Replace 5 with AOT_SBR when referring to the MPEG-4 audio object type.
[FFMpeg-mirror/lagarith.git] / libavcodec / ac3dec.c
blob90ffd74ba57e802af79429a6ebb8cd6593789025
1 /*
2 * AC-3 Audio Decoder
3 * This code was developed as part of Google Summer of Code 2006.
4 * E-AC-3 support was added as part of Google Summer of Code 2007.
6 * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
7 * Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
8 * Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
10 * This file is part of FFmpeg.
12 * FFmpeg is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
17 * FFmpeg is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with FFmpeg; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
27 #include <stdio.h>
28 #include <stddef.h>
29 #include <math.h>
30 #include <string.h>
32 #include "libavutil/crc.h"
33 #include "internal.h"
34 #include "aac_ac3_parser.h"
35 #include "ac3_parser.h"
36 #include "ac3dec.h"
37 #include "ac3dec_data.h"
39 /** Large enough for maximum possible frame size when the specification limit is ignored */
40 #define AC3_FRAME_BUFFER_SIZE 32768
42 /**
43 * table for ungrouping 3 values in 7 bits.
44 * used for exponents and bap=2 mantissas
46 static uint8_t ungroup_3_in_7_bits_tab[128][3];
49 /** tables for ungrouping mantissas */
50 static int b1_mantissas[32][3];
51 static int b2_mantissas[128][3];
52 static int b3_mantissas[8];
53 static int b4_mantissas[128][2];
54 static int b5_mantissas[16];
56 /**
57 * Quantization table: levels for symmetric. bits for asymmetric.
58 * reference: Table 7.18 Mapping of bap to Quantizer
60 static const uint8_t quantization_tab[16] = {
61 0, 3, 5, 7, 11, 15,
62 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
65 /** dynamic range table. converts codes to scale factors. */
66 static float dynamic_range_tab[256];
68 /** Adjustments in dB gain */
69 #define LEVEL_PLUS_3DB 1.4142135623730950
70 #define LEVEL_PLUS_1POINT5DB 1.1892071150027209
71 #define LEVEL_MINUS_1POINT5DB 0.8408964152537145
72 #define LEVEL_MINUS_3DB 0.7071067811865476
73 #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
74 #define LEVEL_MINUS_6DB 0.5000000000000000
75 #define LEVEL_MINUS_9DB 0.3535533905932738
76 #define LEVEL_ZERO 0.0000000000000000
77 #define LEVEL_ONE 1.0000000000000000
79 static const float gain_levels[9] = {
80 LEVEL_PLUS_3DB,
81 LEVEL_PLUS_1POINT5DB,
82 LEVEL_ONE,
83 LEVEL_MINUS_1POINT5DB,
84 LEVEL_MINUS_3DB,
85 LEVEL_MINUS_4POINT5DB,
86 LEVEL_MINUS_6DB,
87 LEVEL_ZERO,
88 LEVEL_MINUS_9DB
91 /**
92 * Table for center mix levels
93 * reference: Section 5.4.2.4 cmixlev
95 static const uint8_t center_levels[4] = { 4, 5, 6, 5 };
97 /**
98 * Table for surround mix levels
99 * reference: Section 5.4.2.5 surmixlev
101 static const uint8_t surround_levels[4] = { 4, 6, 7, 6 };
104 * Table for default stereo downmixing coefficients
105 * reference: Section 7.8.2 Downmixing Into Two Channels
107 static const uint8_t ac3_default_coeffs[8][5][2] = {
108 { { 2, 7 }, { 7, 2 }, },
109 { { 4, 4 }, },
110 { { 2, 7 }, { 7, 2 }, },
111 { { 2, 7 }, { 5, 5 }, { 7, 2 }, },
112 { { 2, 7 }, { 7, 2 }, { 6, 6 }, },
113 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, },
114 { { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
115 { { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, },
119 * Symmetrical Dequantization
120 * reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
121 * Tables 7.19 to 7.23
123 static inline int
124 symmetric_dequant(int code, int levels)
126 return ((code - (levels >> 1)) << 24) / levels;
130 * Initialize tables at runtime.
