Replace 5 with AOT_SBR when referring to the MPEG-4 audio object type.
[FFMpeg-mirror/lagarith.git] / libavcodec / aac.c
blob8f9249d7f33d44e16bac157c0c5263d61ea66570
1 /*
2 * AAC decoder
3 * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
4 * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/aac.c
25 * AAC decoder
26 * @author Oded Shimon ( ods15 ods15 dyndns org )
27 * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
31 * supported tools
33 * Support? Name
34 * N (code in SoC repo) gain control
35 * Y block switching
36 * Y window shapes - standard
37 * N window shapes - Low Delay
38 * Y filterbank - standard
39 * N (code in SoC repo) filterbank - Scalable Sample Rate
40 * Y Temporal Noise Shaping
41 * N (code in SoC repo) Long Term Prediction
42 * Y intensity stereo
43 * Y channel coupling
44 * Y frequency domain prediction
45 * Y Perceptual Noise Substitution
46 * Y Mid/Side stereo
47 * N Scalable Inverse AAC Quantization
48 * N Frequency Selective Switch
49 * N upsampling filter
50 * Y quantization & coding - AAC
51 * N quantization & coding - TwinVQ
52 * N quantization & coding - BSAC
53 * N AAC Error Resilience tools
54 * N Error Resilience payload syntax
55 * N Error Protection tool
56 * N CELP
57 * N Silence Compression
58 * N HVXC
59 * N HVXC 4kbits/s VR
60 * N Structured Audio tools
61 * N Structured Audio Sample Bank Format
62 * N MIDI
63 * N Harmonic and Individual Lines plus Noise
64 * N Text-To-Speech Interface
65 * N (in progress) Spectral Band Replication
66 * Y (not in this code) Layer-1
67 * Y (not in this code) Layer-2
68 * Y (not in this code) Layer-3
69 * N SinuSoidal Coding (Transient, Sinusoid, Noise)
70 * N (planned) Parametric Stereo
71 * N Direct Stream Transfer
73 * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
74 * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
75 Parametric Stereo.
79 #include "avcodec.h"
80 #include "internal.h"
81 #include "get_bits.h"
82 #include "dsputil.h"
83 #include "lpc.h"
85 #include "aac.h"
86 #include "aactab.h"
87 #include "aacdectab.h"
88 #include "mpeg4audio.h"
89 #include "aac_parser.h"
91 #include <assert.h>
92 #include <errno.h>
93 #include <math.h>
94 #include <string.h>
96 union float754 {
97 float f;
98 uint32_t i;
101 static VLC vlc_scalefactors;
102 static VLC vlc_spectral[11];
105 static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
107 static const int8_t tags_per_config[16] = { 0, 1, 1, 2, 3, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0 };
108 if (ac->tag_che_map[type][elem_id]) {
109 return ac->tag_che_map[type][elem_id];
111 if (ac->tags_mapped >= tags_per_config[ac->m4ac.chan_config]) {
112 return NULL;
114 switch (ac->m4ac.chan_config) {
115 case 7:
116 if (ac->tags_mapped == 3 && type == TYPE_CPE) {
117 ac->tags_mapped++;
118 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
120 case 6:
121 /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
122 instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
123 encountered such a stream, transfer the LFE[0] element to SCE[1] */
124 if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
125 ac->tags_mapped++;
126 return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
128 case 5:
129 if (ac->tags_mapped == 2 && type == TYPE_CPE) {
130 ac->tags_mapped++;
131 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
133 case 4:
134 if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
135 ac->tags_mapped++;
136 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
138 case 3:
139 case 2:
140 if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
141 ac->tags_mapped++;
142 return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
143 } else if (ac->m4ac.chan_config == 2) {
144 return NULL;
146 case 1:
147 if (!ac->tags_mapped && type == TYPE_SCE) {
148 ac->tags_mapped++;
149 return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
151 default:
152 return NULL;
157 * Configure output channel order based on the current program configuration element.
159 * @param che_pos current channel position configuration
160 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
162 * @return Returns error status. 0 - OK, !0 - error
164 static int output_configure(AACContext *ac,
165 enum ChannelPosition che_pos[4][MAX_ELEM_ID],
166 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
167 int channel_config)
169 AVCodecContext *avctx = ac->avccontext;
170 int i, type, channels = 0;
172 memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
174 /* Allocate or free elements depending on if they are in the
175 * current program configuration.
177 * Set up default 1:1 output mapping.
179 * For a 5.1 stream the output order will be:
180 * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
183 for (i = 0; i < MAX_ELEM_ID; i++) {
184 for (type = 0; type < 4; type++) {
185 if (che_pos[type][i]) {
186 if (!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
187 return AVERROR(ENOMEM);
188 if (type != TYPE_CCE) {
189 ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
190 if (type == TYPE_CPE) {
191 ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
194 } else
195 av_freep(&ac->che[type][i]);
199 if (channel_config) {
200 memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
201 ac->tags_mapped = 0;
202 } else {
203 memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
204 ac->tags_mapped = 4 * MAX_ELEM_ID;
207 avctx->channels = channels;
209 ac->output_configured = 1;
211 return 0;
215 * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
217 * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
218 * @param sce_map mono (Single Channel Element) map
219 * @param type speaker type/position for these channels
221 static void decode_channel_map(enum ChannelPosition *cpe_map,
222 enum ChannelPosition *sce_map,
223 enum ChannelPosition type,
224 GetBitContext *gb, int n)
226 while (n--) {
227 enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
228 map[get_bits(gb, 4)] = type;
233 * Decode program configuration element; reference: table 4.2.
235 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
237 * @return Returns error status. 0 - OK, !0 - error
239 static int decode_pce(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
240 GetBitContext *gb)
242 int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
244 skip_bits(gb, 2); // object_type
246 sampling_index = get_bits(gb, 4);
247 if (ac->m4ac.sampling_index != sampling_index)
248 av_log(ac->avccontext, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
250 num_front = get_bits(gb, 4);
251 num_side = get_bits(gb, 4);
252 num_back = get_bits(gb, 4);
253 num_lfe = get_bits(gb, 2);
254 num_assoc_data = get_bits(gb, 3);
255 num_cc = get_bits(gb, 4);
257 if (get_bits1(gb))
258 skip_bits(gb, 4); // mono_mixdown_tag
259 if (get_bits1(gb))
260 skip_bits(gb, 4); // stereo_mixdown_tag
262 if (get_bits1(gb))
263 skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
265 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
266 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
267 decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
268 decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
270 skip_bits_long(gb, 4 * num_assoc_data);
272 decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
274 align_get_bits(gb);
276 /* comment field, first byte is length */
277 skip_bits_long(gb, 8 * get_bits(gb, 8));
278 return 0;
282 * Set up channel positions based on a default channel configuration
283 * as specified in table 1.17.
