant_groups *m)
562 if (!s->channel_uses_aht[ch]) {
563 ac3_decode_transform_coeffs_ch(s, ch, m);
564 } else {
565 /* if AHT is used, mantissas for all blocks are encoded in the first
566 block of the frame. */
567 int bin;
568 if (!blk)
569 ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
570 for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
571 s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
577 * Decode the transform coefficients.
579 static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
581 int ch, end;
582 int got_cplchan = 0;
583 mant_groups m;
585 m.b1ptr = m.b2ptr = m.b4ptr = 3;
587 for (ch = 1; ch <= s->channels; ch++) {
588 /* transform coefficients for full-bandwidth channel */
589 decode_transform_coeffs_ch(s, blk, ch, &m);
590 /* tranform coefficients for coupling channel come right after the
591 coefficients for the first coupled channel*/
592 if (s->channel_in_cpl[ch]) {
593 if (!got_cplchan) {
594 decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
595 calc_transform_coeffs_cpl(s);
596 got_cplchan = 1;
598 end = s->end_freq[CPL_CH];
599 } else {
600 end = s->end_freq[ch];
603 s->fixed_coeffs[ch][end] = 0;
604 while(++end < 256);
607 /* zero the dithered coefficients for appropriate channels */
608 remove_dithering(s);
612 * Stereo rematrixing.
613 * reference: Section 7.5.4 Rematrixing : Decoding Technique
615 static void do_rematrixing(AC3DecodeContext *s)
617 int bnd, i;
618 int end, bndend;
619 int tmp0, tmp1;
621 end = FFMIN(s->end_freq[1], s->end_freq[2]);
623 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
624 if(s->rematrixing_flags[bnd]) {
625 bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
626 for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
627 tmp0 = s->fixed_coeffs[1][i];
628 tmp1 = s->fixed_coeffs[2][i];
629 s->fixed_coeffs[1][i] = tmp0 + tmp1;
630 s->fixed_coeffs[2][i] = tmp0 - tmp1;
637 * Inverse MDCT Transform.
638 * Convert frequency domain coefficients to time-domain audio samples.
639 * reference: Section 7.9.4 Transformation Equations
641 static inline void do_imdct(AC3DecodeContext *s, int channels)
643 int ch;
644 float add_bias = s->add_bias;
645 if(s->out_channels==1 && channels>1)
646 add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
648 for (ch=1; ch<=channels; ch++) {
649 if (s->block_switch[ch]) {
650 int i;
651 float *x = s->tmp_output+128;
652 for(i=0; i<128; i++)
653 x[i] = s->transform_coeffs[ch][2*i];
654 ff_imdct_half(&s->imdct_256, s->tmp_output, x);
655 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
656 for(i=0; i<128; i++)
657 x[i] = s->transform_coeffs[ch][2*i+1];
658 ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
659 } else {
660 ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
661 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
662 memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
668 * Downmix the output to mono or stereo.
670 void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
672 int i, j;
673 float v0, v1;
674 if(out_ch == 2) {
675 for(i=0; i<len; i++) {
676 v0 = v1 = 0.0f;
677 for(j=0; j<in_ch; j++) {
678 v0 += samples[j][i] * matrix[j][0];
679 v1 += samples[j][i] * matrix[j][1];
681 samples[0][i] = v0;
682 samples[1][i] = v1;
684 } else if(out_ch == 1) {
685 for(i=0; i<len; i++) {
686 v0 = 0.0f;
687 for(j=0; j<in_ch; j++)
688 v0 += samples[j][i] * matrix[j][0];
689 samples[0][i] = v0;
695 * Upmix delay samples from stereo to original channel layout.
697 static void ac3_upmix_delay(AC3DecodeContext *s)
699 int channel_data_size = sizeof(s->delay[0]);
700 switch(s->channel_mode) {
701 case AC3_CHMODE_DUALMONO:
702 case AC3_CHMODE_STEREO:
703 /* upmix mono to stereo */
704 memcpy(s->delay[1], s->delay[0], channel_data_size);
705 break;
706 case AC3_CHMODE_2F2R:
707 memset(s->delay[3], 0, channel_data_size);
708 case AC3_CHMODE_2F1R:
709 memset(s->delay[2], 0, channel_data_size);
710 break;
711 case AC3_CHMODE_3F2R:
712 memset(s->delay[4], 0, channel_data_size);
713 case AC3_CHMODE_3F1R:
714 memset(s->delay[3], 0, channel_data_size);
715 case AC3_CHMODE_3F:
716 memcpy(s->delay[2], s->delay[1], channel_data_size);
717 memset(s->delay[1], 0, channel_data_size);
718 break;
723 * Decode band structure for coupling, spectral extension, or enhanced coupling.
