Replace 5 with AOT_SBR when referring to the MPEG-4 audio object type.
[FFMpeg-mirror/lagarith.git] / libavcodec / adpcm.c
blobd8908d34d26a908c6356755bcc407527f0bff1de
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "avcodec.h"
22 #include "get_bits.h"
23 #include "put_bits.h"
24 #include "bytestream.h"
26 /**
27 * @file libavcodec/adpcm.c
28 * ADPCM codecs.
29 * First version by Francois Revol (revol@free.fr)
30 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31 * by Mike Melanson (melanson@pcisys.net)
32 * CD-ROM XA ADPCM codec by BERO
33 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
41 * Features and limitations:
43 * Reference documents:
44 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46 * http://openquicktime.sourceforge.net/plugins.htm
47 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
51 * CD-ROM XA:
52 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54 * readstr http://www.geocities.co.jp/Playtown/2004/
57 #define BLKSIZE 1024
59 /* step_table[] and index_table[] are from the ADPCM reference source */
60 /* This is the index table: */
61 static const int index_table[16] = {
62 -1, -1, -1, -1, 2, 4, 6, 8,
63 -1, -1, -1, -1, 2, 4, 6, 8,
66 /**
67 * This is the step table. Note that many programs use slight deviations from
68 * this table, but such deviations are negligible:
70 static const int step_table[89] = {
71 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
82 /* These are for MS-ADPCM */
83 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84 static const int AdaptationTable[] = {
85 230, 230, 230, 230, 307, 409, 512, 614,
86 768, 614, 512, 409, 307, 230, 230, 230
89 static const uint8_t AdaptCoeff1[] = {
90 64, 128, 0, 48, 60, 115, 98
93 static const int8_t AdaptCoeff2[] = {
94 0, -64, 0, 16, 0, -52, -58
97 /* These are for CD-ROM XA ADPCM */
98 static const int xa_adpcm_table[5][2] = {
99 { 0, 0 },
100 { 60, 0 },
101 { 115, -52 },
102 { 98, -55 },
103 { 122, -60 }
106 static const int ea_adpcm_table[] = {
107 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
108 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
111 // padded to zero where table size is less then 16
112 static const int swf_index_tables[4][16] = {
113 /*2*/ { -1, 2 },
114 /*3*/ { -1, -1, 2, 4 },
115 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
116 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
119 static const int yamaha_indexscale[] = {
120 230, 230, 230, 230, 307, 409, 512, 614,
121 230, 230, 230, 230, 307, 409, 512, 614
124 static const int yamaha_difflookup[] = {
125 1, 3, 5, 7, 9, 11, 13, 15,
126 -1, -3, -5, -7, -9, -11, -13, -15
129 /* end of tables */
131 typedef struct ADPCMChannelStatus {
132 int predictor;
133 short int step_index;
134 int step;
135 /* for encoding */
136 int prev_sample;
138 /* MS version */
139 short sample1;
140 short sample2;
141 int coeff1;
142 int coeff2;
143 int idelta;
144 } ADPCMChannelStatus;
146 typedef struct ADPCMContext {
147 ADPCMChannelStatus status[6];
148 } ADPCMContext;
150 /* XXX: implement encoding */
152 #if CONFIG_ENCODERS
153 static av_cold int adpcm_encode_init(AVCodecContext *avctx)
155 if (avctx->channels > 2)
156 return -1; /* only stereo or mono =) */
158 if(avctx->trellis && (unsigned)avctx->trellis > 16U){
159 av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
160 return -1;
163 switch(avctx->codec->id) {
164 case CODEC_ID_ADPCM_IMA_WAV:
165 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
166 /* and we have 4 bytes per channel overhead */
167 avctx->block_align = BLKSIZE;
168 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
169 break;
170 case CODEC_ID_ADPCM_IMA_QT:
171 avctx->frame_size = 64;
172 avctx->block_align = 34 * avctx->channels;
173 break;
174 case CODEC_ID_ADPCM_MS:
175 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
176 /* and we have 7 bytes per channel overhead */
177 avctx->block_align = BLKSIZE;
178 break;
179 case CODEC_ID_ADPCM_YAMAHA:
180 avctx->frame_size = BLKSIZE * avctx->channels;
181 avctx->block_align = BLKSIZE;
182 break;
183 case CODEC_ID_ADPCM_SWF:
184 if (avctx->sample_rate != 11025 &&
185 avctx->sample_rate != 22050 &&
186 avctx->sample_rate != 44100) {
187 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
188 return -1;
190 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
191 break;
192 default:
193 return -1;
196 avctx->coded_frame= avcodec_alloc_frame();
197 avctx->coded_frame->key_frame= 1;
199 return 0;
202 static av_cold int adpcm_encode_close(AVCodecContext *avctx)
204 av_freep(&avctx->coded_frame);
206 return 0;
210 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
212 int delta = sample - c->prev_sample;
213 int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
214 c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
215 c->prev_sample = av_clip_int16(c->prev_sample);
216 c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
217 return nibble;
220 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
222 int predictor, nibble, bias;
224 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
226 nibble= sample - predictor;
227 if(nibble>=0) bias= c->idelta/2;
228 else bias=-c->idelta/2;
230 nibble= (nibble + bias) / c->idelta;
231 nibble= av_clip(nibble, -8, 7)&0x0F;
233 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
235 c->sample2 = c->sample1;
236 c->sample1 = av_clip_int16(predictor);
238 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
