flacdec: change frame bps validation to return an error value if bps
[FFMpeg-mirror/lagarith.git] / libavcodec / vp3.c
blob64901616cca8634dad42a1bf277f28ab1eda6a7a
1 /*
2 * Copyright (C) 2003-2004 the ffmpeg project
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 /**
22 * @file libavcodec/vp3.c
23 * On2 VP3 Video Decoder
25 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26 * For more information about the VP3 coding process, visit:
27 * http://wiki.multimedia.cx/index.php?title=On2_VP3
29 * Theora decoder by Alex Beregszaszi
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <unistd.h>
37 #include "avcodec.h"
38 #include "dsputil.h"
39 #include "bitstream.h"
41 #include "vp3data.h"
42 #include "xiph.h"
44 #define FRAGMENT_PIXELS 8
46 typedef struct Coeff {
47 struct Coeff *next;
48 DCTELEM coeff;
49 uint8_t index;
50 } Coeff;
52 //FIXME split things out into their own arrays
53 typedef struct Vp3Fragment {
54 Coeff *next_coeff;
55 /* address of first pixel taking into account which plane the fragment
56 * lives on as well as the plane stride */
57 int first_pixel;
58 /* this is the macroblock that the fragment belongs to */
59 uint16_t macroblock;
60 uint8_t coding_method;
61 int8_t motion_x;
62 int8_t motion_y;
63 } Vp3Fragment;
65 #define SB_NOT_CODED 0
66 #define SB_PARTIALLY_CODED 1
67 #define SB_FULLY_CODED 2
69 #define MODE_INTER_NO_MV 0
70 #define MODE_INTRA 1
71 #define MODE_INTER_PLUS_MV 2
72 #define MODE_INTER_LAST_MV 3
73 #define MODE_INTER_PRIOR_LAST 4
74 #define MODE_USING_GOLDEN 5
75 #define MODE_GOLDEN_MV 6
76 #define MODE_INTER_FOURMV 7
77 #define CODING_MODE_COUNT 8
79 /* special internal mode */
80 #define MODE_COPY 8
82 /* There are 6 preset schemes, plus a free-form scheme */
83 static const int ModeAlphabet[6][CODING_MODE_COUNT] =
85 /* scheme 1: Last motion vector dominates */
86 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
87 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV,
88 MODE_INTRA, MODE_USING_GOLDEN,
89 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
91 /* scheme 2 */
92 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
93 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV,
94 MODE_INTRA, MODE_USING_GOLDEN,
95 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
97 /* scheme 3 */
98 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
99 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
100 MODE_INTRA, MODE_USING_GOLDEN,
101 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
103 /* scheme 4 */
104 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV,
105 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST,
106 MODE_INTRA, MODE_USING_GOLDEN,
107 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
109 /* scheme 5: No motion vector dominates */
110 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV,
111 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
112 MODE_INTRA, MODE_USING_GOLDEN,
113 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
115 /* scheme 6 */
116 { MODE_INTER_NO_MV, MODE_USING_GOLDEN,
117 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST,
118 MODE_INTER_PLUS_MV, MODE_INTRA,
119 MODE_GOLDEN_MV, MODE_INTER_FOURMV },
123 #define MIN_DEQUANT_VAL 2
125 typedef struct Vp3DecodeContext {
126 AVCodecContext *avctx;
127 int theora, theora_tables;
128 int version;
129 int width, height;
130 AVFrame golden_frame;
131 AVFrame last_frame;
132 AVFrame current_frame;
133 int keyframe;
134 DSPContext dsp;
135 int flipped_image;
137 int qis[3];
138 int nqis;
139 int quality_index;
140 int last_quality_index;
142 int superblock_count;
143 int y_superblock_width;
144 int y_superblock_height;
145 int c_superblock_width;
146 int c_superblock_height;
147 int u_superblock_start;
148 int v_superblock_start;
149 unsigned char *superblock_coding;
151 int macroblock_count;
152 int macroblock_width;
153 int macroblock_height;
155 int fragment_count;
156 int fragment_width;
157 int fragment_height;
159 Vp3Fragment *all_fragments;
160 uint8_t *coeff_counts;
161 Coeff *coeffs;
162 Coeff *next_coeff;
163 int fragment_start[3];
165 ScanTable scantable;
167 /* tables */
168 uint16_t coded_dc_scale_factor[64];
169 uint32_t coded_ac_scale_factor[64];
170 uint8_t base_matrix[384][64];
171 uint8_t qr_count[2][3];
172 uint8_t qr_size [2][3][64];
173 uint16_t qr_base[2][3][64];
175 /* this is a list of indexes into the all_fragments array indicating
176 * which of the fragments are coded */
177 int *coded_fragment_list;
178 int coded_fragment_list_index;
179 int pixel_addresses_initialized;
181 VLC dc_vlc[16];
182 VLC ac_vlc_1[16];
183 VLC ac_vlc_2[16];
184 VLC ac_vlc_3[16];
185 VLC ac_vlc_4[16];
187 VLC superblock_run_length_vlc;
188 VLC fragment_run_length_vlc;
189 VLC mode_code_vlc;
190 VLC motion_vector_vlc;
192 /* these arrays need to be on 16-byte boundaries since SSE2 operations
193 * index into them */
194 DECLARE_ALIGNED_16(int16_t, qmat[2][4][64]); //<qmat[is_inter][plane]
196 /* This table contains superblock_count * 16 entries. Each set of 16
197 * numbers corresponds to the fragment indexes 0..15 of the superblock.