285 * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
287 * @return Returns error status. 0 - OK, !0 - error
289 static int set_default_channel_config(AACContext *ac,
290 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
291 int channel_config)
293 if (channel_config < 1 || channel_config > 7) {
294 av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
295 channel_config);
296 return -1;
299 /* default channel configurations:
301 * 1ch : front center (mono)
302 * 2ch : L + R (stereo)
303 * 3ch : front center + L + R
304 * 4ch : front center + L + R + back center
305 * 5ch : front center + L + R + back stereo
306 * 6ch : front center + L + R + back stereo + LFE
307 * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
310 if (channel_config != 2)
311 new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
312 if (channel_config > 1)
313 new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
314 if (channel_config == 4)
315 new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
316 if (channel_config > 4)
317 new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
318 = AAC_CHANNEL_BACK; // back stereo
319 if (channel_config > 5)
320 new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
321 if (channel_config == 7)
322 new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
324 return 0;
328 * Decode GA "General Audio" specific configuration; reference: table 4.1.
330 * @return Returns error status. 0 - OK, !0 - error
332 static int decode_ga_specific_config(AACContext *ac, GetBitContext *gb,
333 int channel_config)
335 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
336 int extension_flag, ret;
338 if (get_bits1(gb)) { // frameLengthFlag
339 av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
340 return -1;
343 if (get_bits1(gb)) // dependsOnCoreCoder
344 skip_bits(gb, 14); // coreCoderDelay
345 extension_flag = get_bits1(gb);
347 if (ac->m4ac.object_type == AOT_AAC_SCALABLE ||
348 ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
349 skip_bits(gb, 3); // layerNr
351 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
352 if (channel_config == 0) {
353 skip_bits(gb, 4); // element_instance_tag
354 if ((ret = decode_pce(ac, new_che_pos, gb)))
355 return ret;
356 } else {
357 if ((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
358 return ret;
360 if ((ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config)))
361 return ret;
363 if (extension_flag) {
364 switch (ac->m4ac.object_type) {
365 case AOT_ER_BSAC:
366 skip_bits(gb, 5); // numOfSubFrame
367 skip_bits(gb, 11); // layer_length
368 break;
369 case AOT_ER_AAC_LC:
370 case AOT_ER_AAC_LTP:
371 case AOT_ER_AAC_SCALABLE:
372 case AOT_ER_AAC_LD:
373 skip_bits(gb, 3); /* aacSectionDataResilienceFlag
374 * aacScalefactorDataResilienceFlag
375 * aacSpectralDataResilienceFlag
377 break;
379 skip_bits1(gb); // extensionFlag3 (TBD in version 3)
381 return 0;
385 * Decode audio specific configuration; reference: table 1.13.
387 * @param data pointer to AVCodecContext extradata
388 * @param data_size size of AVCCodecContext extradata
390 * @return Returns error status. 0 - OK, !0 - error
392 static int decode_audio_specific_config(AACContext *ac, void *data,
393 int data_size)
395 GetBitContext gb;
396 int i;
398 init_get_bits(&gb, data, data_size * 8);
400 if ((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
401 return -1;
402 if (ac->m4ac.sampling_index > 12) {
403 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
404 return -1;
407 skip_bits_long(&gb, i);
409 switch (ac->m4ac.object_type) {
410 case AOT_AAC_MAIN:
411 case AOT_AAC_LC:
412 if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
413 return -1;
414 break;
415 default:
416 av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
417 ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
418 return -1;
420 return 0;
424 * linear congruential pseudorandom number generator
426 * @param previous_val pointer to the current state of the generator
428 * @return Returns a 32-bit pseudorandom integer
430 static av_always_inline int lcg_random(int previous_val)
432 return previous_val * 1664525 + 1013904223;
435 static void reset_predict_state(PredictorState *ps)
437 ps->r0 = 0.0f;
438 ps->r1 = 0.0f;
439 ps->cor0 = 0.0f;
440 ps->cor1 = 0.0f;
441 ps->var0 = 1.0f;
442 ps->var1 = 1.0f;
445 static void reset_all_predictors(PredictorState *ps)
447 int i;
448 for (i = 0; i < MAX_PREDICTORS; i++)
449 reset_predict_state(&ps[i]);
452 static void reset_predictor_group(PredictorState *ps, int group_num)
454 int i;
455 for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
456 reset_predict_state(&ps[i]);
459 static av_cold int aac_decode_init(AVCodecContext *avccontext)
461 AACContext *ac = avccontext->priv_data;
462 int i;
464 ac->avccontext = avccontext;
466 if (avccontext->extradata_size > 0) {
467 if (decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
468 return -1;
469 avccontext->sample_rate = ac->m4ac.sample_rate;
470 } else if (avccontext->channels > 0) {
471 ac->m4ac.sample_rate = avccontext->sample_rate;
474 avccontext->sample_fmt = SAMPLE_FMT_S16;
475 avccontext->frame_size = 1024;
477 AAC_INIT_VLC_STATIC( 0, 144);
478 AAC_INIT_VLC_STATIC( 1, 114);
479 AAC_INIT_VLC_STATIC( 2, 188);
480 AAC_INIT_VLC_STATIC( 3, 180);
481 AAC_INIT_VLC_STATIC( 4, 172);
482 AAC_INIT_VLC_STATIC( 5, 140);
483 AAC_INIT_VLC_STATIC( 6, 168);
484 AAC_INIT_VLC_STATIC( 7, 114);
485 AAC_INIT_VLC_STATIC( 8, 262);
486 AAC_INIT_VLC_STATIC( 9, 248);
487 AAC_INIT_VLC_STATIC(10, 384);
489 dsputil_init(&ac->dsp, avccontext);
491 ac->random_state = 0x1f2e3d4c;
493 // -1024 - Compensate wrong IMDCT method.
494 // 32768 - Required to scale values to the correct range for the bias method
495 // for float to int16 conversion.