239 if (c->idelta < 16) c->idelta = 16;
241 return nibble;
244 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
246 int nibble, delta;
248 if(!c->step) {
249 c->predictor = 0;
250 c->step = 127;
253 delta = sample - c->predictor;
255 nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
257 c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
258 c->predictor = av_clip_int16(c->predictor);
259 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
260 c->step = av_clip(c->step, 127, 24567);
262 return nibble;
265 typedef struct TrellisPath {
266 int nibble;
267 int prev;
268 } TrellisPath;
270 typedef struct TrellisNode {
271 uint32_t ssd;
272 int path;
273 int sample1;
274 int sample2;
275 int step;
276 } TrellisNode;
278 static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
279 uint8_t *dst, ADPCMChannelStatus *c, int n)
281 #define FREEZE_INTERVAL 128
282 //FIXME 6% faster if frontier is a compile-time constant
283 const int frontier = 1 << avctx->trellis;
284 const int stride = avctx->channels;
285 const int version = avctx->codec->id;
286 const int max_paths = frontier*FREEZE_INTERVAL;
287 TrellisPath paths[max_paths], *p;
288 TrellisNode node_buf[2][frontier];
289 TrellisNode *nodep_buf[2][frontier];
290 TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
291 TrellisNode **nodes_next = nodep_buf[1];
292 int pathn = 0, froze = -1, i, j, k;
294 assert(!(max_paths&(max_paths-1)));
296 memset(nodep_buf, 0, sizeof(nodep_buf));
297 nodes[0] = &node_buf[1][0];
298 nodes[0]->ssd = 0;
299 nodes[0]->path = 0;
300 nodes[0]->step = c->step_index;
301 nodes[0]->sample1 = c->sample1;
302 nodes[0]->sample2 = c->sample2;
303 if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
304 nodes[0]->sample1 = c->prev_sample;
305 if(version == CODEC_ID_ADPCM_MS)
306 nodes[0]->step = c->idelta;
307 if(version == CODEC_ID_ADPCM_YAMAHA) {
308 if(c->step == 0) {
309 nodes[0]->step = 127;
310 nodes[0]->sample1 = 0;
311 } else {
312 nodes[0]->step = c->step;
313 nodes[0]->sample1 = c->predictor;
317 for(i=0; i<n; i++) {
318 TrellisNode *t = node_buf[i&1];
319 TrellisNode **u;
320 int sample = samples[i*stride];
321 memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
322 for(j=0; j<frontier && nodes[j]; j++) {
323 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
324 const int range = (j < frontier/2) ? 1 : 0;
325 const int step = nodes[j]->step;
326 int nidx;
327 if(version == CODEC_ID_ADPCM_MS) {
328 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
329 const int div = (sample - predictor) / step;
330 const int nmin = av_clip(div-range, -8, 6);
331 const int nmax = av_clip(div+range, -7, 7);
332 for(nidx=nmin; nidx<=nmax; nidx++) {
333 const int nibble = nidx & 0xf;
334 int dec_sample = predictor + nidx * step;
335 #define STORE_NODE(NAME, STEP_INDEX)\
336 int d;\
337 uint32_t ssd;\
338 dec_sample = av_clip_int16(dec_sample);\
339 d = sample - dec_sample;\
340 ssd = nodes[j]->ssd + d*d;\
341 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
342 continue;\
343 /* Collapse any two states with the same previous sample value. \
344 * One could also distinguish states by step and by 2nd to last
345 * sample, but the effects of that are negligible. */\
346 for(k=0; k<frontier && nodes_next[k]; k++) {\
347 if(dec_sample == nodes_next[k]->sample1) {\
348 assert(ssd >= nodes_next[k]->ssd);\
349 goto next_##NAME;\
352 for(k=0; k<frontier; k++) {\
353 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
354 TrellisNode *u = nodes_next[frontier-1];\
355 if(!u) {\
356 assert(pathn < max_paths);\
357 u = t++;\
358 u->path = pathn++;\
360 u->ssd = ssd;\
361 u->step = STEP_INDEX;\
362 u->sample2 = nodes[j]->sample1;\
363 u->sample1 = dec_sample;\
364 paths[u->path].nibble = nibble;\
365 paths[u->path].prev = nodes[j]->path;\
366 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
367 nodes_next[k] = u;\
368 break;\
371 next_##NAME:;
372 STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
374 } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
375 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
376 const int predictor = nodes[j]->sample1;\
377 const int div = (sample - predictor) * 4 / STEP_TABLE;\
378 int nmin = av_clip(div-range, -7, 6);\
379 int nmax = av_clip(div+range, -6, 7);\
380 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
381 if(nmax<0) nmax--;\
382 for(nidx=nmin; nidx<=nmax; nidx++) {\
383 const int nibble = nidx<0 ? 7-nidx : nidx;\
384 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
385 STORE_NODE(NAME, STEP_INDEX);\
387 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
388 } else { //CODEC_ID_ADPCM_YAMAHA
389 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
390 #undef LOOP_NODES
391 #undef STORE_NODE
395 u = nodes;
396 nodes = nodes_next;
397 nodes_next = u;
399 // prevent overflow
400 if(nodes[0]->ssd > (1<<28)) {
401 for(j=1; j<frontier && nodes[j]; j++)
402 nodes[j]->ssd -= nodes[0]->ssd;
403 nodes[0]->ssd = 0;
406 // merge old paths to save memory
407 if(i == froze + FREEZE_INTERVAL) {
408 p = &paths[nodes[0]->path];
409 for(k=i; k>froze; k--) {
410 dst[k] = p->nibble;
411 p = &paths[p->prev];
413 froze = i;
414 pathn = 0;
415 // other nodes might use paths that don't coincide with the frozen one.
416 // checking which nodes do so is too slow, so just kill them all.
417 // this also slightly improves quality, but I don't know why.