198 * An entry will be -1 to indicate that no entry corresponds to that
199 * index. */
200 int *superblock_fragments;
202 /* This table contains superblock_count * 4 entries. Each set of 4
203 * numbers corresponds to the macroblock indexes 0..3 of the superblock.
204 * An entry will be -1 to indicate that no entry corresponds to that
205 * index. */
206 int *superblock_macroblocks;
208 /* This table contains macroblock_count * 6 entries. Each set of 6
209 * numbers corresponds to the fragment indexes 0..5 which comprise
210 * the macroblock (4 Y fragments and 2 C fragments). */
211 int *macroblock_fragments;
212 /* This is an array that indicates how a particular macroblock
213 * is coded. */
214 unsigned char *macroblock_coding;
216 int first_coded_y_fragment;
217 int first_coded_c_fragment;
218 int last_coded_y_fragment;
219 int last_coded_c_fragment;
221 uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
222 int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
224 /* Huffman decode */
225 int hti;
226 unsigned int hbits;
227 int entries;
228 int huff_code_size;
229 uint16_t huffman_table[80][32][2];
231 uint8_t filter_limit_values[64];
232 DECLARE_ALIGNED_8(int, bounding_values_array[256+2]);
233 } Vp3DecodeContext;
235 /************************************************************************
236 * VP3 specific functions
237 ************************************************************************/
240 * This function sets up all of the various blocks mappings:
241 * superblocks <-> fragments, macroblocks <-> fragments,
242 * superblocks <-> macroblocks
244 * Returns 0 is successful; returns 1 if *anything* went wrong.
246 static int init_block_mapping(Vp3DecodeContext *s)
248 int i, j;
249 signed int hilbert_walk_mb[4];
251 int current_fragment = 0;
252 int current_width = 0;
253 int current_height = 0;
254 int right_edge = 0;
255 int bottom_edge = 0;
256 int superblock_row_inc = 0;
257 int *hilbert = NULL;
258 int mapping_index = 0;
260 int current_macroblock;
261 int c_fragment;
263 signed char travel_width[16] = {
264 1, 1, 0, -1,
265 0, 0, 1, 0,
266 1, 0, 1, 0,
267 0, -1, 0, 1
270 signed char travel_height[16] = {
271 0, 0, 1, 0,
272 1, 1, 0, -1,
273 0, 1, 0, -1,
274 -1, 0, -1, 0
277 signed char travel_width_mb[4] = {
278 1, 0, 1, 0
281 signed char travel_height_mb[4] = {
282 0, 1, 0, -1
285 hilbert_walk_mb[0] = 1;
286 hilbert_walk_mb[1] = s->macroblock_width;
287 hilbert_walk_mb[2] = 1;
288 hilbert_walk_mb[3] = -s->macroblock_width;
290 /* iterate through each superblock (all planes) and map the fragments */
291 for (i = 0; i < s->superblock_count; i++) {
292 /* time to re-assign the limits? */
293 if (i == 0) {
295 /* start of Y superblocks */
296 right_edge = s->fragment_width;
297 bottom_edge = s->fragment_height;
298 current_width = -1;
299 current_height = 0;
300 superblock_row_inc = 3 * s->fragment_width -
301 (s->y_superblock_width * 4 - s->fragment_width);
303 /* the first operation for this variable is to advance by 1 */
304 current_fragment = -1;
306 } else if (i == s->u_superblock_start) {
308 /* start of U superblocks */
309 right_edge = s->fragment_width / 2;
310 bottom_edge = s->fragment_height / 2;
311 current_width = -1;
312 current_height = 0;
313 superblock_row_inc = 3 * (s->fragment_width / 2) -
314 (s->c_superblock_width * 4 - s->fragment_width / 2);
316 /* the first operation for this variable is to advance by 1 */
317 current_fragment = s->fragment_start[1] - 1;
319 } else if (i == s->v_superblock_start) {
321 /* start of V superblocks */
322 right_edge = s->fragment_width / 2;
323 bottom_edge = s->fragment_height / 2;
324 current_width = -1;
325 current_height = 0;
326 superblock_row_inc = 3 * (s->fragment_width / 2) -
327 (s->c_superblock_width * 4 - s->fragment_width / 2);
329 /* the first operation for this variable is to advance by 1 */
330 current_fragment = s->fragment_start[2] - 1;