132 static av_cold void ac3_tables_init(void)
134 int i;
136 /* generate table for ungrouping 3 values in 7 bits
137 reference: Section 7.1.3 Exponent Decoding */
138 for(i=0; i<128; i++) {
139 ungroup_3_in_7_bits_tab[i][0] = i / 25;
140 ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5;
141 ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5;
144 /* generate grouped mantissa tables
145 reference: Section 7.3.5 Ungrouping of Mantissas */
146 for(i=0; i<32; i++) {
147 /* bap=1 mantissas */
148 b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3);
149 b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3);
150 b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3);
152 for(i=0; i<128; i++) {
153 /* bap=2 mantissas */
154 b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5);
155 b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5);
156 b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5);
158 /* bap=4 mantissas */
159 b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
160 b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
162 /* generate ungrouped mantissa tables
163 reference: Tables 7.21 and 7.23 */
164 for(i=0; i<7; i++) {
165 /* bap=3 mantissas */
166 b3_mantissas[i] = symmetric_dequant(i, 7);
168 for(i=0; i<15; i++) {
169 /* bap=5 mantissas */
170 b5_mantissas[i] = symmetric_dequant(i, 15);
173 /* generate dynamic range table
174 reference: Section 7.7.1 Dynamic Range Control */
175 for(i=0; i<256; i++) {
176 int v = (i >> 5) - ((i >> 7) << 3) - 5;
177 dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
183 * AVCodec initialization
185 static av_cold int ac3_decode_init(AVCodecContext *avctx)
187 AC3DecodeContext *s = avctx->priv_data;
188 s->avctx = avctx;
190 ac3_common_init();
191 ac3_tables_init();
192 ff_mdct_init(&s->imdct_256, 8, 1, 1.0);
193 ff_mdct_init(&s->imdct_512, 9, 1, 1.0);
194 ff_kbd_window_init(s->window, 5.0, 256);
195 dsputil_init(&s->dsp, avctx);
196 av_lfg_init(&s->dith_state, 0);
198 /* set bias values for float to int16 conversion */
199 if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
200 s->add_bias = 385.0f;
201 s->mul_bias = 1.0f;
202 } else {
203 s->add_bias = 0.0f;
204 s->mul_bias = 32767.0f;
207 /* allow downmixing to stereo or mono */
208 if (avctx->channels > 0 && avctx->request_channels > 0 &&
209 avctx->request_channels < avctx->channels &&
210 avctx->request_channels <= 2) {
211 avctx->channels = avctx->request_channels;
213 s->downmixed = 1;
215 /* allocate context input buffer */
216 if (avctx->error_recognition >= FF_ER_CAREFUL) {
217 s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE);
218 if (!s->input_buffer)
219 return AVERROR_NOMEM;
222 avctx->sample_fmt = SAMPLE_FMT_S16;
223 return 0;
227 * Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
228 * GetBitContext within AC3DecodeContext must point to
229 * the start of the synchronized AC-3 bitstream.
231 static int ac3_parse_header(AC3DecodeContext *s)
233 GetBitContext *gbc = &s->gbc;
234 int i;
236 /* read the rest of the bsi. read twice for dual mono mode. */
237 i = !(s->channel_mode);
238 do {
239 skip_bits(gbc, 5); // skip dialog normalization
240 if (get_bits1(gbc))
241 skip_bits(gbc, 8); //skip compression
242 if (get_bits1(gbc))
243 skip_bits(gbc, 8); //skip language code
244 if (get_bits1(gbc))
245 skip_bits(gbc, 7); //skip audio production information
246 } while (i--);
248 skip_bits(gbc, 2); //skip copyright bit and original bitstream bit
250 /* skip the timecodes (or extra bitstream information for Alternate Syntax)
251 TODO: read & use the xbsi1 downmix levels */
252 if (get_bits1(gbc))
253 skip_bits(gbc, 14); //skip timecode1 / xbsi1
254 if (get_bits1(gbc))
255 skip_bits(gbc, 14); //skip timecode2 / xbsi2
257 /* skip additional bitstream info */
258 if (get_bits1(gbc)) {
259 i = get_bits(gbc, 6);
260 do {
261 skip_bits(gbc, 8);
262 } while(i--);
265 return 0;
269 * Common function to parse AC-3 or E-AC-3 frame header
271 static int parse_frame_header(AC3DecodeContext *s)
273 AC3HeaderInfo hdr;
274 int err;
276 err = ff_ac3_parse_header(&s->gbc, &hdr);
277 if(err)
278 return err;
280 /* get decoding parameters from header info */
281 s->bit_alloc_params.sr_code = hdr.sr_code;
282 s->channel_mode = hdr.channel_mode;
283 s->channel_layout = hdr.channel_layout;
284 s->lfe_on = hdr.lfe_on;
285 s->bit_alloc_params.sr_shift = hdr.sr_shift;
286 s->sample_rate = hdr.sample_rate;
287 s->bit_rate = hdr.bit_rate;
288 s->channels = hdr.channels;
289 s->fbw_channels = s->channels - s->lfe_on;
290 s->lfe_ch = s->fbw_channels + 1;
291 s->frame_size = hdr.frame_size;
292 s->center_mix_level = hdr.center_mix_level;
293 s->surround_mix_level = hdr.surround_mix_level;
294 s->num_blocks = hdr.num_blocks;
295 s->frame_type = hdr.frame_type;
296 s->substreamid = hdr.substreamid;
298 if(s->lfe_on) {
299 s->start_freq[s->lfe_ch] = 0;
300 s->end_freq[s->lfe_ch] = 7;
301 s->num_exp_groups[s->lfe_ch] = 2;
302 s->channel_in_cpl[s->lfe_ch] = 0;
305 if (hdr.bitstream_id <= 10) {
306 s->eac3 = 0;
307 s->snr_offset_strategy = 2;
308 s->block_switch_syntax = 1;
309 s->dither_flag_syntax = 1;
310 s->bit_allocation_syntax = 1;
311 s->fast_gain_syntax = 0;
312 s->first_cpl_leak = 0;
313 s->dba_syntax = 1;
314 s->skip_syntax = 1;
315 memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
316 return ac3_parse_header(s);
317 } else if (CONFIG_EAC3_DECODER) {
318 s->eac3 = 1;
319 return ff_eac3_parse_header(s);
320 } else {
321 av_log(s->avctx, AV_LOG_ERROR, "E-AC-3 support not compiled in\n");
322 return -1;
327 * Set stereo downmixing coefficients based on frame header info.