497 if (ac->dsp.float_to_int16 == ff_float_to_int16_c) {
498 ac->add_bias = 385.0f;
499 ac->sf_scale = 1. / (-1024. * 32768.);
500 ac->sf_offset = 0;
501 } else {
502 ac->add_bias = 0.0f;
503 ac->sf_scale = 1. / -1024.;
504 ac->sf_offset = 60;
507 #if !CONFIG_HARDCODED_TABLES
508 for (i = 0; i < 428; i++)
509 ff_aac_pow2sf_tab[i] = pow(2, (i - 200) / 4.);
510 #endif /* CONFIG_HARDCODED_TABLES */
512 INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
513 ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
514 ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
515 352);
517 ff_mdct_init(&ac->mdct, 11, 1, 1.0);
518 ff_mdct_init(&ac->mdct_small, 8, 1, 1.0);
519 // window initialization
520 ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
521 ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
522 ff_sine_window_init(ff_sine_1024, 1024);
523 ff_sine_window_init(ff_sine_128, 128);
525 return 0;
529 * Skip data_stream_element; reference: table 4.10.
531 static void skip_data_stream_element(GetBitContext *gb)
533 int byte_align = get_bits1(gb);
534 int count = get_bits(gb, 8);
535 if (count == 255)
536 count += get_bits(gb, 8);
537 if (byte_align)
538 align_get_bits(gb);
539 skip_bits_long(gb, 8 * count);
542 static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
543 GetBitContext *gb)
545 int sfb;
546 if (get_bits1(gb)) {
547 ics->predictor_reset_group = get_bits(gb, 5);
548 if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
549 av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
550 return -1;
553 for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
554 ics->prediction_used[sfb] = get_bits1(gb);
556 return 0;
560 * Decode Individual Channel Stream info; reference: table 4.6.
562 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
564 static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
565 GetBitContext *gb, int common_window)
567 if (get_bits1(gb)) {
568 av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
569 memset(ics, 0, sizeof(IndividualChannelStream));
570 return -1;
572 ics->window_sequence[1] = ics->window_sequence[0];
573 ics->window_sequence[0] = get_bits(gb, 2);
574 ics->use_kb_window[1] = ics->use_kb_window[0];
575 ics->use_kb_window[0] = get_bits1(gb);
576 ics->num_window_groups = 1;
577 ics->group_len[0] = 1;
578 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
579 int i;
580 ics->max_sfb = get_bits(gb, 4);
581 for (i = 0; i < 7; i++) {
582 if (get_bits1(gb)) {
583 ics->group_len[ics->num_window_groups - 1]++;
584 } else {
585 ics->num_window_groups++;
586 ics->group_len[ics->num_window_groups - 1] = 1;
589 ics->num_windows = 8;
590 ics->swb_offset = ff_swb_offset_128[ac->m4ac.sampling_index];
591 ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
592 ics->tns_max_bands = ff_tns_max_bands_128[ac->m4ac.sampling_index];
593 ics->predictor_present = 0;
594 } else {
595 ics->max_sfb = get_bits(gb, 6);
596 ics->num_windows = 1;
597 ics->swb_offset = ff_swb_offset_1024[ac->m4ac.sampling_index];
598 ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
599 ics->tns_max_bands = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
600 ics->predictor_present = get_bits1(gb);
601 ics->predictor_reset_group = 0;
602 if (ics->predictor_present) {
603 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
604 if (decode_prediction(ac, ics, gb)) {
605 memset(ics, 0, sizeof(IndividualChannelStream));
606 return -1;
608 } else if (ac->m4ac.object_type == AOT_AAC_LC) {
609 av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
610 memset(ics, 0, sizeof(IndividualChannelStream));
611 return -1;
612 } else {
613 av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
614 memset(ics, 0, sizeof(IndividualChannelStream));
615 return -1;
620 if (ics->max_sfb > ics->num_swb) {
621 av_log(ac->avccontext, AV_LOG_ERROR,
622 "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
623 ics->max_sfb, ics->num_swb);
624 memset(ics, 0, sizeof(IndividualChannelStream));
625 return -1;
628 return 0;
632 * Decode band types (section_data payload); reference: table 4.46.
634 * @param band_type array of the used band type
635 * @param band_type_run_end array of the last scalefactor band of a band type run
637 * @return Returns error status. 0 - OK, !0 - error
639 static int decode_band_types(AACContext *ac, enum BandType band_type[120],
640 int band_type_run_end[120], GetBitContext *gb,
641 IndividualChannelStream *ics)
643 int g, idx = 0;
644 const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
645 for (g = 0; g < ics->num_window_groups; g++) {
646 int k = 0;
647 while (k < ics->max_sfb) {
648 uint8_t sect_len = k;
649 int sect_len_incr;
650 int sect_band_type = get_bits(gb, 4);
651 if (sect_band_type == 12) {
652 av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
653 return -1;
655 while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1)
656 sect_len += sect_len_incr;
657 sect_len += sect_len_incr;
658 if (sect_len > ics->max_sfb) {
659 av_log(ac->avccontext, AV_LOG_ERROR,
660 "Number of bands (%d) exceeds limit (%d).\n",
661 sect_len, ics->max_sfb);
662 return -1;
664 for (; k < sect_len; k++) {
665 band_type [idx] = sect_band_type;
666 band_type_run_end[idx++] = sect_len;
670 return 0;
674 * Decode scalefactors; reference: table 4.47.
676 * @param global_gain first scalefactor value as scalefactors are differentially coded
677 * @param band_type array of the used band type
678 * @param band_type_run_end array of the last scalefactor band of a band type run
679 * @param sf array of scalefactors or intensity stereo positions
681 * @return Returns error status. 0 - OK, !0 - error
683 static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
684 unsigned int global_gain,
685 IndividualChannelStream *ics,
686 enum BandType band_type[120],
687 int band_type_run_end[120])
689 const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
690 int g, i, idx = 0;
691 int offset[3] = { global_gain, global_gain - 90, 100 };
692 int noise_flag = 1;
693 static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
694 for (g = 0; g < ics->num_window_groups; g++) {
695 for (i = 0; i < ics->max_sfb;) {
696 int run_end = band_type_run_end[idx];
697 if (band_type[idx] == ZERO_BT) {
698 for (; i < run_end; i++, idx++)
699 sf[idx] = 0.;
700 } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
701 for (; i < run_end; i++, idx++) {
702 offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
703 if (offset[2] > 255U) {
704 av_log(ac->avccontext, AV_LOG_ERROR,
705 "%s (%d) out of range.\n", sf_str[2], offset[2]);
706 return -1;
708 sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
710 } else if (band_type[idx] == NOISE_BT) {
711 for (; i < run_end; i++, idx++) {
712 if (noise_flag-- > 0)
713 offset[1] += get_bits(gb, 9) - 256;
714 else
715 offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
716 if (offset[1] > 255U) {
717 av_log(ac->avccontext, AV_LOG_ERROR,
718 "%s (%d) out of range.\n", sf_str[1], offset[1]);
719 return -1;
721 sf[idx] = -ff_aac_pow2sf_tab[offset[1] + sf_offset + 100];
723 } else {
724 for (; i < run_end; i++, idx++) {
725 offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
726 if (offset[0] > 255U) {
727 av_log(ac->avccontext, AV_LOG_ERROR,
728 "%s (%d) out of range.\n", sf_str[0], offset[0]);
729 return -1;
731 sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
736 return 0;
740 * Decode pulse data; reference: table 4.7.