724 * @param[in] gbc bit reader context
725 * @param[in] blk block number
726 * @param[in] eac3 flag to indicate E-AC-3
727 * @param[in] ecpl flag to indicate enhanced coupling
728 * @param[in] start_subband subband number for start of range
729 * @param[in] end_subband subband number for end of range
730 * @param[in] default_band_struct default band structure table
731 * @param[out] band_struct decoded band structure
732 * @param[out] num_subbands number of subbands (optionally NULL)
733 * @param[out] num_bands number of bands (optionally NULL)
734 * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
736 static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
737 int ecpl, int start_subband, int end_subband,
738 const uint8_t *default_band_struct,
739 uint8_t *band_struct, int *num_subbands,
740 int *num_bands, uint8_t *band_sizes)
742 int subbnd, bnd, n_subbands, n_bands=0;
743 uint8_t bnd_sz[22];
745 n_subbands = end_subband - start_subband;
747 /* decode band structure from bitstream or use default */
748 if (!eac3 || get_bits1(gbc)) {
749 for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
750 band_struct[subbnd] = get_bits1(gbc);
752 } else if (!blk) {
753 memcpy(band_struct,
754 &default_band_struct[start_subband+1],
755 n_subbands-1);
757 band_struct[n_subbands-1] = 0;
759 /* calculate number of bands and band sizes based on band structure.
760 note that the first 4 subbands in enhanced coupling span only 6 bins
761 instead of 12. */
762 if (num_bands || band_sizes ) {
763 n_bands = n_subbands;
764 bnd_sz[0] = ecpl ? 6 : 12;
765 for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
766 int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
767 if (band_struct[subbnd-1]) {
768 n_bands--;
769 bnd_sz[bnd] += subbnd_size;
770 } else {
771 bnd_sz[++bnd] = subbnd_size;
776 /* set optional output params */
777 if (num_subbands)
778 *num_subbands = n_subbands;
779 if (num_bands)
780 *num_bands = n_bands;
781 if (band_sizes)
782 memcpy(band_sizes, bnd_sz, n_bands);
786 * Decode a single audio block from the AC-3 bitstream.
788 static int decode_audio_block(AC3DecodeContext *s, int blk)
790 int fbw_channels = s->fbw_channels;
791 int channel_mode = s->channel_mode;
792 int i, bnd, seg, ch;
793 int different_transforms;
794 int downmix_output;
795 int cpl_in_use;
796 GetBitContext *gbc = &s->gbc;
797 uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
799 memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
801 /* block switch flags */
802 different_transforms = 0;
803 if (s->block_switch_syntax) {
804 for (ch = 1; ch <= fbw_channels; ch++) {
805 s->block_switch[ch] = get_bits1(gbc);
806 if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
807 different_transforms = 1;
811 /* dithering flags */
812 if (s->dither_flag_syntax) {
813 for (ch = 1; ch <= fbw_channels; ch++) {
814 s->dither_flag[ch] = get_bits1(gbc);
818 /* dynamic range */
819 i = !(s->channel_mode);
820 do {
821 if(get_bits1(gbc)) {
822 s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
823 s->avctx->drc_scale)+1.0;
824 } else if(blk == 0) {
825 s->dynamic_range[i] = 1.0f;
827 } while(i--);
829 /* spectral extension strategy */
830 if (s->eac3 && (!blk || get_bits1(gbc))) {
831 if (get_bits1(gbc)) {
832 ff_log_missing_feature(s->avctx, "Spectral extension", 1);
833 return -1;
835 /* TODO: parse spectral extension strategy info */
838 /* TODO: spectral extension coordinates */
840 /* coupling strategy */
841 if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
842 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
843 if (!s->eac3)
844 s->cpl_in_use[blk] = get_bits1(gbc);
845 if (s->cpl_in_use[blk]) {
846 /* coupling in use */
847 int cpl_start_subband, cpl_end_subband;
849 if (channel_mode < AC3_CHMODE_STEREO) {
850 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
851 return -1;
854 /* check for enhanced coupling */
855 if (s->eac3 && get_bits1(gbc)) {
856 /* TODO: parse enhanced coupling strategy info */