328 * reference: Section 7.8.2 Downmixing Into Two Channels
330 static void set_downmix_coeffs(AC3DecodeContext *s)
332 int i;
333 float cmix = gain_levels[center_levels[s->center_mix_level]];
334 float smix = gain_levels[surround_levels[s->surround_mix_level]];
335 float norm0, norm1;
337 for(i=0; i<s->fbw_channels; i++) {
338 s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]];
339 s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]];
341 if(s->channel_mode > 1 && s->channel_mode & 1) {
342 s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix;
344 if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
345 int nf = s->channel_mode - 2;
346 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB;
348 if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
349 int nf = s->channel_mode - 4;
350 s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix;
353 /* renormalize */
354 norm0 = norm1 = 0.0;
355 for(i=0; i<s->fbw_channels; i++) {
356 norm0 += s->downmix_coeffs[i][0];
357 norm1 += s->downmix_coeffs[i][1];
359 norm0 = 1.0f / norm0;
360 norm1 = 1.0f / norm1;
361 for(i=0; i<s->fbw_channels; i++) {
362 s->downmix_coeffs[i][0] *= norm0;
363 s->downmix_coeffs[i][1] *= norm1;
366 if(s->output_mode == AC3_CHMODE_MONO) {
367 for(i=0; i<s->fbw_channels; i++)
368 s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB;
373 * Decode the grouped exponents according to exponent strategy.
374 * reference: Section 7.1.3 Exponent Decoding
376 static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps,
377 uint8_t absexp, int8_t *dexps)
379 int i, j, grp, group_size;
380 int dexp[256];
381 int expacc, prevexp;
383 /* unpack groups */
384 group_size = exp_strategy + (exp_strategy == EXP_D45);
385 for(grp=0,i=0; grp<ngrps; grp++) {
386 expacc = get_bits(gbc, 7);
387 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
388 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
389 dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
392 /* convert to absolute exps and expand groups */
393 prevexp = absexp;
394 for(i=0,j=0; i<ngrps*3; i++) {
395 prevexp += dexp[i] - 2;
396 if (prevexp > 24U)
397 return -1;
398 switch (group_size) {
399 case 4: dexps[j++] = prevexp;
400 dexps[j++] = prevexp;
401 case 2: dexps[j++] = prevexp;
402 case 1: dexps[j++] = prevexp;
405 return 0;
409 * Generate transform coefficients for each coupled channel in the coupling
410 * range using the coupling coefficients and coupling coordinates.
411 * reference: Section 7.4.3 Coupling Coordinate Format
413 static void calc_transform_coeffs_cpl(AC3DecodeContext *s)
415 int i, j, ch, bnd, subbnd;
417 subbnd = -1;
418 i = s->start_freq[CPL_CH];
419 for(bnd=0; bnd<s->num_cpl_bands; bnd++) {
420 do {
421 subbnd++;
422 for(j=0; j<12; j++) {
423 for(ch=1; ch<=s->fbw_channels; ch++) {
424 if(s->channel_in_cpl[ch]) {
425 s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
426 if (ch == 2 && s->phase_flags[bnd])
427 s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i];
430 i++;
432 } while(s->cpl_band_struct[subbnd]);
437 * Grouped mantissas for 3-level 5-level and 11-level quantization
439 typedef struct {
440 int b1_mant[2];
441 int b2_mant[2];
442 int b4_mant;
443 int b1;
444 int b2;
445 int b4;
446 } mant_groups;
449 * Decode the transform coefficients for a particular channel
450 * reference: Section 7.3 Quantization and Decoding of Mantissas
452 static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m)
454 int start_freq = s->start_freq[ch_index];
455 int end_freq = s->end_freq[ch_index];
456 uint8_t *baps = s->bap[ch_index];
457 int8_t *exps = s->dexps[ch_index];
458 int *coeffs = s->fixed_coeffs[ch_index];
459 GetBitContext *gbc = &s->gbc;
460 int freq;
462 for(freq = start_freq; freq < end_freq; freq++){
463 int bap = baps[freq];
464 int mantissa;
465 switch(bap){
466 case 0:
467 mantissa = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
468 break;
469 case 1:
470 if(m->b1){
471 m->b1--;
472 mantissa = m->b1_mant[m->b1];
474 else{
475 int bits = get_bits(gbc, 5);
476 mantissa = b1_mantissas[bits][0];
477 m->b1_mant[1] = b1_mantissas[bits][1];
478 m->b1_mant[0] = b1_mantissas[bits][2];
479 m->b1 = 2;
481 break;
482 case 2:
483 if(m->b2){
484 m->b2--;
485 mantissa = m->b2_mant[m->b2];
487 else{
488 int bits = get_bits(gbc, 7);
489 mantissa = b2_mantissas[bits][0];
490 m->b2_mant[1] = b2_mantissas[bits][1];
491 m->b2_mant[0] = b2_mantissas[bits][2];
492 m->b2 = 2;
494 break;
495 case 3:
496 mantissa = b3_mantissas[get_bits(gbc, 3)];
497 break;
498 case 4:
499 if(m->b4){
500 m->b4 = 0;
501 mantissa = m->b4_mant;
503 else{
504 int bits = get_bits(gbc, 7);
505 mantissa = b4_mantissas[bits][0];
506 m->b4_mant = b4_mantissas[bits][1];
507 m->b4 = 1;
509 break;
510 case 5:
511 mantissa = b5_mantissas[get_bits(gbc, 4)];
512 break;
513 default: /* 6 to 15 */
514 mantissa = get_bits(gbc, quantization_tab[bap]);
515 /* Shift mantissa and sign-extend it. */
516 mantissa = (mantissa << (32-quantization_tab[bap]))>>8;
517 break;
519 coeffs[freq] = mantissa >> exps[freq];
524 * Remove random dithering from coefficients with zero-bit mantissas
525 * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
527 static void remove_dithering(AC3DecodeContext *s) {
528 int ch, i;
529 int end=0;
530 int *coeffs;
531 uint8_t *bap;
533 for(ch=1; ch<=s->fbw_channels; ch++) {
534 if(!s->dither_flag[ch]) {
535 coeffs = s->fixed_coeffs[ch];
536 bap = s->bap[ch];
537 if(s->channel_in_cpl[ch])
538 end = s->start_freq[CPL_CH];
539 else
540 end = s->end_freq[ch];
541 for(i=0; i<end; i++) {
542 if(!bap[i])
543 coeffs[i] = 0;
545 if(s->channel_in_cpl[ch]) {
546 bap = s->bap[CPL_CH];
547 for(; i<s->end_freq[CPL_CH]; i++) {
548 if(!bap[i])
549 coeffs[i] = 0;
556 static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch,
557 mant_groups *m)
559 if (!s->channel_uses_aht[ch]) {
560 ac3_decode_transform_coeffs_ch(s, ch, m);
561 } else {
562 /* if AHT is used, mantissas for all blocks are encoded in the first
563 block of the frame. */
564 int bin;
565 if (!blk && CONFIG_EAC3_DECODER)
566 ff_eac3_decode_transform_coeffs_aht_ch(s, ch);
567 for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
568 s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin];
574 * Decode the transform coefficients.