742 static int decode_pulses(Pulse *pulse, GetBitContext *gb,
743 const uint16_t *swb_offset, int num_swb)
745 int i, pulse_swb;
746 pulse->num_pulse = get_bits(gb, 2) + 1;
747 pulse_swb = get_bits(gb, 6);
748 if (pulse_swb >= num_swb)
749 return -1;
750 pulse->pos[0] = swb_offset[pulse_swb];
751 pulse->pos[0] += get_bits(gb, 5);
752 if (pulse->pos[0] > 1023)
753 return -1;
754 pulse->amp[0] = get_bits(gb, 4);
755 for (i = 1; i < pulse->num_pulse; i++) {
756 pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
757 if (pulse->pos[i] > 1023)
758 return -1;
759 pulse->amp[i] = get_bits(gb, 4);
761 return 0;
765 * Decode Temporal Noise Shaping data; reference: table 4.48.
767 * @return Returns error status. 0 - OK, !0 - error
769 static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
770 GetBitContext *gb, const IndividualChannelStream *ics)
772 int w, filt, i, coef_len, coef_res, coef_compress;
773 const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
774 const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
775 for (w = 0; w < ics->num_windows; w++) {
776 if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
777 coef_res = get_bits1(gb);
779 for (filt = 0; filt < tns->n_filt[w]; filt++) {
780 int tmp2_idx;
781 tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
783 if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
784 av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
785 tns->order[w][filt], tns_max_order);
786 tns->order[w][filt] = 0;
787 return -1;
789 if (tns->order[w][filt]) {
790 tns->direction[w][filt] = get_bits1(gb);
791 coef_compress = get_bits1(gb);
792 coef_len = coef_res + 3 - coef_compress;
793 tmp2_idx = 2 * coef_compress + coef_res;
795 for (i = 0; i < tns->order[w][filt]; i++)
796 tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
801 return 0;
805 * Decode Mid/Side data; reference: table 4.54.
807 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
808 * [1] mask is decoded from bitstream; [2] mask is all 1s;
809 * [3] reserved for scalable AAC
811 static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
812 int ms_present)
814 int idx;
815 if (ms_present == 1) {
816 for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
817 cpe->ms_mask[idx] = get_bits1(gb);
818 } else if (ms_present == 2) {
819 memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
824 * Decode spectral data; reference: table 4.50.
825 * Dequantize and scale spectral data; reference: 4.6.3.3.
827 * @param coef array of dequantized, scaled spectral data
828 * @param sf array of scalefactors or intensity stereo positions
829 * @param pulse_present set if pulses are present
830 * @param pulse pointer to pulse data struct
831 * @param band_type array of the used band type
833 * @return Returns error status. 0 - OK, !0 - error
835 static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
836 GetBitContext *gb, float sf[120],
837 int pulse_present, const Pulse *pulse,
838 const IndividualChannelStream *ics,
839 enum BandType band_type[120])
841 int i, k, g, idx = 0;
842 const int c = 1024 / ics->num_windows;
843 const uint16_t *offsets = ics->swb_offset;
844 float *coef_base = coef;
845 static const float sign_lookup[] = { 1.0f, -1.0f };
847 for (g = 0; g < ics->num_windows; g++)
848 memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
850 for (g = 0; g < ics->num_window_groups; g++) {
851 for (i = 0; i < ics->max_sfb; i++, idx++) {
852 const int cur_band_type = band_type[idx];
853 const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
854 const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
855 int group;
856 if (cur_band_type == ZERO_BT || cur_band_type == INTENSITY_BT2 || cur_band_type == INTENSITY_BT) {
857 for (group = 0; group < ics->group_len[g]; group++) {
858 memset(coef + group * 128 + offsets[i], 0, (offsets[i + 1] - offsets[i]) * sizeof(float));
860 } else if (cur_band_type == NOISE_BT) {
861 for (group = 0; group < ics->group_len[g]; group++) {
862 float scale;
863 float band_energy = 0;
864 for (k = offsets[i]; k < offsets[i + 1]; k++) {
865 ac->random_state = lcg_random(ac->random_state);
866 coef[group * 128 + k] = ac->random_state;
867 band_energy += coef[group * 128 + k] * coef[group * 128 + k];
869 scale = sf[idx] / sqrtf(band_energy);
870 for (k = offsets[i]; k < offsets[i + 1]; k++) {
871 coef[group * 128 + k] *= scale;
874 } else {
875 for (group = 0; group < ics->group_len[g]; group++) {
876 for (k = offsets[i]; k < offsets[i + 1]; k += dim) {
877 const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
878 const int coef_tmp_idx = (group << 7) + k;
879 const float *vq_ptr;
880 int j;
881 if (index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
882 av_log(ac->avccontext, AV_LOG_ERROR,
883 "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
884 cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
885 return -1;
887 vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
888 if (is_cb_unsigned) {
889 if (vq_ptr[0])
890 coef[coef_tmp_idx ] = sign_lookup[get_bits1(gb)];
891 if (vq_ptr[1])
892 coef[coef_tmp_idx + 1] = sign_lookup[get_bits1(gb)];
893 if (dim == 4) {
894 if (vq_ptr[2])
895 coef[coef_tmp_idx + 2] = sign_lookup[get_bits1(gb)];
896 if (vq_ptr[3])
897 coef[coef_tmp_idx + 3] = sign_lookup[get_bits1(gb)];
899 if (cur_band_type == ESC_BT) {
900 for (j = 0; j < 2; j++) {
901 if (vq_ptr[j] == 64.0f) {
902 int n = 4;
903 /* The total length of escape_sequence must be < 22 bits according
904 to the specification (i.e. max is 11111111110xxxxxxxxxx). */
905 while (get_bits1(gb) && n < 15) n++;
906 if (n == 15) {
907 av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
908 return -1;
910 n = (1 << n) + get_bits(gb, n);
911 coef[coef_tmp_idx + j] *= cbrtf(n) * n;
912 } else
913 coef[coef_tmp_idx + j] *= vq_ptr[j];
915 } else {
916 coef[coef_tmp_idx ] *= vq_ptr[0];
917 coef[coef_tmp_idx + 1] *= vq_ptr[1];
918 if (dim == 4) {
919 coef[coef_tmp_idx + 2] *= vq_ptr[2];
920 coef[coef_tmp_idx + 3] *= vq_ptr[3];
923 } else {
924 coef[coef_tmp_idx ] = vq_ptr[0];
925 coef[coef_tmp_idx + 1] = vq_ptr[1];
926 if (dim == 4) {
927 coef[coef_tmp_idx + 2] = vq_ptr[2];
928 coef[coef_tmp_idx + 3] = vq_ptr[3];
931 coef[coef_tmp_idx ] *= sf[idx];
932 coef[coef_tmp_idx + 1] *= sf[idx];
933 if (dim == 4) {
934 coef[coef_tmp_idx + 2] *= sf[idx];
935 coef[coef_tmp_idx + 3] *= sf[idx];
941 coef += ics->group_len[g] << 7;
944 if (pulse_present) {
945 idx = 0;