857 ff_log_missing_feature(s->avctx, "Enhanced coupling", 1);
858 return -1;
861 /* determine which channels are coupled */
862 if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
863 s->channel_in_cpl[1] = 1;
864 s->channel_in_cpl[2] = 1;
865 } else {
866 for (ch = 1; ch <= fbw_channels; ch++)
867 s->channel_in_cpl[ch] = get_bits1(gbc);
870 /* phase flags in use */
871 if (channel_mode == AC3_CHMODE_STEREO)
872 s->phase_flags_in_use = get_bits1(gbc);
874 /* coupling frequency range */
875 /* TODO: modify coupling end freq if spectral extension is used */
876 cpl_start_subband = get_bits(gbc, 4);
877 cpl_end_subband = get_bits(gbc, 4) + 3;
878 s->num_cpl_subbands = cpl_end_subband - cpl_start_subband;
879 if (s->num_cpl_subbands < 0) {
880 av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d > %d)\n",
881 cpl_start_subband, cpl_end_subband);
882 return -1;
884 s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
885 s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37;
887 decode_band_structure(gbc, blk, s->eac3, 0,
888 cpl_start_subband, cpl_end_subband,
889 ff_eac3_default_cpl_band_struct,
890 s->cpl_band_struct, &s->num_cpl_subbands,
891 &s->num_cpl_bands, NULL);
892 } else {
893 /* coupling not in use */
894 for (ch = 1; ch <= fbw_channels; ch++) {
895 s->channel_in_cpl[ch] = 0;
896 s->first_cpl_coords[ch] = 1;
898 s->first_cpl_leak = s->eac3;
899 s->phase_flags_in_use = 0;
901 } else if (!s->eac3) {
902 if(!blk) {
903 av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
904 return -1;
905 } else {
906 s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
909 cpl_in_use = s->cpl_in_use[blk];
911 /* coupling coordinates */
912 if (cpl_in_use) {
913 int cpl_coords_exist = 0;
915 for (ch = 1; ch <= fbw_channels; ch++) {
916 if (s->channel_in_cpl[ch]) {
917 if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
918 int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
919 s->first_cpl_coords[ch] = 0;
920 cpl_coords_exist = 1;
921 master_cpl_coord = 3 * get_bits(gbc, 2);
922 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
923 cpl_coord_exp = get_bits(gbc, 4);
924 cpl_coord_mant = get_bits(gbc, 4);
925 if (cpl_coord_exp == 15)
926 s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
927 else
928 s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
929 s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
931 } else if (!blk) {
932 av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
933 return -1;
935 } else {
936 /* channel not in coupling */
937 s->first_cpl_coords[ch] = 1;
940 /* phase flags */
941 if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
942 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
943 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
948 /* stereo rematrixing strategy and band structure */
949 if (channel_mode == AC3_CHMODE_STEREO) {
950 if ((s->eac3 && !blk) || get_bits1(gbc)) {
951 s->num_rematrixing_bands = 4;
952 if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
953 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
954 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
955 s->rematrixing_flags[bnd] = get_bits1(gbc);
956 } else if (!blk) {
957 av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
958 return -1;
962 /* exponent strategies for each channel */
963 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
964 if (!s->eac3)
965 s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
966 if(s->exp_strategy[blk][ch] != EXP_REUSE)
967 bit_alloc_stages[ch] = 3;
970 /* channel bandwidth */
971 for (ch = 1; ch <= fbw_channels; ch++) {
972 s->start_freq[ch] = 0;
973 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
974 int group_size;
975 int prev = s->end_freq[ch];
976 if (s->channel_in_cpl[ch])
977 s->end_freq[ch] = s->start_freq[CPL_CH];
978 else {
979 int bandwidth_code = get_bits(gbc, 6);
980 if (bandwidth_code > 60) {
981 av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
982 return -1;
984 s->end_freq[ch] = bandwidth_code * 3 + 73;