418 memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
422 p = &paths[nodes[0]->path];
423 for(i=n-1; i>froze; i--) {
424 dst[i] = p->nibble;
425 p = &paths[p->prev];
428 c->predictor = nodes[0]->sample1;
429 c->sample1 = nodes[0]->sample1;
430 c->sample2 = nodes[0]->sample2;
431 c->step_index = nodes[0]->step;
432 c->step = nodes[0]->step;
433 c->idelta = nodes[0]->step;
436 static int adpcm_encode_frame(AVCodecContext *avctx,
437 unsigned char *frame, int buf_size, void *data)
439 int n, i, st;
440 short *samples;
441 unsigned char *dst;
442 ADPCMContext *c = avctx->priv_data;
444 dst = frame;
445 samples = (short *)data;
446 st= avctx->channels == 2;
447 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
449 switch(avctx->codec->id) {
450 case CODEC_ID_ADPCM_IMA_WAV:
451 n = avctx->frame_size / 8;
452 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
453 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
454 bytestream_put_le16(&dst, c->status[0].prev_sample);
455 *dst++ = (unsigned char)c->status[0].step_index;
456 *dst++ = 0; /* unknown */
457 samples++;
458 if (avctx->channels == 2) {
459 c->status[1].prev_sample = (signed short)samples[0];
460 /* c->status[1].step_index = 0; */
461 bytestream_put_le16(&dst, c->status[1].prev_sample);
462 *dst++ = (unsigned char)c->status[1].step_index;
463 *dst++ = 0;
464 samples++;
467 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
468 if(avctx->trellis > 0) {
469 uint8_t buf[2][n*8];
470 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
471 if(avctx->channels == 2)
472 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
473 for(i=0; i<n; i++) {
474 *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
475 *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
476 *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
477 *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
478 if (avctx->channels == 2) {
479 *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
480 *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
481 *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
482 *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
485 } else
486 for (; n>0; n--) {
487 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
488 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
489 dst++;
490 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
491 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
492 dst++;
493 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
494 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
495 dst++;
496 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
497 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
498 dst++;
499 /* right channel */
500 if (avctx->channels == 2) {
501 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
502 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
503 dst++;
504 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
505 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
506 dst++;
507 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
508 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
509 dst++;
510 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
511 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
512 dst++;
514 samples += 8 * avctx->channels;
516 break;
517 case CODEC_ID_ADPCM_IMA_QT:
519 int ch, i;
520 PutBitContext pb;
521 init_put_bits(&pb, dst, buf_size*8);
523 for(ch=0; ch<avctx->channels; ch++){
524 put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
525 put_bits(&pb, 7, c->status[ch].step_index);
526 if(avctx->trellis > 0) {
527 uint8_t buf[64];
528 adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
529 for(i=0; i<64; i++)
530 put_bits(&pb, 4, buf[i^1]);
531 c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
532 } else {
533 for (i=0; i<64; i+=2){
534 int t1, t2;
535 t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
536 t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
537 put_bits(&pb, 4, t2);
538 put_bits(&pb, 4, t1);
540 c->status[ch].prev_sample &= ~0x7F;
544 dst += put_bits_count(&pb)>>3;
545 break;
547 case CODEC_ID_ADPCM_SWF:
549 int i;
550 PutBitContext pb;
551 init_put_bits(&pb, dst, buf_size*8);
553 n = avctx->frame_size-1;
555 //Store AdpcmCodeSize
556 put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
558 //Init the encoder state
559 for(i=0; i<avctx->channels; i++){
560 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
561 put_sbits(&pb, 16, samples[i]);
562 put_bits(&pb, 6, c->status[i].step_index);
563 c->status[i].prev_sample = (signed short)samples[i];
566 if(avctx->trellis > 0) {
567 uint8_t buf[2][n];
568 adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
569 if (avctx->channels == 2)
570 adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
571 for(i=0; i<n; i++) {
572 put_bits(&pb, 4, buf[0][i]);
573 if (avctx->channels == 2)
574 put_bits(&pb, 4, buf[1][i]);
576 } else {
577 for (i=1; i<avctx->frame_size; i++) {
578 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
579 if (avctx->channels == 2)
580 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
583 flush_put_bits(&pb);
584 dst += put_bits_count(&pb)>>3;
585 break;
587 case CODEC_ID_ADPCM_MS:
588 for(i=0; i<avctx->channels; i++){
589 int predictor=0;
591 *dst++ = predictor;
592 c->status[i].coeff1 = AdaptCoeff1[predictor];
593 c->status[i].coeff2 = AdaptCoeff2[predictor];
595 for(i=0; i<avctx->channels; i++){
596 if (c->status[i].idelta < 16)
597 c->status[i].idelta = 16;
599 bytestream_put_le16(&dst, c->status[i].idelta);
601 for(i=0; i<avctx->channels; i++){
602 c->status[i].sample2= *samples++;
604 for(i=0; i<avctx->channels; i++){
605 c->status[i].sample1= *samples++;
607 bytestream_put_le16(&dst, c->status[i].sample1);
609 for(i=0; i<avctx->channels; i++)
610 bytestream_put_le16(&dst, c->status[i].sample2);
612 if(avctx->trellis > 0) {
613 int n = avctx->block_align - 7*avctx->channels;
614 uint8_t buf[2][n];
615 if(avctx->channels == 1) {
616 n *= 2;
617 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
618 for(i=0; i<n; i+=2)
619 *dst++ = (buf[0][i] << 4) | buf[0][i+1];
620 } else {
621 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
622 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