334 if (current_width >= right_edge - 1) {
335 /* reset width and move to next superblock row */
336 current_width = -1;
337 current_height += 4;
339 /* fragment is now at the start of a new superblock row */
340 current_fragment += superblock_row_inc;
343 /* iterate through all 16 fragments in a superblock */
344 for (j = 0; j < 16; j++) {
345 current_fragment += travel_width[j] + right_edge * travel_height[j];
346 current_width += travel_width[j];
347 current_height += travel_height[j];
349 /* check if the fragment is in bounds */
350 if ((current_width < right_edge) &&
351 (current_height < bottom_edge)) {
352 s->superblock_fragments[mapping_index] = current_fragment;
353 } else {
354 s->superblock_fragments[mapping_index] = -1;
357 mapping_index++;
361 /* initialize the superblock <-> macroblock mapping; iterate through
362 * all of the Y plane superblocks to build this mapping */
363 right_edge = s->macroblock_width;
364 bottom_edge = s->macroblock_height;
365 current_width = -1;
366 current_height = 0;
367 superblock_row_inc = s->macroblock_width -
368 (s->y_superblock_width * 2 - s->macroblock_width);
369 hilbert = hilbert_walk_mb;
370 mapping_index = 0;
371 current_macroblock = -1;
372 for (i = 0; i < s->u_superblock_start; i++) {
374 if (current_width >= right_edge - 1) {
375 /* reset width and move to next superblock row */
376 current_width = -1;
377 current_height += 2;
379 /* macroblock is now at the start of a new superblock row */
380 current_macroblock += superblock_row_inc;
383 /* iterate through each potential macroblock in the superblock */
384 for (j = 0; j < 4; j++) {
385 current_macroblock += hilbert_walk_mb[j];
386 current_width += travel_width_mb[j];
387 current_height += travel_height_mb[j];
389 /* check if the macroblock is in bounds */
390 if ((current_width < right_edge) &&
391 (current_height < bottom_edge)) {
392 s->superblock_macroblocks[mapping_index] = current_macroblock;
393 } else {
394 s->superblock_macroblocks[mapping_index] = -1;
397 mapping_index++;
401 /* initialize the macroblock <-> fragment mapping */
402 current_fragment = 0;
403 current_macroblock = 0;
404 mapping_index = 0;
405 for (i = 0; i < s->fragment_height; i += 2) {
407 for (j = 0; j < s->fragment_width; j += 2) {
409 s->all_fragments[current_fragment].macroblock = current_macroblock;
410 s->macroblock_fragments[mapping_index++] = current_fragment;
412 if (j + 1 < s->fragment_width) {
413 s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
414 s->macroblock_fragments[mapping_index++] = current_fragment + 1;
415 } else
416 s->macroblock_fragments[mapping_index++] = -1;
418 if (i + 1 < s->fragment_height) {
419 s->all_fragments[current_fragment + s->fragment_width].macroblock =
420 current_macroblock;
421 s->macroblock_fragments[mapping_index++] =
422 current_fragment + s->fragment_width;
423 } else
424 s->macroblock_fragments[mapping_index++] = -1;
426 if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
427 s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
428 current_macroblock;
429 s->macroblock_fragments[mapping_index++] =
430 current_fragment + s->fragment_width + 1;
431 } else
432 s->macroblock_fragments[mapping_index++] = -1;
434 /* C planes */
435 c_fragment = s->fragment_start[1] +
436 (i * s->fragment_width / 4) + (j / 2);
437 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
438 s->macroblock_fragments[mapping_index++] = c_fragment;
440 c_fragment = s->fragment_start[2] +
441 (i * s->fragment_width / 4) + (j / 2);
442 s->all_fragments[c_fragment].macroblock = s->macroblock_count;
443 s->macroblock_fragments[mapping_index++] = c_fragment;
445 if (j + 2 <= s->fragment_width)
446 current_fragment += 2;
447 else
448 current_fragment++;
449 current_macroblock++;
452 current_fragment += s->fragment_width;
455 return 0; /* successful path out */
459 * This function wipes out all of the fragment data.