986 group_size = 3 << (s->exp_strategy[blk][ch] - 1);
987 s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
988 if(blk > 0 && s->end_freq[ch] != prev)
989 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
992 if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
993 s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
994 (3 << (s->exp_strategy[blk][CPL_CH] - 1));
997 /* decode exponents for each channel */
998 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
999 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
1000 s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
1001 if (decode_exponents(gbc, s->exp_strategy[blk][ch],
1002 s->num_exp_groups[ch], s->dexps[ch][0],
1003 &s->dexps[ch][s->start_freq[ch]+!!ch])) {
1004 av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
1005 return -1;
1007 if(ch != CPL_CH && ch != s->lfe_ch)
1008 skip_bits(gbc, 2); /* skip gainrng */
1012 /* bit allocation information */
1013 if (s->bit_allocation_syntax) {
1014 if (get_bits1(gbc)) {
1015 s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
1016 s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
1017 s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
1018 s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
1019 s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
1020 for(ch=!cpl_in_use; ch<=s->channels; ch++)
1021 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1022 } else if (!blk) {
1023 av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
1024 return -1;
1028 /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
1029 if(!s->eac3 || !blk){
1030 if(s->snr_offset_strategy && get_bits1(gbc)) {
1031 int snr = 0;
1032 int csnr;
1033 csnr = (get_bits(gbc, 6) - 15) << 4;
1034 for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
1035 /* snr offset */
1036 if (ch == i || s->snr_offset_strategy == 2)
1037 snr = (csnr + get_bits(gbc, 4)) << 2;
1038 /* run at least last bit allocation stage if snr offset changes */
1039 if(blk && s->snr_offset[ch] != snr) {
1040 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
1042 s->snr_offset[ch] = snr;
1044 /* fast gain (normal AC-3 only) */
1045 if (!s->eac3) {
1046 int prev = s->fast_gain[ch];
1047 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1048 /* run last 2 bit allocation stages if fast gain changes */
1049 if(blk && prev != s->fast_gain[ch])
1050 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1053 } else if (!s->eac3 && !blk) {
1054 av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
1055 return -1;
1059 /* fast gain (E-AC-3 only) */
1060 if (s->fast_gain_syntax && get_bits1(gbc)) {
1061 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
1062 int prev = s->fast_gain[ch];
1063 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1064 /* run last 2 bit allocation stages if fast gain changes */
1065 if(blk && prev != s->fast_gain[ch])
1066 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1068 } else if (s->eac3 && !blk) {
1069 for (ch = !cpl_in_use; ch <= s->channels; ch++)
1070 s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
1073 /* E-AC-3 to AC-3 converter SNR offset */
1074 if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
1075 skip_bits(gbc, 10); // skip converter snr offset
1078 /* coupling leak information */
1079 if (cpl_in_use) {
1080 if (s->first_cpl_leak || get_bits1(gbc)) {
1081 int fl = get_bits(gbc, 3);
1082 int sl = get_bits(gbc, 3);
1083 /* run last 2 bit allocation stages for coupling channel if
1084 coupling leak changes */
1085 if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
1086 sl != s->bit_alloc_params.cpl_slow_leak)) {
1087 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
1089 s->bit_alloc_params.cpl_fast_leak = fl;
1090 s->bit_alloc_params.cpl_slow_leak = sl;
1091 } else if (!s->eac3 && !blk) {
1092 av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
1093 return -1;
1095 s->first_cpl_leak = 0;
1098 /* delta bit allocation information */
1099 if (s->dba_syntax && get_bits1(gbc)) {