623 for(i=0; i<n; i++)
624 *dst++ = (buf[0][i] << 4) | buf[1][i];
626 } else
627 for(i=7*avctx->channels; i<avctx->block_align; i++) {
628 int nibble;
629 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
630 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
631 *dst++ = nibble;
633 break;
634 case CODEC_ID_ADPCM_YAMAHA:
635 n = avctx->frame_size / 2;
636 if(avctx->trellis > 0) {
637 uint8_t buf[2][n*2];
638 n *= 2;
639 if(avctx->channels == 1) {
640 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
641 for(i=0; i<n; i+=2)
642 *dst++ = buf[0][i] | (buf[0][i+1] << 4);
643 } else {
644 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
645 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
646 for(i=0; i<n; i++)
647 *dst++ = buf[0][i] | (buf[1][i] << 4);
649 } else
650 for (n *= avctx->channels; n>0; n--) {
651 int nibble;
652 nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
653 nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
654 *dst++ = nibble;
656 break;
657 default:
658 return -1;
660 return dst - frame;
662 #endif //CONFIG_ENCODERS
664 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
666 ADPCMContext *c = avctx->priv_data;
667 unsigned int max_channels = 2;
669 switch(avctx->codec->id) {
670 case CODEC_ID_ADPCM_EA_R1:
671 case CODEC_ID_ADPCM_EA_R2:
672 case CODEC_ID_ADPCM_EA_R3:
673 max_channels = 6;
674 break;
676 if(avctx->channels > max_channels){
677 return -1;
680 switch(avctx->codec->id) {
681 case CODEC_ID_ADPCM_CT:
682 c->status[0].step = c->status[1].step = 511;
683 break;
684 case CODEC_ID_ADPCM_IMA_WS:
685 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
686 c->status[0].predictor = AV_RL32(avctx->extradata);
687 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
689 break;
690 default:
691 break;
693 avctx->sample_fmt = SAMPLE_FMT_S16;
694 return 0;
697 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
699 int step_index;
700 int predictor;
701 int sign, delta, diff, step;
703 step = step_table[c->step_index];
704 step_index = c->step_index + index_table[(unsigned)nibble];
705 if (step_index < 0) step_index = 0;
706 else if (step_index > 88) step_index = 88;
708 sign = nibble & 8;
709 delta = nibble & 7;
710 /* perform direct multiplication instead of series of jumps proposed by
711 * the reference ADPCM implementation since modern CPUs can do the mults
712 * quickly enough */
713 diff = ((2 * delta + 1) * step) >> shift;
714 predictor = c->predictor;
715 if (sign) predictor -= diff;
716 else predictor += diff;
718 c->predictor = av_clip_int16(predictor);
719 c->step_index = step_index;
721 return (short)c->predictor;
724 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
726 int predictor;
728 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
729 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
731 c->sample2 = c->sample1;
732 c->sample1 = av_clip_int16(predictor);
733 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
734 if (c->idelta < 16) c->idelta = 16;
736 return c->sample1;
739 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
741 int sign, delta, diff;
742 int new_step;
744 sign = nibble & 8;
745 delta = nibble & 7;
746 /* perform direct multiplication instead of series of jumps proposed by
747 * the reference ADPCM implementation since modern CPUs can do the mults
748 * quickly enough */
749 diff = ((2 * delta + 1) * c->step) >> 3;
750 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
751 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
752 c->predictor = av_clip_int16(c->predictor);
753 /* calculate new step and clamp it to range 511..32767 */
754 new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
755 c->step = av_clip(new_step, 511, 32767);
757 return (short)c->predictor;
760 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
762 int sign, delta, diff;
764 sign = nibble & (1<<(size-1));
765 delta = nibble & ((1<<(size-1))-1);
766 diff = delta << (7 + c->step + shift);
768 /* clamp result */
769 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
771 /* calculate new step */
772 if (delta >= (2*size - 3) && c->step < 3)
773 c->step++;
774 else if (delta == 0 && c->step > 0)
775 c->step--;
777 return (short) c->predictor;
780 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
782 if(!c->step) {
783 c->predictor = 0;
784 c->step = 127;
787 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
788 c->predictor = av_clip_int16(c->predictor);
789 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
790 c->step = av_clip(c->step, 127, 24567);
791 return c->predictor;
794 static void xa_decode(short *out, const unsigned char *in,
795 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
797 int i, j;
798 int shift,filter,f0,f1;
799 int s_1,s_2;
800 int d,s,t;
802 for(i=0;i<4;i++) {
804 shift = 12 - (in[4+i*2] & 15);
805 filter = in[4+i*2] >> 4;
806 f0 = xa_adpcm_table[filter][0];
807 f1 = xa_adpcm_table[filter][1];
809 s_1 = left->sample1;
810 s_2 = left->sample2;
812 for(j=0;j<28;j++) {
813 d = in[16+i+j*4];
815 t = (signed char)(d<<4)>>4;
816 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
817 s_2 = s_1;
818 s_1 = av_clip_int16(s);
819 *out = s_1;
820 out += inc;
823 if (inc==2) { /* stereo */
824 left->sample1 = s_1;
825 left->sample2 = s_2;
826 s_1 = right->sample1;
827 s_2 = right->sample2;
828 out = out + 1 - 28*2;
831 shift = 12 - (in[5+i*2] & 15);
832 filter = in[5+i*2] >> 4;
834 f0 = xa_adpcm_table[filter][0];
835 f1 = xa_adpcm_table[filter][1];
837 for(j=0;j<28;j++) {
838 d = in[16+i+j*4];
840 t = (signed char)d >> 4;
841 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
842 s_2 = s_1;
843 s_1 = av_clip_int16(s);
844 *out = s_1;
845 out += inc;
848 if (inc==2) { /* stereo */
849 right->sample1 = s_1;
850 right->sample2 = s_2;
851 out -= 1;
852 } else {
853 left->sample1 = s_1;
854 left->sample2 = s_2;
860 /* DK3 ADPCM support macro */
861 #define DK3_GET_NEXT_NIBBLE() \
862 if (decode_top_nibble_next) \
864 nibble = last_byte >> 4; \
865 decode_top_nibble_next = 0; \
867 else \
869 last_byte = *src++; \
870 if (src >= buf + buf_size) break; \
871 nibble = last_byte & 0x0F; \
872 decode_top_nibble_next = 1; \
875 static int adpcm_decode_frame(AVCodecContext *avctx,