576 static void decode_transform_coeffs(AC3DecodeContext *s, int blk)
578 int ch, end;
579 int got_cplchan = 0;
580 mant_groups m;
582 m.b1 = m.b2 = m.b4 = 0;
584 for (ch = 1; ch <= s->channels; ch++) {
585 /* transform coefficients for full-bandwidth channel */
586 decode_transform_coeffs_ch(s, blk, ch, &m);
587 /* tranform coefficients for coupling channel come right after the
588 coefficients for the first coupled channel*/
589 if (s->channel_in_cpl[ch]) {
590 if (!got_cplchan) {
591 decode_transform_coeffs_ch(s, blk, CPL_CH, &m);
592 calc_transform_coeffs_cpl(s);
593 got_cplchan = 1;
595 end = s->end_freq[CPL_CH];
596 } else {
597 end = s->end_freq[ch];
600 s->fixed_coeffs[ch][end] = 0;
601 while(++end < 256);
604 /* zero the dithered coefficients for appropriate channels */
605 remove_dithering(s);
609 * Stereo rematrixing.
610 * reference: Section 7.5.4 Rematrixing : Decoding Technique
612 static void do_rematrixing(AC3DecodeContext *s)
614 int bnd, i;
615 int end, bndend;
616 int tmp0, tmp1;
618 end = FFMIN(s->end_freq[1], s->end_freq[2]);
620 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) {
621 if(s->rematrixing_flags[bnd]) {
622 bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
623 for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
624 tmp0 = s->fixed_coeffs[1][i];
625 tmp1 = s->fixed_coeffs[2][i];
626 s->fixed_coeffs[1][i] = tmp0 + tmp1;
627 s->fixed_coeffs[2][i] = tmp0 - tmp1;
634 * Inverse MDCT Transform.
635 * Convert frequency domain coefficients to time-domain audio samples.
636 * reference: Section 7.9.4 Transformation Equations
638 static inline void do_imdct(AC3DecodeContext *s, int channels)
640 int ch;
641 float add_bias = s->add_bias;
642 if(s->out_channels==1 && channels>1)
643 add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
645 for (ch=1; ch<=channels; ch++) {
646 if (s->block_switch[ch]) {
647 int i;
648 float *x = s->tmp_output+128;
649 for(i=0; i<128; i++)
650 x[i] = s->transform_coeffs[ch][2*i];
651 ff_imdct_half(&s->imdct_256, s->tmp_output, x);
652 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
653 for(i=0; i<128; i++)
654 x[i] = s->transform_coeffs[ch][2*i+1];
655 ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
656 } else {
657 ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]);
658 s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128);
659 memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float));
665 * Downmix the output to mono or stereo.
667 void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len)
669 int i, j;
670 float v0, v1;
671 if(out_ch == 2) {
672 for(i=0; i<len; i++) {
673 v0 = v1 = 0.0f;
674 for(j=0; j<in_ch; j++) {
675 v0 += samples[j][i] * matrix[j][0];
676 v1 += samples[j][i] * matrix[j][1];
678 samples[0][i] = v0;
679 samples[1][i] = v1;
681 } else if(out_ch == 1) {
682 for(i=0; i<len; i++) {
683 v0 = 0.0f;
684 for(j=0; j<in_ch; j++)
685 v0 += samples[j][i] * matrix[j][0];
686 samples[0][i] = v0;
692 * Upmix delay samples from stereo to original channel layout.