946 for (i = 0; i < pulse->num_pulse; i++) {
947 float co = coef_base[ pulse->pos[i] ];
948 while (offsets[idx + 1] <= pulse->pos[i])
949 idx++;
950 if (band_type[idx] != NOISE_BT && sf[idx]) {
951 float ico = -pulse->amp[i];
952 if (co) {
953 co /= sf[idx];
954 ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
956 coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
960 return 0;
963 static av_always_inline float flt16_round(float pf)
965 union float754 tmp;
966 tmp.f = pf;
967 tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
968 return tmp.f;
971 static av_always_inline float flt16_even(float pf)
973 union float754 tmp;
974 tmp.f = pf;
975 tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
976 return tmp.f;
979 static av_always_inline float flt16_trunc(float pf)
981 union float754 pun;
982 pun.f = pf;
983 pun.i &= 0xFFFF0000U;
984 return pun.f;
987 static void predict(AACContext *ac, PredictorState *ps, float *coef,
988 int output_enable)
990 const float a = 0.953125; // 61.0 / 64
991 const float alpha = 0.90625; // 29.0 / 32
992 float e0, e1;
993 float pv;
994 float k1, k2;
996 k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
997 k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
999 pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
1000 if (output_enable)
1001 *coef += pv * ac->sf_scale;
1003 e0 = *coef / ac->sf_scale;
1004 e1 = e0 - k1 * ps->r0;
1006 ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
1007 ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
1008 ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
1009 ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));
1011 ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
1012 ps->r0 = flt16_trunc(a * e0);
1016 * Apply AAC-Main style frequency domain prediction.
1018 static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
1020 int sfb, k;
1022 if (!sce->ics.predictor_initialized) {
1023 reset_all_predictors(sce->predictor_state);
1024 sce->ics.predictor_initialized = 1;
1027 if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
1028 for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
1029 for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
1030 predict(ac, &sce->predictor_state[k], &sce->coeffs[k],
1031 sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
1034 if (sce->ics.predictor_reset_group)
1035 reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
1036 } else
1037 reset_all_predictors(sce->predictor_state);
1041 * Decode an individual_channel_stream payload; reference: table 4.44.
1043 * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
1044 * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
1046 * @return Returns error status. 0 - OK, !0 - error
1048 static int decode_ics(AACContext *ac, SingleChannelElement *sce,
1049 GetBitContext *gb, int common_window, int scale_flag)
1051 Pulse pulse;
1052 TemporalNoiseShaping *tns = &sce->tns;
1053 IndividualChannelStream *ics = &sce->ics;
1054 float *out = sce->coeffs;
1055 int global_gain, pulse_present = 0;
1057 /* This assignment is to silence a GCC warning about the variable being used
1058 * uninitialized when in fact it always is.
1060 pulse.num_pulse = 0;
1062 global_gain = get_bits(gb, 8);
1064 if (!common_window && !scale_flag) {
1065 if (decode_ics_info(ac, ics, gb, 0) < 0)
1066 return -1;
1069 if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
1070 return -1;
1071 if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
1072 return -1;
1074 pulse_present = 0;
1075 if (!scale_flag) {
1076 if ((pulse_present = get_bits1(gb))) {
1077 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1078 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
1079 return -1;
1081 if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
1082 av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
1083 return -1;
1086 if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
1087 return -1;
1088 if (get_bits1(gb)) {
1089 av_log_missing_feature(ac->avccontext, "SSR", 1);
1090 return -1;
1094 if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
1095 return -1;
1097 if (ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
1098 apply_prediction(ac, sce);
1100 return 0;
1104 * Mid/Side stereo decoding; reference: 4.6.8.1.3.
1106 static void apply_mid_side_stereo(ChannelElement *cpe)
1108 const IndividualChannelStream *ics = &cpe->ch[0].ics;
1109 float *ch0 = cpe->ch[0].coeffs;
1110 float *ch1 = cpe->ch[1].coeffs;
1111 int g, i, k, group, idx = 0;
1112 const uint16_t *offsets = ics->swb_offset;
1113 for (g = 0; g < ics->num_window_groups; g++) {
1114 for (i = 0; i < ics->max_sfb; i++, idx++) {
1115 if (cpe->ms_mask[idx] &&
1116 cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
1117 for (group = 0; group < ics->group_len[g]; group++) {
1118 for (k = offsets[i]; k < offsets[i + 1]; k++) {
1119 float tmp = ch0[group * 128 + k] - ch1[group * 128 + k];
1120 ch0[group * 128 + k] += ch1[group * 128 + k];
1121 ch1[group * 128 + k] = tmp;
1126 ch0 += ics->group_len[g] * 128;
1127 ch1 += ics->group_len[g] * 128;
1132 * intensity stereo decoding; reference: 4.6.8.2.3
1134 * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
1135 * [1] mask is decoded from bitstream; [2] mask is all 1s;
1136 * [3] reserved for scalable AAC
1138 static void apply_intensity_stereo(ChannelElement *cpe, int ms_present)
1140 const IndividualChannelStream *ics = &cpe->ch[1].ics;
1141 SingleChannelElement *sce1 = &cpe->ch[1];
1142 float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
1143 const uint16_t *offsets = ics->swb_offset;
1144 int g, group, i, k, idx = 0;
1145 int c;
1146 float scale;
1147 for (g = 0; g < ics->num_window_groups; g++) {
1148 for (i = 0; i < ics->max_sfb;) {
1149 if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
1150 const int bt_run_end = sce1->band_type_run_end[idx];
1151 for (; i < bt_run_end; i++, idx++) {
1152 c = -1 + 2 * (sce1->band_type[idx] - 14);
1153 if (ms_present)
1154 c *= 1 - 2 * cpe->ms_mask[idx];
1155 scale = c * sce1->sf[idx];
1156 for (group = 0; group < ics->group_len[g]; group++)
1157 for (k = offsets[i]; k < offsets[i + 1]; k++)
1158 coef1[group * 128 + k] = scale * coef0[group * 128 + k];
1160 } else {
1161 int bt_run_end = sce1->band_type_run_end[idx];
1162 idx += bt_run_end - i;
1163 i = bt_run_end;
1166 coef0 += ics->group_len[g] * 128;
1167 coef1 += ics->group_len[g] * 128;
1172 * Decode a channel_pair_element; reference: table 4.4.