876 void *data, int *data_size,
877 AVPacket *avpkt)
879 const uint8_t *buf = avpkt->data;
880 int buf_size = avpkt->size;
881 ADPCMContext *c = avctx->priv_data;
882 ADPCMChannelStatus *cs;
883 int n, m, channel, i;
884 int block_predictor[2];
885 short *samples;
886 short *samples_end;
887 const uint8_t *src;
888 int st; /* stereo */
890 /* DK3 ADPCM accounting variables */
891 unsigned char last_byte = 0;
892 unsigned char nibble;
893 int decode_top_nibble_next = 0;
894 int diff_channel;
896 /* EA ADPCM state variables */
897 uint32_t samples_in_chunk;
898 int32_t previous_left_sample, previous_right_sample;
899 int32_t current_left_sample, current_right_sample;
900 int32_t next_left_sample, next_right_sample;
901 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
902 uint8_t shift_left, shift_right;
903 int count1, count2;
904 int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
906 if (!buf_size)
907 return 0;
909 //should protect all 4bit ADPCM variants
910 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
912 if(*data_size/4 < buf_size + 8)
913 return -1;
915 samples = data;
916 samples_end= samples + *data_size/2;
917 *data_size= 0;
918 src = buf;
920 st = avctx->channels == 2 ? 1 : 0;
922 switch(avctx->codec->id) {
923 case CODEC_ID_ADPCM_IMA_QT:
924 n = buf_size - 2*avctx->channels;
925 for (channel = 0; channel < avctx->channels; channel++) {
926 cs = &(c->status[channel]);
927 /* (pppppp) (piiiiiii) */
929 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
930 cs->predictor = (*src++) << 8;
931 cs->predictor |= (*src & 0x80);
932 cs->predictor &= 0xFF80;
934 /* sign extension */
935 if(cs->predictor & 0x8000)
936 cs->predictor -= 0x10000;
938 cs->predictor = av_clip_int16(cs->predictor);
940 cs->step_index = (*src++) & 0x7F;
942 if (cs->step_index > 88){
943 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
944 cs->step_index = 88;
947 cs->step = step_table[cs->step_index];
949 samples = (short*)data + channel;
951 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
952 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
953 samples += avctx->channels;
954 *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3);
955 samples += avctx->channels;
956 src ++;
959 if (st)
960 samples--;
961 break;
962 case CODEC_ID_ADPCM_IMA_WAV:
963 if (avctx->block_align != 0 && buf_size > avctx->block_align)
964 buf_size = avctx->block_align;
966 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
968 for(i=0; i<avctx->channels; i++){
969 cs = &(c->status[i]);
970 cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
972 cs->step_index = *src++;
973 if (cs->step_index > 88){
974 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
975 cs->step_index = 88;
977 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
980 while(src < buf + buf_size){
981 for(m=0; m<4; m++){
982 for(i=0; i<=st; i++)
983 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
984 for(i=0; i<=st; i++)
985 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
986 src++;
988 src += 4*st;
990 break;
991 case CODEC_ID_ADPCM_4XM:
992 cs = &(c->status[0]);
993 c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
994 if(st){
995 c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
997 c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
998 if(st){
999 c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1001 if (cs->step_index < 0) cs->step_index = 0;
1002 if (cs->step_index > 88) cs->step_index = 88;
1004 m= (buf_size - (src - buf))>>st;
1005 for(i=0; i<m; i++) {
1006 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1007 if (st)
1008 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1009 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1010 if (st)
1011 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1014 src += m<<st;
1016 break;
1017 case CODEC_ID_ADPCM_MS:
1018 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1019 buf_size = avctx->block_align;
1020 n = buf_size - 7 * avctx->channels;
1021 if (n < 0)
1022 return -1;
1023 block_predictor[0] = av_clip(*src++, 0, 6);
1024 block_predictor[1] = 0;
1025 if (st)
1026 block_predictor[1] = av_clip(*src++, 0, 6);
1027 c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1028 if (st){
1029 c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1031 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1032 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1033 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1034 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1036 c->status[0].sample1 = bytestream_get_le16(&src);
1037 if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1038 c->status[0].sample2 = bytestream_get_le16(&src);
1039 if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1041 *samples++ = c->status[0].sample2;
1042 if (st) *samples++ = c->status[1].sample2;
1043 *samples++ = c->status[0].sample1;
1044 if (st) *samples++ = c->status[1].sample1;
1045 for(;n>0;n--) {
1046 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
1047 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1048 src ++;
1050 break;
1051 case CODEC_ID_ADPCM_IMA_DK4:
1052 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1053 buf_size = avctx->block_align;
1055 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1056 c->status[0].step_index = *src++;
1057 src++;
1058 *samples++ = c->status[0].predictor;
1059 if (st) {
1060 c->status[1].predictor = (int16_t)bytestream_get_le16(&src);
1061 c->status[1].step_index = *src++;
1062 src++;
1063 *samples++ = c->status[1].predictor;
1065 while (src < buf + buf_size) {
1067 /* take care of the top nibble (always left or mono channel) */
1068 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1069 src[0] >> 4, 3);
1071 /* take care of the bottom nibble, which is right sample for
1072 * stereo, or another mono sample */
1073 if (st)
1074 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1075 src[0] & 0x0F, 3);
1076 else
1077 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1078 src[0] & 0x0F, 3);
1080 src++;
1082 break;
1083 case CODEC_ID_ADPCM_IMA_DK3:
1084 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1085 buf_size = avctx->block_align;
1087 if(buf_size + 16 > (samples_end - samples)*3/8)