1100 /* delta bit allocation exists (strategy) */
1101 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1102 s->dba_mode[ch] = get_bits(gbc, 2);
1103 if (s->dba_mode[ch] == DBA_RESERVED) {
1104 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
1105 return -1;
1107 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1109 /* channel delta offset, len and bit allocation */
1110 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1111 if (s->dba_mode[ch] == DBA_NEW) {
1112 s->dba_nsegs[ch] = get_bits(gbc, 3);
1113 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
1114 s->dba_offsets[ch][seg] = get_bits(gbc, 5);
1115 s->dba_lengths[ch][seg] = get_bits(gbc, 4);
1116 s->dba_values[ch][seg] = get_bits(gbc, 3);
1118 /* run last 2 bit allocation stages if new dba values */
1119 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1122 } else if(blk == 0) {
1123 for(ch=0; ch<=s->channels; ch++) {
1124 s->dba_mode[ch] = DBA_NONE;
1128 /* Bit allocation */
1129 for(ch=!cpl_in_use; ch<=s->channels; ch++) {
1130 if(bit_alloc_stages[ch] > 2) {
1131 /* Exponent mapping into PSD and PSD integration */
1132 ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
1133 s->start_freq[ch], s->end_freq[ch],
1134 s->psd[ch], s->band_psd[ch]);
1136 if(bit_alloc_stages[ch] > 1) {
1137 /* Compute excitation function, Compute masking curve, and
1138 Apply delta bit allocation */
1139 if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
1140 s->start_freq[ch], s->end_freq[ch],
1141 s->fast_gain[ch], (ch == s->lfe_ch),
1142 s->dba_mode[ch], s->dba_nsegs[ch],
1143 s->dba_offsets[ch], s->dba_lengths[ch],
1144 s->dba_values[ch], s->mask[ch])) {
1145 av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
1146 return -1;
1149 if(bit_alloc_stages[ch] > 0) {
1150 /* Compute bit allocation */
1151 const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
1152 ff_eac3_hebap_tab : ff_ac3_bap_tab;
1153 ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
1154 s->start_freq[ch], s->end_freq[ch],
1155 s->snr_offset[ch],
1156 s->bit_alloc_params.floor,
1157 bap_tab, s->bap[ch]);
1161 /* unused dummy data */
1162 if (s->skip_syntax && get_bits1(gbc)) {
1163 int skipl = get_bits(gbc, 9);
1164 while(skipl--)
1165 skip_bits(gbc, 8);
1168 /* unpack the transform coefficients
1169 this also uncouples channels if coupling is in use. */
1170 decode_transform_coeffs(s, blk);
1172 /* TODO: generate enhanced coupling coordinates and uncouple */
1174 /* TODO: apply spectral extension */
1176 /* recover coefficients if rematrixing is in use */
1177 if(s->channel_mode == AC3_CHMODE_STEREO)
1178 do_rematrixing(s);
1180 /* apply scaling to coefficients (headroom, dynrng) */
1181 for(ch=1; ch<=s->channels; ch++) {
1182 float gain = s->mul_bias / 4194304.0f;
1183 if(s->channel_mode == AC3_CHMODE_DUALMONO) {
1184 gain *= s->dynamic_range[ch-1];
1185 } else {
1186 gain *= s->dynamic_range[0];
1188 s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
1191 /* downmix and MDCT. order depends on whether block switching is used for
1192 any channel in this block. this is because coefficients for the long
1193 and short transforms cannot be mixed. */
1194 downmix_output = s->channels != s->out_channels &&
1195 !((s->output_mode & AC3_OUTPUT_LFEON) &&
1196 s->fbw_channels == s->out_channels);
1197 if(different_transforms) {
1198 /* the delay samples have already been downmixed, so we upmix the delay
1199 samples in order to reconstruct all channels before downmixing. */
1200 if(s->downmixed) {
1201 s->downmixed = 0;
1202 ac3_upmix_delay(s);
1205 do_imdct(s, s->channels);
1207 if(downmix_output) {
1208 s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1210 } else {
1211 if(downmix_output) {
1212 s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1215 if(downmix_output && !s->downmixed) {
1216 s->downmixed = 1;
1217 s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
1220 do_imdct(s, s->out_channels);
1223 return 0;
1227 * Decode a single AC-3 frame.