1174 * @param elem_id Identifies the instance of a syntax element.
1176 * @return Returns error status. 0 - OK, !0 - error
1178 static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
1180 int i, ret, common_window, ms_present = 0;
1182 common_window = get_bits1(gb);
1183 if (common_window) {
1184 if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
1185 return -1;
1186 i = cpe->ch[1].ics.use_kb_window[0];
1187 cpe->ch[1].ics = cpe->ch[0].ics;
1188 cpe->ch[1].ics.use_kb_window[1] = i;
1189 ms_present = get_bits(gb, 2);
1190 if (ms_present == 3) {
1191 av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
1192 return -1;
1193 } else if (ms_present)
1194 decode_mid_side_stereo(cpe, gb, ms_present);
1196 if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
1197 return ret;
1198 if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
1199 return ret;
1201 if (common_window) {
1202 if (ms_present)
1203 apply_mid_side_stereo(cpe);
1204 if (ac->m4ac.object_type == AOT_AAC_MAIN) {
1205 apply_prediction(ac, &cpe->ch[0]);
1206 apply_prediction(ac, &cpe->ch[1]);
1210 apply_intensity_stereo(cpe, ms_present);
1211 return 0;
1215 * Decode coupling_channel_element; reference: table 4.8.
1217 * @param elem_id Identifies the instance of a syntax element.
1219 * @return Returns error status. 0 - OK, !0 - error
1221 static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
1223 int num_gain = 0;
1224 int c, g, sfb, ret;
1225 int sign;
1226 float scale;
1227 SingleChannelElement *sce = &che->ch[0];
1228 ChannelCoupling *coup = &che->coup;
1230 coup->coupling_point = 2 * get_bits1(gb);
1231 coup->num_coupled = get_bits(gb, 3);
1232 for (c = 0; c <= coup->num_coupled; c++) {
1233 num_gain++;
1234 coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
1235 coup->id_select[c] = get_bits(gb, 4);
1236 if (coup->type[c] == TYPE_CPE) {
1237 coup->ch_select[c] = get_bits(gb, 2);
1238 if (coup->ch_select[c] == 3)
1239 num_gain++;
1240 } else
1241 coup->ch_select[c] = 2;
1243 coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
1245 sign = get_bits(gb, 1);
1246 scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
1248 if ((ret = decode_ics(ac, sce, gb, 0, 0)))
1249 return ret;
1251 for (c = 0; c < num_gain; c++) {
1252 int idx = 0;
1253 int cge = 1;
1254 int gain = 0;
1255 float gain_cache = 1.;
1256 if (c) {
1257 cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
1258 gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
1259 gain_cache = pow(scale, -gain);
1261 if (coup->coupling_point == AFTER_IMDCT) {
1262 coup->gain[c][0] = gain_cache;
1263 } else {
1264 for (g = 0; g < sce->ics.num_window_groups; g++) {
1265 for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
1266 if (sce->band_type[idx] != ZERO_BT) {
1267 if (!cge) {
1268 int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
1269 if (t) {
1270 int s = 1;
1271 t = gain += t;
1272 if (sign) {
1273 s -= 2 * (t & 0x1);
1274 t >>= 1;
1276 gain_cache = pow(scale, -t) * s;
1279 coup->gain[c][idx] = gain_cache;
1285 return 0;
1289 * Decode Spectral Band Replication extension data; reference: table 4.55.
1291 * @param crc flag indicating the presence of CRC checksum
1292 * @param cnt length of TYPE_FIL syntactic element in bytes
1294 * @return Returns number of bytes consumed from the TYPE_FIL element.
1296 static int decode_sbr_extension(AACContext *ac, GetBitContext *gb,
1297 int crc, int cnt)
1299 // TODO : sbr_extension implementation
1300 av_log_missing_feature(ac->avccontext, "SBR", 0);
1301 skip_bits_long(gb, 8 * cnt - 4); // -4 due to reading extension type
1302 return cnt;
1306 * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
1308 * @return Returns number of bytes consumed.
1310 static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
1311 GetBitContext *gb)
1313 int i;
1314 int num_excl_chan = 0;
1316 do {
1317 for (i = 0; i < 7; i++)
1318 che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
1319 } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
1321 return num_excl_chan / 7;
1325 * Decode dynamic range information; reference: table 4.52.
1327 * @param cnt length of TYPE_FIL syntactic element in bytes
1329 * @return Returns number of bytes consumed.
1331 static int decode_dynamic_range(DynamicRangeControl *che_drc,
1332 GetBitContext *gb, int cnt)
1334 int n = 1;
1335 int drc_num_bands = 1;
1336 int i;
1338 /* pce_tag_present? */
1339 if (get_bits1(gb)) {
1340 che_drc->pce_instance_tag = get_bits(gb, 4);
1341 skip_bits(gb, 4); // tag_reserved_bits
1342 n++;
1345 /* excluded_chns_present? */
1346 if (get_bits1(gb)) {
1347 n += decode_drc_channel_exclusions(che_drc, gb);
1350 /* drc_bands_present? */
1351 if (get_bits1(gb)) {
1352 che_drc->band_incr = get_bits(gb, 4);
1353 che_drc->interpolation_scheme = get_bits(gb, 4);
1354 n++;
1355 drc_num_bands += che_drc->band_incr;
1356 for (i = 0; i < drc_num_bands; i++) {
1357 che_drc->band_top[i] = get_bits(gb, 8);
1358 n++;
1362 /* prog_ref_level_present? */
1363 if (get_bits1(gb)) {
1364 che_drc->prog_ref_level = get_bits(gb, 7);
1365 skip_bits1(gb); // prog_ref_level_reserved_bits
1366 n++;
1369 for (i = 0; i < drc_num_bands; i++) {
1370 che_drc->dyn_rng_sgn[i] = get_bits1(gb);
1371 che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
1372 n++;
1375 return n;
1379 * Decode extension data (incomplete); reference: table 4.51.