1088 return -1;
1090 c->status[0].predictor = (int16_t)AV_RL16(src + 10);
1091 c->status[1].predictor = (int16_t)AV_RL16(src + 12);
1092 c->status[0].step_index = src[14];
1093 c->status[1].step_index = src[15];
1094 /* sign extend the predictors */
1095 src += 16;
1096 diff_channel = c->status[1].predictor;
1098 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1099 * the buffer is consumed */
1100 while (1) {
1102 /* for this algorithm, c->status[0] is the sum channel and
1103 * c->status[1] is the diff channel */
1105 /* process the first predictor of the sum channel */
1106 DK3_GET_NEXT_NIBBLE();
1107 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1109 /* process the diff channel predictor */
1110 DK3_GET_NEXT_NIBBLE();
1111 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1113 /* process the first pair of stereo PCM samples */
1114 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1115 *samples++ = c->status[0].predictor + c->status[1].predictor;
1116 *samples++ = c->status[0].predictor - c->status[1].predictor;
1118 /* process the second predictor of the sum channel */
1119 DK3_GET_NEXT_NIBBLE();
1120 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1122 /* process the second pair of stereo PCM samples */
1123 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1124 *samples++ = c->status[0].predictor + c->status[1].predictor;
1125 *samples++ = c->status[0].predictor - c->status[1].predictor;
1127 break;
1128 case CODEC_ID_ADPCM_IMA_ISS:
1129 c->status[0].predictor = (int16_t)AV_RL16(src + 0);
1130 c->status[0].step_index = src[2];
1131 src += 4;
1132 if(st) {
1133 c->status[1].predictor = (int16_t)AV_RL16(src + 0);
1134 c->status[1].step_index = src[2];
1135 src += 4;
1138 while (src < buf + buf_size) {
1140 if (st) {
1141 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1142 src[0] >> 4 , 3);
1143 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1144 src[0] & 0x0F, 3);
1145 } else {
1146 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1147 src[0] & 0x0F, 3);
1148 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1149 src[0] >> 4 , 3);
1152 src++;
1154 break;
1155 case CODEC_ID_ADPCM_IMA_WS:
1156 /* no per-block initialization; just start decoding the data */
1157 while (src < buf + buf_size) {
1159 if (st) {
1160 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1161 src[0] >> 4 , 3);
1162 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1163 src[0] & 0x0F, 3);
1164 } else {
1165 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1166 src[0] >> 4 , 3);
1167 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1168 src[0] & 0x0F, 3);
1171 src++;
1173 break;
1174 case CODEC_ID_ADPCM_XA:
1175 while (buf_size >= 128) {
1176 xa_decode(samples, src, &c->status[0], &c->status[1],
1177 avctx->channels);
1178 src += 128;
1179 samples += 28 * 8;
1180 buf_size -= 128;
1182 break;
1183 case CODEC_ID_ADPCM_IMA_EA_EACS:
1184 samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1186 if (samples_in_chunk > buf_size-4-(8<<st)) {
1187 src += buf_size - 4;
1188 break;
1191 for (i=0; i<=st; i++)
1192 c->status[i].step_index = bytestream_get_le32(&src);
1193 for (i=0; i<=st; i++)
1194 c->status[i].predictor = bytestream_get_le32(&src);
1196 for (; samples_in_chunk; samples_in_chunk--, src++) {
1197 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
1198 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1200 break;
1201 case CODEC_ID_ADPCM_IMA_EA_SEAD:
1202 for (; src < buf+buf_size; src++) {
1203 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1204 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1206 break;
1207 case CODEC_ID_ADPCM_EA:
1208 if (buf_size < 4 || AV_RL32(src) >= ((buf_size - 12) * 2)) {
1209 src += buf_size;
1210 break;
1212 samples_in_chunk = AV_RL32(src);
1213 src += 4;
1214 current_left_sample = (int16_t)bytestream_get_le16(&src);
1215 previous_left_sample = (int16_t)bytestream_get_le16(&src);
1216 current_right_sample = (int16_t)bytestream_get_le16(&src);
1217 previous_right_sample = (int16_t)bytestream_get_le16(&src);
1219 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1220 coeff1l = ea_adpcm_table[ *src >> 4 ];
1221 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
1222 coeff1r = ea_adpcm_table[*src & 0x0F];
1223 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1224 src++;
1226 shift_left = (*src >> 4 ) + 8;
1227 shift_right = (*src & 0x0F) + 8;
1228 src++;
1230 for (count2 = 0; count2 < 28; count2++) {
1231 next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1232 next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1233 src++;
1235 next_left_sample = (next_left_sample +
1236 (current_left_sample * coeff1l) +
1237 (previous_left_sample * coeff2l) + 0x80) >> 8;
1238 next_right_sample = (next_right_sample +
1239 (current_right_sample * coeff1r) +
1240 (previous_right_sample * coeff2r) + 0x80) >> 8;
1242 previous_left_sample = current_left_sample;
1243 current_left_sample = av_clip_int16(next_left_sample);
1244 previous_right_sample = current_right_sample;
1245 current_right_sample = av_clip_int16(next_right_sample);
1246 *samples++ = (unsigned short)current_left_sample;
1247 *samples++ = (unsigned short)current_right_sample;
1251 if (src - buf == buf_size - 2)
1252 src += 2; // Skip terminating 0x0000
1254 break;
1255 case CODEC_ID_ADPCM_EA_MAXIS_XA:
1256 for(channel = 0; channel < avctx->channels; channel++) {
1257 for (i=0; i<2; i++)
1258 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1259 shift[channel] = (*src & 0x0F) + 8;
1260 src++;
1262 for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1263 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1264 for(channel = 0; channel < avctx->channels; channel++) {
1265 int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1266 sample = (sample +
1267 c->status[channel].sample1 * coeff[channel][0] +
1268 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1269 c->status[channel].sample2 = c->status[channel].sample1;
1270 c->status[channel].sample1 = av_clip_int16(sample);
1271 *samples++ = c->status[channel].sample1;
1274 src+=avctx->channels;
1276 break;
1277 case CODEC_ID_ADPCM_EA_R1:
1278 case CODEC_ID_ADPCM_EA_R2:
1279 case CODEC_ID_ADPCM_EA_R3: {
1280 /* channel numbering
1281 2chan: 0=fl, 1=fr
1282 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1283 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1284 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1285 int32_t previous_sample, current_sample, next_sample;
1286 int32_t coeff1, coeff2;
1287 uint8_t shift;
1288 unsigned int channel;
1289 uint16_t *samplesC;
1290 const uint8_t *srcC;
1291 const uint8_t *src_end = buf + buf_size;
1293 samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1294 : bytestream_get_le32(&src)) / 28;
1295 if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1296 28*samples_in_chunk*avctx->channels > samples_end-samples) {
1297 src += buf_size - 4;
1298 break;
1301 for (channel=0; channel<avctx->channels; channel++) {
1302 int32_t offset = (big_endian ? bytestream_get_be32(&src)
1303 : bytestream_get_le32(&src))
1304 + (avctx->channels-channel-1) * 4;
1306 if ((offset < 0) || (offset >= src_end - src - 4)) break;
1307 srcC = src + offset;
1308 samplesC = samples + channel;
1310 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1311 current_sample = (int16_t)bytestream_get_le16(&srcC);
1312 previous_sample = (int16_t)bytestream_get_le16(&srcC);
1313 } else {
1314 current_sample = c->status[channel].predictor;
1315 previous_sample = c->status[channel].prev_sample;
1318 for (count1=0; count1<samples_in_chunk; count1++) {
1319 if (*srcC == 0xEE) { /* only seen in R2 and R3 */
1320 srcC++;
1321 if (srcC > src_end - 30*2) break;
1322 current_sample = (int16_t)bytestream_get_be16(&srcC);
1323 previous_sample = (int16_t)bytestream_get_be16(&srcC);
1325 for (count2=0; count2<28; count2++) {
1326 *samplesC = (int16_t)bytestream_get_be16(&srcC);
1327 samplesC += avctx->channels;
1329 } else {
1330 coeff1 = ea_adpcm_table[ *srcC>>4 ];
1331 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1332 shift = (*srcC++ & 0x0F) + 8;
1334 if (srcC > src_end - 14) break;
1335 for (count2=0; count2<28; count2++) {
1336 if (count2 & 1)
1337 next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1338 else
1339 next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift;
1341 next_sample += (current_sample * coeff1) +
1342 (previous_sample * coeff2);
1343 next_sample = av_clip_int16(next_sample >> 8);
1345 previous_sample = current_sample;
1346 current_sample = next_sample;
1347 *samplesC = current_sample;
1348 samplesC += avctx->channels;
1353 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1354 c->status[channel].predictor = current_sample;
1355 c->status[channel].prev_sample = previous_sample;
1359 src = src + buf_size - (4 + 4*avctx->channels);
1360 samples += 28 * samples_in_chunk * avctx->channels;
1361 break;
1363 case CODEC_ID_ADPCM_EA_XAS:
1364 if (samples_end-samples < 32*4*avctx->channels
1365 || buf_size < (4+15)*4*avctx->channels) {
1366 src += buf_size;
1367 break;
1369 for (channel=0; channel<avctx->channels; channel++) {
1370 int coeff[2][4], shift[4];
1371 short *s2, *s = &samples[channel];
1372 for (n=0; n<4; n++, s+=32*avctx->channels) {
1373 for (i=0; i<2; i++)
1374 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1375 shift[n] = (src[2]&0x0F) + 8;
1376 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1377 s2[0] = (src[0]&0xF0) + (src[1]<<8);
1380 for (m=2; m<32; m+=2) {
1381 s = &samples[m*avctx->channels + channel];
1382 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1383 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1384 int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1385 int pred = s2[-1*avctx->channels] * coeff[0][n]
1386 + s2[-2*avctx->channels] * coeff[1][n];
1387 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1392 samples += 32*4*avctx->channels;
1393 break;
1394 case CODEC_ID_ADPCM_IMA_AMV:
1395 case CODEC_ID_ADPCM_IMA_SMJPEG:
1396 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1397 c->status[0].step_index = bytestream_get_le16(&src);
1399 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1400 src+=4;
1402 while (src < buf + buf_size) {
1403 char hi, lo;
1404 lo = *src & 0x0F;
1405 hi = *src >> 4;
1407 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1408 FFSWAP(char, hi, lo);
1410 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1411 lo, 3);
1412 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1413 hi, 3);
1414 src++;
1416 break;
1417 case CODEC_ID_ADPCM_CT:
1418 while (src < buf + buf_size) {
1419 if (st) {
1420 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1421 src[0] >> 4);
1422 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1423 src[0] & 0x0F);
1424 } else {
1425 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1426 src[0] >> 4);
1427 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1428 src[0] & 0x0F);
1430 src++;
1432 break;
1433 case CODEC_ID_ADPCM_SBPRO_4:
1434 case CODEC_ID_ADPCM_SBPRO_3:
1435 case CODEC_ID_ADPCM_SBPRO_2:
1436 if (!c->status[0].step_index) {
1437 /* the first byte is a raw sample */
1438 *samples++ = 128 * (*src++ - 0x80);
1439 if (st)
1440 *samples++ = 128 * (*src++ - 0x80);
1441 c->status[0].step_index = 1;
1443 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1444 while (src < buf + buf_size) {
1445 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1446 src[0] >> 4, 4, 0);
1447 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1448 src[0] & 0x0F, 4, 0);
1449 src++;
1451 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1452 while (src < buf + buf_size && samples + 2 < samples_end) {
1453 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1454 src[0] >> 5 , 3, 0);
1455 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1456 (src[0] >> 2) & 0x07, 3, 0);
1457 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1458 src[0] & 0x03, 2, 0);
1459 src++;
1461 } else {
1462 while (src < buf + buf_size && samples + 3 < samples_end) {
1463 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1464 src[0] >> 6 , 2, 2);
1465 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1466 (src[0] >> 4) & 0x03, 2, 2);
1467 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1468 (src[0] >> 2) & 0x03, 2, 2);
1469 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1470 src[0] & 0x03, 2, 2);
1471 src++;