1229 static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
1230 AVPacket *avpkt)
1232 const uint8_t *buf = avpkt->data;
1233 int buf_size = avpkt->size;
1234 AC3DecodeContext *s = avctx->priv_data;
1235 int16_t *out_samples = (int16_t *)data;
1236 int blk, ch, err;
1237 const uint8_t *channel_map;
1238 const float *output[AC3_MAX_CHANNELS];
1240 /* initialize the GetBitContext with the start of valid AC-3 Frame */
1241 if (s->input_buffer) {
1242 /* copy input buffer to decoder context to avoid reading past the end
1243 of the buffer, which can be caused by a damaged input stream. */
1244 memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
1245 init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
1246 } else {
1247 init_get_bits(&s->gbc, buf, buf_size * 8);
1250 /* parse the syncinfo */
1251 *data_size = 0;
1252 err = parse_frame_header(s);
1254 /* check that reported frame size fits in input buffer */
1255 if(s->frame_size > buf_size) {
1256 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1257 err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
1260 /* check for crc mismatch */
1261 if(err != AAC_AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_recognition >= FF_ER_CAREFUL) {
1262 if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
1263 av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
1264 err = AAC_AC3_PARSE_ERROR_CRC;
1268 if(err && err != AAC_AC3_PARSE_ERROR_CRC) {
1269 switch(err) {
1270 case AAC_AC3_PARSE_ERROR_SYNC:
1271 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
1272 return -1;
1273 case AAC_AC3_PARSE_ERROR_BSID:
1274 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
1275 break;
1276 case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
1277 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
1278 break;
1279 case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
1280 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
1281 break;
1282 case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
1283 /* skip frame if CRC is ok. otherwise use error concealment. */
1284 /* TODO: add support for substreams and dependent frames */
1285 if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
1286 av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
1287 return s->frame_size;
1288 } else {
1289 av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
1291 break;
1292 default:
1293 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
1294 break;
1298 /* if frame is ok, set audio parameters */
1299 if (!err) {
1300 avctx->sample_rate = s->sample_rate;
1301 avctx->bit_rate = s->bit_rate;
1303 /* channel config */
1304 s->out_channels = s->channels;
1305 s->output_mode = s->channel_mode;
1306 if(s->lfe_on)
1307 s->output_mode |= AC3_OUTPUT_LFEON;
1308 if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
1309 avctx->request_channels < s->channels) {
1310 s->out_channels = avctx->request_channels;
1311 s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1312 s->channel_layout = ff_ac3_channel_layout_tab[s->output_mode];
1314 avctx->channels = s->out_channels;
1315 avctx->channel_layout = s->channel_layout;
1317 /* set downmixing coefficients if needed */
1318 if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
1319 s->fbw_channels == s->out_channels)) {
1320 set_downmix_coeffs(s);
1322 } else if (!s->out_channels) {
1323 s->out_channels = avctx->channels;
1324 if(s->out_channels < s->channels)
1325 s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1328 /* decode the audio blocks */
1329 channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
1330 for (ch = 0; ch < s->out_channels; ch++)
1331 output[ch] = s->output[channel_map[ch]];
1332 for (blk = 0; blk < s->num_blocks; blk++) {
1333 if (!err && decode_audio_block(s, blk)) {
1334 av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
1335 err = 1;
1337 s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
1338 out_samples += 256 * s->out_channels;
1340 *data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);
1341 return s->frame_size;
1345 * Uninitialize the AC-3 decoder.
1347 static av_cold int ac3_decode_end(AVCodecContext *avctx)
1349 AC3DecodeContext *s = avctx->priv_data;
1350 ff_mdct_end(&s->imdct_512);
1351 ff_mdct_end(&s->imdct_256);
1353 av_freep(&s->input_buffer);
1355 return 0;
1358 AVCodec ac3_decoder = {
1359 .name = "ac3",
1360 .type = CODEC_TYPE_AUDIO,
1361 .id = CODEC_ID_AC3,
1362 .priv_data_size = sizeof (AC3DecodeContext),
1363 .init = ac3_decode_init,
1364 .close = ac3_decode_end,
1365 .decode = ac3_decode_frame,
1366 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
1369 AVCodec eac3_decoder = {
1370 .name = "eac3",
1371 .type = CODEC_TYPE_AUDIO,
1372 .id = CODEC_ID_EAC3,
1373 .priv_data_size = sizeof (AC3DecodeContext),
1374 .init = ac3_decode_init,
1375 .close = ac3_decode_end,
1376 .decode = ac3_decode_frame,
1377 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),