1381 * @param cnt length of TYPE_FIL syntactic element in bytes
1383 * @return Returns number of bytes consumed
1385 static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt)
1387 int crc_flag = 0;
1388 int res = cnt;
1389 switch (get_bits(gb, 4)) { // extension type
1390 case EXT_SBR_DATA_CRC:
1391 crc_flag++;
1392 case EXT_SBR_DATA:
1393 res = decode_sbr_extension(ac, gb, crc_flag, cnt);
1394 break;
1395 case EXT_DYNAMIC_RANGE:
1396 res = decode_dynamic_range(&ac->che_drc, gb, cnt);
1397 break;
1398 case EXT_FILL:
1399 case EXT_FILL_DATA:
1400 case EXT_DATA_ELEMENT:
1401 default:
1402 skip_bits_long(gb, 8 * cnt - 4);
1403 break;
1405 return res;
1409 * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
1411 * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
1412 * @param coef spectral coefficients
1414 static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
1415 IndividualChannelStream *ics, int decode)
1417 const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
1418 int w, filt, m, i;
1419 int bottom, top, order, start, end, size, inc;
1420 float lpc[TNS_MAX_ORDER];
1422 for (w = 0; w < ics->num_windows; w++) {
1423 bottom = ics->num_swb;
1424 for (filt = 0; filt < tns->n_filt[w]; filt++) {
1425 top = bottom;
1426 bottom = FFMAX(0, top - tns->length[w][filt]);
1427 order = tns->order[w][filt];
1428 if (order == 0)
1429 continue;
1431 // tns_decode_coef
1432 compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
1434 start = ics->swb_offset[FFMIN(bottom, mmm)];
1435 end = ics->swb_offset[FFMIN( top, mmm)];
1436 if ((size = end - start) <= 0)
1437 continue;
1438 if (tns->direction[w][filt]) {
1439 inc = -1;
1440 start = end - 1;
1441 } else {
1442 inc = 1;
1444 start += w * 128;
1446 // ar filter
1447 for (m = 0; m < size; m++, start += inc)
1448 for (i = 1; i <= FFMIN(m, order); i++)
1449 coef[start] -= coef[start - i * inc] * lpc[i - 1];
1455 * Conduct IMDCT and windowing.
1457 static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
1459 IndividualChannelStream *ics = &sce->ics;
1460 float *in = sce->coeffs;
1461 float *out = sce->ret;
1462 float *saved = sce->saved;
1463 const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
1464 const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
1465 const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
1466 float *buf = ac->buf_mdct;
1467 float *temp = ac->temp;
1468 int i;
1470 // imdct
1471 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1472 if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
1473 av_log(ac->avccontext, AV_LOG_WARNING,
1474 "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
1475 "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
1476 for (i = 0; i < 1024; i += 128)
1477 ff_imdct_half(&ac->mdct_small, buf + i, in + i);
1478 } else
1479 ff_imdct_half(&ac->mdct, buf, in);
1481 /* window overlapping
1482 * NOTE: To simplify the overlapping code, all 'meaningless' short to long
1483 * and long to short transitions are considered to be short to short
1484 * transitions. This leaves just two cases (long to long and short to short)
1485 * with a little special sauce for EIGHT_SHORT_SEQUENCE.
1487 if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
1488 (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
1489 ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, ac->add_bias, 512);
1490 } else {
1491 for (i = 0; i < 448; i++)
1492 out[i] = saved[i] + ac->add_bias;
1494 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1495 ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, ac->add_bias, 64);
1496 ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, ac->add_bias, 64);
1497 ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, ac->add_bias, 64);
1498 ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, ac->add_bias, 64);
1499 ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, ac->add_bias, 64);
1500 memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
1501 } else {
1502 ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, ac->add_bias, 64);
1503 for (i = 576; i < 1024; i++)
1504 out[i] = buf[i-512] + ac->add_bias;
1508 // buffer update
1509 if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
1510 for (i = 0; i < 64; i++)
1511 saved[i] = temp[64 + i] - ac->add_bias;
1512 ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
1513 ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
1514 ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
1515 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
1516 } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
1517 memcpy( saved, buf + 512, 448 * sizeof(float));
1518 memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
1519 } else { // LONG_STOP or ONLY_LONG
1520 memcpy( saved, buf + 512, 512 * sizeof(float));
1525 * Apply dependent channel coupling (applied before IMDCT).
1527 * @param index index into coupling gain array
1529 static void apply_dependent_coupling(AACContext *ac,
1530 SingleChannelElement *target,
1531 ChannelElement *cce, int index)
1533 IndividualChannelStream *ics = &cce->ch[0].ics;
1534 const uint16_t *offsets = ics->swb_offset;
1535 float *dest = target->coeffs;
1536 const float *src = cce->ch[0].coeffs;
1537 int g, i, group, k, idx = 0;
1538 if (ac->m4ac.object_type == AOT_AAC_LTP) {
1539 av_log(ac->avccontext, AV_LOG_ERROR,
1540 "Dependent coupling is not supported together with LTP\n");
1541 return;
1543 for (g = 0; g < ics->num_window_groups; g++) {
1544 for (i = 0; i < ics->max_sfb; i++, idx++) {
1545 if (cce->ch[0].band_type[idx] != ZERO_BT) {
1546 const float gain = cce->coup.gain[index][idx];
1547 for (group = 0; group < ics->group_len[g]; group++) {
1548 for (k = offsets[i]; k < offsets[i + 1]; k++) {
1549 // XXX dsputil-ize
1550 dest[group * 128 + k] += gain * src[group * 128 + k];
1555 dest += ics->group_len[g] * 128;
1556 src += ics->group_len[g] * 128;
1561 * Apply independent channel coupling (applied after IMDCT).
1563 * @param index index into coupling gain array
1565 static void apply_independent_coupling(AACContext *ac,
1566 SingleChannelElement *target,
1567 ChannelElement *cce, int index)
1569 int i;
1570 const float gain = cce->coup.gain[index][0];
1571 const float bias = ac->add_bias;
1572 const float *src = cce->ch[0].ret;
1573 float *dest = target->ret;
1575 for (i = 0; i < 1024; i++)
1576 dest[i] += gain * (src[i] - bias);
1580 * channel coupling transformation interface
1582 * @param index index into coupling gain array
1583 * @param apply_coupling_method pointer to (in)dependent coupling function
1585 static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
1586 enum RawDataBlockType type, int elem_id,
1587 enum CouplingPoint coupling_point,
1588 void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
1590 int i, c;
1592 for (i = 0; i < MAX_ELEM_ID; i++) {
1593 ChannelElement *cce = ac->che[TYPE_CCE][i];
1594 int index = 0;
1596 if (cce && cce->coup.coupling_point == coupling_point) {
1597 ChannelCoupling *coup = &cce->coup;
1599 for (c = 0; c <= coup->num_coupled; c++) {
1600 if (coup->type[c] == type && coup->id_select[c] == elem_id) {
1601 if (coup->ch_select[c] != 1) {
1602 apply_coupling_method(ac, &cc->ch[0], cce, index);
1603 if (coup->ch_select[c] != 0)
1604 index++;
1606 if (coup->ch_select[c] != 2)
1607 apply_coupling_method(ac, &cc->ch[1], cce, index++);
1608 } else
1609 index += 1 + (coup->ch_select[c] == 3);
1616 * Convert spectral data to float samples, applying all supported tools as appropriate.