1474 break;
1475 case CODEC_ID_ADPCM_SWF:
1477 GetBitContext gb;
1478 const int *table;
1479 int k0, signmask, nb_bits, count;
1480 int size = buf_size*8;
1482 init_get_bits(&gb, buf, size);
1484 //read bits & initial values
1485 nb_bits = get_bits(&gb, 2)+2;
1486 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1487 table = swf_index_tables[nb_bits-2];
1488 k0 = 1 << (nb_bits-2);
1489 signmask = 1 << (nb_bits-1);
1491 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1492 for (i = 0; i < avctx->channels; i++) {
1493 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1494 c->status[i].step_index = get_bits(&gb, 6);
1497 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1498 int i;
1500 for (i = 0; i < avctx->channels; i++) {
1501 // similar to IMA adpcm
1502 int delta = get_bits(&gb, nb_bits);
1503 int step = step_table[c->status[i].step_index];
1504 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1505 int k = k0;
1507 do {
1508 if (delta & k)
1509 vpdiff += step;
1510 step >>= 1;
1511 k >>= 1;
1512 } while(k);
1513 vpdiff += step;
1515 if (delta & signmask)
1516 c->status[i].predictor -= vpdiff;
1517 else
1518 c->status[i].predictor += vpdiff;
1520 c->status[i].step_index += table[delta & (~signmask)];
1522 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1523 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1525 *samples++ = c->status[i].predictor;
1526 if (samples >= samples_end) {
1527 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1528 return -1;
1533 src += buf_size;
1534 break;
1536 case CODEC_ID_ADPCM_YAMAHA:
1537 while (src < buf + buf_size) {
1538 if (st) {
1539 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1540 src[0] & 0x0F);
1541 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1542 src[0] >> 4 );
1543 } else {
1544 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1545 src[0] & 0x0F);
1546 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1547 src[0] >> 4 );
1549 src++;
1551 break;
1552 case CODEC_ID_ADPCM_THP:
1554 int table[2][16];
1555 unsigned int samplecnt;
1556 int prev[2][2];
1557 int ch;
1559 if (buf_size < 80) {
1560 av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1561 return -1;
1564 src+=4;
1565 samplecnt = bytestream_get_be32(&src);
1567 for (i = 0; i < 32; i++)
1568 table[0][i] = (int16_t)bytestream_get_be16(&src);
1570 /* Initialize the previous sample. */
1571 for (i = 0; i < 4; i++)
1572 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1574 if (samplecnt >= (samples_end - samples) / (st + 1)) {
1575 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1576 return -1;
1579 for (ch = 0; ch <= st; ch++) {
1580 samples = (unsigned short *) data + ch;
1582 /* Read in every sample for this channel. */
1583 for (i = 0; i < samplecnt / 14; i++) {
1584 int index = (*src >> 4) & 7;
1585 unsigned int exp = 28 - (*src++ & 15);
1586 int factor1 = table[ch][index * 2];
1587 int factor2 = table[ch][index * 2 + 1];
1589 /* Decode 14 samples. */
1590 for (n = 0; n < 14; n++) {
1591 int32_t sampledat;
1592 if(n&1) sampledat= *src++ <<28;
1593 else sampledat= (*src&0xF0)<<24;
1595 sampledat = ((prev[ch][0]*factor1
1596 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1597 *samples = av_clip_int16(sampledat);
1598 prev[ch][1] = prev[ch][0];
1599 prev[ch][0] = *samples++;
1601 /* In case of stereo, skip one sample, this sample
1602 is for the other channel. */
1603 samples += st;
1608 /* In the previous loop, in case stereo is used, samples is
1609 increased exactly one time too often. */
1610 samples -= st;
1611 break;
1614 default:
1615 return -1;
1617 *data_size = (uint8_t *)samples - (uint8_t *)data;
1618 return src - buf;
1623 #if CONFIG_ENCODERS
1624 #define ADPCM_ENCODER(id,name,long_name_) \
1625 AVCodec name ## _encoder = { \
1626 #name, \
1627 CODEC_TYPE_AUDIO, \
1628 id, \
1629 sizeof(ADPCMContext), \
1630 adpcm_encode_init, \
1631 adpcm_encode_frame, \
1632 adpcm_encode_close, \
1633 NULL, \
1634 .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1635 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1637 #else
1638 #define ADPCM_ENCODER(id,name,long_name_)
1639 #endif
1641 #if CONFIG_DECODERS
1642 #define ADPCM_DECODER(id,name,long_name_) \
1643 AVCodec name ## _decoder = { \
1644 #name, \
1645 CODEC_TYPE_AUDIO, \
1646 id, \
1647 sizeof(ADPCMContext), \
1648 adpcm_decode_init, \
1649 NULL, \
1650 NULL, \
1651 adpcm_decode_frame, \
1652 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1654 #else
1655 #define ADPCM_DECODER(id,name,long_name_)
1656 #endif
1658 #define ADPCM_CODEC(id,name,long_name_) \
1659 ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1661 /* Note: Do not forget to add new entries to the Makefile as well. */
1662 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1663 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1664 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1665 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1666 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1667 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1668 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1669 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1670 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1671 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1672 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1673 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1674 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1675 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1676 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1677 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1678 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1679 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1680 ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1681 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1682 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1683 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1684 ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1685 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1686 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1687 ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");