694 static void ac3_upmix_delay(AC3DecodeContext *s)
696 int channel_data_size = sizeof(s->delay[0]);
697 switch(s->channel_mode) {
698 case AC3_CHMODE_DUALMONO:
699 case AC3_CHMODE_STEREO:
700 /* upmix mono to stereo */
701 memcpy(s->delay[1], s->delay[0], channel_data_size);
702 break;
703 case AC3_CHMODE_2F2R:
704 memset(s->delay[3], 0, channel_data_size);
705 case AC3_CHMODE_2F1R:
706 memset(s->delay[2], 0, channel_data_size);
707 break;
708 case AC3_CHMODE_3F2R:
709 memset(s->delay[4], 0, channel_data_size);
710 case AC3_CHMODE_3F1R:
711 memset(s->delay[3], 0, channel_data_size);
712 case AC3_CHMODE_3F:
713 memcpy(s->delay[2], s->delay[1], channel_data_size);
714 memset(s->delay[1], 0, channel_data_size);
715 break;
720 * Decode band structure for coupling, spectral extension, or enhanced coupling.
721 * @param[in] gbc bit reader context
722 * @param[in] blk block number
723 * @param[in] eac3 flag to indicate E-AC-3
724 * @param[in] ecpl flag to indicate enhanced coupling
725 * @param[in] start_subband subband number for start of range
726 * @param[in] end_subband subband number for end of range
727 * @param[in] default_band_struct default band structure table
728 * @param[out] band_struct decoded band structure
729 * @param[out] num_bands number of bands (optionally NULL)
730 * @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
732 static void decode_band_structure(GetBitContext *gbc, int blk, int eac3,
733 int ecpl, int start_subband, int end_subband,
734 const uint8_t *default_band_struct,
735 uint8_t *band_struct, int *num_bands,
736 uint8_t *band_sizes)
738 int subbnd, bnd, n_subbands, n_bands=0;
739 uint8_t bnd_sz[22];
741 n_subbands = end_subband - start_subband;
743 /* decode band structure from bitstream or use default */
744 if (!eac3 || get_bits1(gbc)) {
745 for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) {
746 band_struct[subbnd] = get_bits1(gbc);
748 } else if (!blk) {
749 memcpy(band_struct,
750 &default_band_struct[start_subband+1],
751 n_subbands-1);
753 band_struct[n_subbands-1] = 0;
755 /* calculate number of bands and band sizes based on band structure.
756 note that the first 4 subbands in enhanced coupling span only 6 bins
757 instead of 12. */
758 if (num_bands || band_sizes ) {
759 n_bands = n_subbands;
760 bnd_sz[0] = ecpl ? 6 : 12;
761 for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) {
762 int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12;
763 if (band_struct[subbnd-1]) {
764 n_bands--;
765 bnd_sz[bnd] += subbnd_size;
766 } else {
767 bnd_sz[++bnd] = subbnd_size;
772 /* set optional output params */
773 if (num_bands)
774 *num_bands = n_bands;
775 if (band_sizes)
776 memcpy(band_sizes, bnd_sz, n_bands);
780 * Decode a single audio block from the AC-3 bitstream.
782 static int decode_audio_block(AC3DecodeContext *s, int blk)
784 int fbw_channels = s->fbw_channels;
785 int channel_mode = s->channel_mode;
786 int i, bnd, seg, ch;
787 int different_transforms;
788 int downmix_output;
789 int cpl_in_use;
790 GetBitContext *gbc = &s->gbc;
791 uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
793 memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
795 /* block switch flags */
796 different_transforms = 0;
797 if (s->block_switch_syntax) {
798 for (ch = 1; ch <= fbw_channels; ch++) {
799 s->block_switch[ch] = get_bits1(gbc);
800 if(ch > 1 && s->block_switch[ch] != s->block_switch[1])
801 different_transforms = 1;
805 /* dithering flags */
806 if (s->dither_flag_syntax) {
807 for (ch = 1; ch <= fbw_channels; ch++) {
808 s->dither_flag[ch] = get_bits1(gbc);
812 /* dynamic range */
813 i = !(s->channel_mode);
814 do {
815 if(get_bits1(gbc)) {
816 s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) *
817 s->avctx->drc_scale)+1.0;
818 } else if(blk == 0) {
819 s->dynamic_range[i] = 1.0f;
821 } while(i--);
823 /* spectral extension strategy */
824 if (s->eac3 && (!blk || get_bits1(gbc))) {
825 if (get_bits1(gbc)) {
826 av_log_missing_feature(s->avctx, "Spectral extension", 1);
827 return -1;
829 /* TODO: parse spectral extension strategy info */
832 /* TODO: spectral extension coordinates */
834 /* coupling strategy */
835 if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
836 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
837 if (!s->eac3)
838 s->cpl_in_use[blk] = get_bits1(gbc);
839 if (s->cpl_in_use[blk]) {
840 /* coupling in use */
841 int cpl_start_subband, cpl_end_subband;
843 if (channel_mode < AC3_CHMODE_STEREO) {
844 av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
845 return -1;
848 /* check for enhanced coupling */
849 if (s->eac3 && get_bits1(gbc)) {
850 /* TODO: parse enhanced coupling strategy info */
851 av_log_missing_feature(s->avctx, "Enhanced coupling", 1);
852 return -1;
855 /* determine which channels are coupled */
856 if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
857 s->channel_in_cpl[1] = 1;
858 s->channel_in_cpl[2] = 1;
859 } else {
860 for (ch = 1; ch <= fbw_channels; ch++)
861 s->channel_in_cpl[ch] = get_bits1(gbc);
864 /* phase flags in use */
865 if (channel_mode == AC3_CHMODE_STEREO)
866 s->phase_flags_in_use = get_bits1(gbc);
868 /* coupling frequency range */
869 /* TODO: modify coupling end freq if spectral extension is used */
870 cpl_start_subband = get_bits(gbc, 4);
871 cpl_end_subband = get_bits(gbc, 4) + 3;
872 if (cpl_start_subband >= cpl_end_subband) {
873 av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d >= %d)\n",
874 cpl_start_subband, cpl_end_subband);
875 return -1;