1618 static void spectral_to_sample(AACContext *ac)
1620 int i, type;
1621 for (type = 3; type >= 0; type--) {
1622 for (i = 0; i < MAX_ELEM_ID; i++) {
1623 ChannelElement *che = ac->che[type][i];
1624 if (che) {
1625 if (type <= TYPE_CPE)
1626 apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
1627 if (che->ch[0].tns.present)
1628 apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
1629 if (che->ch[1].tns.present)
1630 apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
1631 if (type <= TYPE_CPE)
1632 apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
1633 if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
1634 imdct_and_windowing(ac, &che->ch[0]);
1635 if (type == TYPE_CPE)
1636 imdct_and_windowing(ac, &che->ch[1]);
1637 if (type <= TYPE_CCE)
1638 apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
1644 static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
1646 int size;
1647 AACADTSHeaderInfo hdr_info;
1649 size = ff_aac_parse_header(gb, &hdr_info);
1650 if (size > 0) {
1651 if (!ac->output_configured && hdr_info.chan_config) {
1652 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1653 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
1654 ac->m4ac.chan_config = hdr_info.chan_config;
1655 if (set_default_channel_config(ac, new_che_pos, hdr_info.chan_config))
1656 return -7;
1657 if (output_configure(ac, ac->che_pos, new_che_pos, 1))
1658 return -7;
1660 ac->m4ac.sample_rate = hdr_info.sample_rate;
1661 ac->m4ac.sampling_index = hdr_info.sampling_index;
1662 ac->m4ac.object_type = hdr_info.object_type;
1663 if (hdr_info.num_aac_frames == 1) {
1664 if (!hdr_info.crc_absent)
1665 skip_bits(gb, 16);
1666 } else {
1667 av_log_missing_feature(ac->avccontext, "More than one AAC RDB per ADTS frame is", 0);
1668 return -1;
1671 return size;
1674 static int aac_decode_frame(AVCodecContext *avccontext, void *data,
1675 int *data_size, AVPacket *avpkt)
1677 const uint8_t *buf = avpkt->data;
1678 int buf_size = avpkt->size;
1679 AACContext *ac = avccontext->priv_data;
1680 ChannelElement *che = NULL;
1681 GetBitContext gb;
1682 enum RawDataBlockType elem_type;
1683 int err, elem_id, data_size_tmp;
1685 init_get_bits(&gb, buf, buf_size * 8);
1687 if (show_bits(&gb, 12) == 0xfff) {
1688 if (parse_adts_frame_header(ac, &gb) < 0) {
1689 av_log(avccontext, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
1690 return -1;
1692 if (ac->m4ac.sampling_index > 12) {
1693 av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
1694 return -1;
1698 // parse
1699 while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
1700 elem_id = get_bits(&gb, 4);
1702 if (elem_type < TYPE_DSE && !(che=get_che(ac, elem_type, elem_id))) {
1703 av_log(ac->avccontext, AV_LOG_ERROR, "channel element %d.%d is not allocated\n", elem_type, elem_id);
1704 return -1;
1707 switch (elem_type) {
1709 case TYPE_SCE:
1710 err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
1711 break;
1713 case TYPE_CPE:
1714 err = decode_cpe(ac, &gb, che);
1715 break;
1717 case TYPE_CCE:
1718 err = decode_cce(ac, &gb, che);
1719 break;
1721 case TYPE_LFE:
1722 err = decode_ics(ac, &che->ch[0], &gb, 0, 0);
1723 break;
1725 case TYPE_DSE:
1726 skip_data_stream_element(&gb);
1727 err = 0;
1728 break;
1730 case TYPE_PCE: {
1731 enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
1732 memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
1733 if ((err = decode_pce(ac, new_che_pos, &gb)))
1734 break;
1735 if (ac->output_configured)
1736 av_log(avccontext, AV_LOG_ERROR,
1737 "Not evaluating a further program_config_element as this construct is dubious at best.\n");
1738 else
1739 err = output_configure(ac, ac->che_pos, new_che_pos, 0);
1740 break;
1743 case TYPE_FIL:
1744 if (elem_id == 15)
1745 elem_id += get_bits(&gb, 8) - 1;
1746 while (elem_id > 0)
1747 elem_id -= decode_extension_payload(ac, &gb, elem_id);
1748 err = 0; /* FIXME */
1749 break;
1751 default:
1752 err = -1; /* should not happen, but keeps compiler happy */
1753 break;
1756 if (err)
1757 return err;
1760 spectral_to_sample(ac);
1762 if (!ac->is_saved) {
1763 ac->is_saved = 1;
1764 *data_size = 0;
1765 return buf_size;
1768 data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
1769 if (*data_size < data_size_tmp) {
1770 av_log(avccontext, AV_LOG_ERROR,
1771 "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
1772 *data_size, data_size_tmp);
1773 return -1;
1775 *data_size = data_size_tmp;
1777 ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
1779 return buf_size;
1782 static av_cold int aac_decode_close(AVCodecContext *avccontext)
1784 AACContext *ac = avccontext->priv_data;
1785 int i, type;
1787 for (i = 0; i < MAX_ELEM_ID; i++) {
1788 for (type = 0; type < 4; type++)
1789 av_freep(&ac->che[type][i]);
1792 ff_mdct_end(&ac->mdct);
1793 ff_mdct_end(&ac->mdct_small);
1794 return 0;
1797 AVCodec aac_decoder = {
1798 "aac",
1799 CODEC_TYPE_AUDIO,
1800 CODEC_ID_AAC,
1801 sizeof(AACContext),
1802 aac_decode_init,
1803 NULL,
1804 aac_decode_close,
1805 aac_decode_frame,
1806 .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
1807 .sample_fmts = (enum SampleFormat[]) {
1808 SAMPLE_FMT_S16,SAMPLE_FMT_NONE