877 s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37;
878 s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37;
880 decode_band_structure(gbc, blk, s->eac3, 0, cpl_start_subband,
881 cpl_end_subband,
882 ff_eac3_default_cpl_band_struct,
883 s->cpl_band_struct, &s->num_cpl_bands, NULL);
884 } else {
885 /* coupling not in use */
886 for (ch = 1; ch <= fbw_channels; ch++) {
887 s->channel_in_cpl[ch] = 0;
888 s->first_cpl_coords[ch] = 1;
890 s->first_cpl_leak = s->eac3;
891 s->phase_flags_in_use = 0;
893 } else if (!s->eac3) {
894 if(!blk) {
895 av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
896 return -1;
897 } else {
898 s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
901 cpl_in_use = s->cpl_in_use[blk];
903 /* coupling coordinates */
904 if (cpl_in_use) {
905 int cpl_coords_exist = 0;
907 for (ch = 1; ch <= fbw_channels; ch++) {
908 if (s->channel_in_cpl[ch]) {
909 if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
910 int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
911 s->first_cpl_coords[ch] = 0;
912 cpl_coords_exist = 1;
913 master_cpl_coord = 3 * get_bits(gbc, 2);
914 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
915 cpl_coord_exp = get_bits(gbc, 4);
916 cpl_coord_mant = get_bits(gbc, 4);
917 if (cpl_coord_exp == 15)
918 s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
919 else
920 s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21;
921 s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord);
923 } else if (!blk) {
924 av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
925 return -1;
927 } else {
928 /* channel not in coupling */
929 s->first_cpl_coords[ch] = 1;
932 /* phase flags */
933 if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
934 for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
935 s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
940 /* stereo rematrixing strategy and band structure */
941 if (channel_mode == AC3_CHMODE_STEREO) {
942 if ((s->eac3 && !blk) || get_bits1(gbc)) {
943 s->num_rematrixing_bands = 4;
944 if(cpl_in_use && s->start_freq[CPL_CH] <= 61)
945 s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37);
946 for(bnd=0; bnd<s->num_rematrixing_bands; bnd++)
947 s->rematrixing_flags[bnd] = get_bits1(gbc);
948 } else if (!blk) {
949 av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
950 return -1;
954 /* exponent strategies for each channel */
955 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
956 if (!s->eac3)
957 s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
958 if(s->exp_strategy[blk][ch] != EXP_REUSE)
959 bit_alloc_stages[ch] = 3;
962 /* channel bandwidth */
963 for (ch = 1; ch <= fbw_channels; ch++) {
964 s->start_freq[ch] = 0;
965 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
966 int group_size;
967 int prev = s->end_freq[ch];
968 if (s->channel_in_cpl[ch])
969 s->end_freq[ch] = s->start_freq[CPL_CH];
970 else {
971 int bandwidth_code = get_bits(gbc, 6);
972 if (bandwidth_code > 60) {
973 av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
974 return -1;
976 s->end_freq[ch] = bandwidth_code * 3 + 73;
978 group_size = 3 << (s->exp_strategy[blk][ch] - 1);
979 s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
980 if(blk > 0 && s->end_freq[ch] != prev)
981 memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
984 if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
985 s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) /
986 (3 << (s->exp_strategy[blk][CPL_CH] - 1));
989 /* decode exponents for each channel */
990 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
991 if (s->exp_strategy[blk][ch] != EXP_REUSE) {
992 s->dexps[ch][0] = get_bits(gbc, 4) << !ch;
993 if (decode_exponents(gbc, s->exp_strategy[blk][ch],
994 s->num_exp_groups[ch], s->dexps[ch][0],
995 &s->dexps[ch][s->start_freq[ch]+!!ch])) {
996 av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
997 return -1;
999 if(ch != CPL_CH && ch != s->lfe_ch)
1000 skip_bits(gbc, 2); /* skip gainrng */
1004 /* bit allocation information */
1005 if (s->bit_allocation_syntax) {
1006 if (get_bits1(gbc)) {
1007 s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
1008 s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
1009 s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
1010 s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
1011 s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
1012 for(ch=!cpl_in_use; ch<=s->channels; ch++)
1013 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1014 } else if (!blk) {
1015 av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
1016 return -1;
1020 /* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
1021 if(!s->eac3 || !blk){
1022 if(s->snr_offset_strategy && get_bits1(gbc)) {
1023 int snr = 0;
1024 int csnr;
1025 csnr = (get_bits(gbc, 6) - 15) << 4;
1026 for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
1027 /* snr offset */
1028 if (ch == i || s->snr_offset_strategy == 2)
1029 snr = (csnr + get_bits(gbc, 4)) << 2;
1030 /* run at least last bit allocation stage if snr offset changes */
1031 if(blk && s->snr_offset[ch] != snr) {
1032 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
1034 s->snr_offset[ch] = snr;
1036 /* fast gain (normal AC-3 only) */
1037 if (!s->eac3) {
1038 int prev = s->fast_gain[ch];
1039 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1040 /* run last 2 bit allocation stages if fast gain changes */
1041 if(blk && prev != s->fast_gain[ch])
1042 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1045 } else if (!s->eac3 && !blk) {
1046 av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
1047 return -1;
1051 /* fast gain (E-AC-3 only) */
1052 if (s->fast_gain_syntax && get_bits1(gbc)) {
1053 for (ch = !cpl_in_use; ch <= s->channels; ch++) {
1054 int prev = s->fast_gain[ch];
1055 s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
1056 /* run last 2 bit allocation stages if fast gain changes */
1057 if(blk && prev != s->fast_gain[ch])
1058 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1060 } else if (s->eac3 && !blk) {
1061 for (ch = !cpl_in_use; ch <= s->channels; ch++)
1062 s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
1065 /* E-AC-3 to AC-3 converter SNR offset */
1066 if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
1067 skip_bits(gbc, 10); // skip converter snr offset
1070 /* coupling leak information */
1071 if (cpl_in_use) {
1072 if (s->first_cpl_leak || get_bits1(gbc)) {
1073 int fl = get_bits(gbc, 3);
1074 int sl = get_bits(gbc, 3);
1075 /* run last 2 bit allocation stages for coupling channel if
1076 coupling leak changes */
1077 if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
1078 sl != s->bit_alloc_params.cpl_slow_leak)) {
1079 bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
1081 s->bit_alloc_params.cpl_fast_leak = fl;
1082 s->bit_alloc_params.cpl_slow_leak = sl;
1083 } else if (!s->eac3 && !blk) {
1084 av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
1085 return -1;
1087 s->first_cpl_leak = 0;
1090 /* delta bit allocation information */
1091 if (s->dba_syntax && get_bits1(gbc)) {
1092 /* delta bit allocation exists (strategy) */
1093 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1094 s->dba_mode[ch] = get_bits(gbc, 2);
1095 if (s->dba_mode[ch] == DBA_RESERVED) {
1096 av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
1097 return -1;
1099 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1101 /* channel delta offset, len and bit allocation */
1102 for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
1103 if (s->dba_mode[ch] == DBA_NEW) {
1104 s->dba_nsegs[ch] = get_bits(gbc, 3);
1105 for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) {
1106 s->dba_offsets[ch][seg] = get_bits(gbc, 5);
1107 s->dba_lengths[ch][seg] = get_bits(gbc, 4);
1108 s->dba_values[ch][seg] = get_bits(gbc, 3);
1110 /* run last 2 bit allocation stages if new dba values */
1111 bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
1114 } else if(blk == 0) {
1115 for(ch=0; ch<=s->channels; ch++) {
1116 s->dba_mode[ch] = DBA_NONE;
1120 /* Bit allocation */
1121 for(ch=!cpl_in_use; ch<=s->channels; ch++) {
1122 if(bit_alloc_stages[ch] > 2) {
1123 /* Exponent mapping into PSD and PSD integration */
1124 ff_ac3_bit_alloc_calc_psd(s->dexps[ch],
1125 s->start_freq[ch], s->end_freq[ch],
1126 s->psd[ch], s->band_psd[ch]);
1128 if(bit_alloc_stages[ch] > 1) {
1129 /* Compute excitation function, Compute masking curve, and
1130 Apply delta bit allocation */
1131 if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
1132 s->start_freq[ch], s->end_freq[ch],
1133 s->fast_gain[ch], (ch == s->lfe_ch),
1134 s->dba_mode[ch], s->dba_nsegs[ch],
1135 s->dba_offsets[ch], s->dba_lengths[ch],
1136 s->dba_values[ch], s->mask[ch])) {
1137 av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
1138 return -1;
1141 if(bit_alloc_stages[ch] > 0) {
1142 /* Compute bit allocation */
1143 const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
1144 ff_eac3_hebap_tab : ff_ac3_bap_tab;
1145 ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch],
1146 s->start_freq[ch], s->end_freq[ch],
1147 s->snr_offset[ch],
1148 s->bit_alloc_params.floor,
1149 bap_tab, s->bap[ch]);
1153 /* unused dummy data */
1154 if (s->skip_syntax && get_bits1(gbc)) {
1155 int skipl = get_bits(gbc, 9);
1156 while(skipl--)
1157 skip_bits(gbc, 8);
1160 /* unpack the transform coefficients
1161 this also uncouples channels if coupling is in use. */
1162 decode_transform_coeffs(s, blk);
1164 /* TODO: generate enhanced coupling coordinates and uncouple */
1166 /* TODO: apply spectral extension */
1168 /* recover coefficients if rematrixing is in use */
1169 if(s->channel_mode == AC3_CHMODE_STEREO)
1170 do_rematrixing(s);
1172 /* apply scaling to coefficients (headroom, dynrng) */
1173 for(ch=1; ch<=s->channels; ch++) {
1174 float gain = s->mul_bias / 4194304.0f;
1175 if(s->channel_mode == AC3_CHMODE_DUALMONO) {
1176 gain *= s->dynamic_range[ch-1];
1177 } else {
1178 gain *= s->dynamic_range[0];
1180 s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
1183 /* downmix and MDCT. order depends on whether block switching is used for
1184 any channel in this block. this is because coefficients for the long
1185 and short transforms cannot be mixed. */
1186 downmix_output = s->channels != s->out_channels &&
1187 !((s->output_mode & AC3_OUTPUT_LFEON) &&
1188 s->fbw_channels == s->out_channels);
1189 if(different_transforms) {
1190 /* the delay samples have already been downmixed, so we upmix the delay
1191 samples in order to reconstruct all channels before downmixing. */
1192 if(s->downmixed) {
1193 s->downmixed = 0;
1194 ac3_upmix_delay(s);
1197 do_imdct(s, s->channels);
1199 if(downmix_output) {
1200 s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1202 } else {
1203 if(downmix_output) {
1204 s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
1207 if(downmix_output && !s->downmixed) {
1208 s->downmixed = 1;
1209 s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
1212 do_imdct(s, s->out_channels);
1215 return 0;
1219 * Decode a single AC-3 frame.
1221 static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size,
1222 AVPacket *avpkt)
1224 const uint8_t *buf = avpkt->data;
1225 int buf_size = avpkt->size;
1226 AC3DecodeContext *s = avctx->priv_data;
1227 int16_t *out_samples = (int16_t *)data;
1228 int blk, ch, err;
1229 const uint8_t *channel_map;
1230 const float *output[AC3_MAX_CHANNELS];
1232 /* initialize the GetBitContext with the start of valid AC-3 Frame */
1233 if (s->input_buffer) {
1234 /* copy input buffer to decoder context to avoid reading past the end
1235 of the buffer, which can be caused by a damaged input stream. */
1236 memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE));
1237 init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
1238 } else {
1239 init_get_bits(&s->gbc, buf, buf_size * 8);
1242 /* parse the syncinfo */
1243 *data_size = 0;
1244 err = parse_frame_header(s);
1246 /* check that reported frame size fits in input buffer */
1247 if(s->frame_size > buf_size) {
1248 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1249 err = AAC_AC3_PARSE_ERROR_FRAME_SIZE;
1252 /* check for crc mismatch */
1253 if(err != AAC_AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_recognition >= FF_ER_CAREFUL) {
1254 if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) {
1255 av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
1256 err = AAC_AC3_PARSE_ERROR_CRC;
1260 if(err && err != AAC_AC3_PARSE_ERROR_CRC) {
1261 switch(err) {
1262 case AAC_AC3_PARSE_ERROR_SYNC:
1263 av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
1264 return -1;
1265 case AAC_AC3_PARSE_ERROR_BSID:
1266 av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
1267 break;
1268 case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
1269 av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
1270 break;
1271 case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
1272 av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
1273 break;
1274 case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
1275 /* skip frame if CRC is ok. otherwise use error concealment. */
1276 /* TODO: add support for substreams and dependent frames */
1277 if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
1278 av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
1279 return s->frame_size;
1280 } else {
1281 av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
1283 break;
1284 default:
1285 av_log(avctx, AV_LOG_ERROR, "invalid header\n");
1286 break;
1290 /* if frame is ok, set audio parameters */
1291 if (!err) {
1292 avctx->sample_rate = s->sample_rate;
1293 avctx->bit_rate = s->bit_rate;
1295 /* channel config */
1296 s->out_channels = s->channels;
1297 s->output_mode = s->channel_mode;
1298 if(s->lfe_on)
1299 s->output_mode |= AC3_OUTPUT_LFEON;
1300 if (avctx->request_channels > 0 && avctx->request_channels <= 2 &&
1301 avctx->request_channels < s->channels) {
1302 s->out_channels = avctx->request_channels;
1303 s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1304 s->channel_layout = ff_ac3_channel_layout_tab[s->output_mode];
1306 avctx->channels = s->out_channels;
1307 avctx->channel_layout = s->channel_layout;
1309 /* set downmixing coefficients if needed */
1310 if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
1311 s->fbw_channels == s->out_channels)) {
1312 set_downmix_coeffs(s);
1314 } else if (!s->out_channels) {
1315 s->out_channels = avctx->channels;
1316 if(s->out_channels < s->channels)
1317 s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
1320 /* decode the audio blocks */
1321 channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on];
1322 for (ch = 0; ch < s->out_channels; ch++)
1323 output[ch] = s->output[channel_map[ch]];
1324 for (blk = 0; blk < s->num_blocks; blk++) {
1325 if (!err && decode_audio_block(s, blk)) {
1326 av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
1327 err = 1;
1329 s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
1330 out_samples += 256 * s->out_channels;
1332 *data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t);
1333 return s->frame_size;
1337 * Uninitialize the AC-3 decoder.
1339 static av_cold int ac3_decode_end(AVCodecContext *avctx)
1341 AC3DecodeContext *s = avctx->priv_data;
1342 ff_mdct_end(&s->imdct_512);
1343 ff_mdct_end(&s->imdct_256);
1345 av_freep(&s->input_buffer);
1347 return 0;
1350 AVCodec ac3_decoder = {
1351 .name = "ac3",
1352 .type = CODEC_TYPE_AUDIO,
1353 .id = CODEC_ID_AC3,
1354 .priv_data_size = sizeof (AC3DecodeContext),
1355 .init = ac3_decode_init,
1356 .close = ac3_decode_end,
1357 .decode = ac3_decode_frame,
1358 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
1361 #if CONFIG_EAC3_DECODER
1362 AVCodec eac3_decoder = {
1363 .name = "eac3",
1364 .type = CODEC_TYPE_AUDIO,
1365 .id = CODEC_ID_EAC3,
1366 .priv_data_size = sizeof (AC3DecodeContext),
1367 .init = ac3_decode_init,
1368 .close = ac3_decode_end,
1369 .decode = ac3_decode_frame,
1370 .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
1372 #endif