461 static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
463 int i;
465 /* zero out all of the fragment information */
466 s->coded_fragment_list_index = 0;
467 for (i = 0; i < s->fragment_count; i++) {
468 s->coeff_counts[i] = 0;
469 s->all_fragments[i].motion_x = 127;
470 s->all_fragments[i].motion_y = 127;
471 s->all_fragments[i].next_coeff= NULL;
472 s->coeffs[i].index=
473 s->coeffs[i].coeff=0;
474 s->coeffs[i].next= NULL;
479 * This function sets up the dequantization tables used for a particular
480 * frame.
482 static void init_dequantizer(Vp3DecodeContext *s)
484 int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
485 int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
486 int i, plane, inter, qri, bmi, bmj, qistart;
488 for(inter=0; inter<2; inter++){
489 for(plane=0; plane<3; plane++){
490 int sum=0;
491 for(qri=0; qri<s->qr_count[inter][plane]; qri++){
492 sum+= s->qr_size[inter][plane][qri];
493 if(s->quality_index <= sum)
494 break;
496 qistart= sum - s->qr_size[inter][plane][qri];
497 bmi= s->qr_base[inter][plane][qri ];
498 bmj= s->qr_base[inter][plane][qri+1];
499 for(i=0; i<64; i++){
500 int coeff= ( 2*(sum -s->quality_index)*s->base_matrix[bmi][i]
501 - 2*(qistart-s->quality_index)*s->base_matrix[bmj][i]
502 + s->qr_size[inter][plane][qri])
503 / (2*s->qr_size[inter][plane][qri]);
505 int qmin= 8<<(inter + !i);
506 int qscale= i ? ac_scale_factor : dc_scale_factor;
508 s->qmat[inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
513 memset(s->qscale_table, (FFMAX(s->qmat[0][0][1], s->qmat[0][1][1])+8)/16, 512); //FIXME finetune
517 * This function initializes the loop filter boundary limits if the frame's
518 * quality index is different from the previous frame's.
520 static void init_loop_filter(Vp3DecodeContext *s)
522 int *bounding_values= s->bounding_values_array+127;
523 int filter_limit;
524 int x;
526 filter_limit = s->filter_limit_values[s->quality_index];
528 /* set up the bounding values */
529 memset(s->bounding_values_array, 0, 256 * sizeof(int));
530 for (x = 0; x < filter_limit; x++) {
531 bounding_values[-x - filter_limit] = -filter_limit + x;
532 bounding_values[-x] = -x;
533 bounding_values[x] = x;
534 bounding_values[x + filter_limit] = filter_limit - x;
536 bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
540 * This function unpacks all of the superblock/macroblock/fragment coding
541 * information from the bitstream.
543 static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
545 int bit = 0;
546 int current_superblock = 0;
547 int current_run = 0;
548 int decode_fully_flags = 0;
549 int decode_partial_blocks = 0;
550 int first_c_fragment_seen;
552 int i, j;
553 int current_fragment;
555 if (s->keyframe) {
556 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
558 } else {
560 /* unpack the list of partially-coded superblocks */
561 bit = get_bits1(gb);
562 /* toggle the bit because as soon as the first run length is
563 * fetched the bit will be toggled again */
564 bit ^= 1;
565 while (current_superblock < s->superblock_count) {
566 if (current_run-- == 0) {
567 bit ^= 1;
568 current_run = get_vlc2(gb,
569 s->superblock_run_length_vlc.table, 6, 2);
570 if (current_run == 33)
571 current_run += get_bits(gb, 12);
573 /* if any of the superblocks are not partially coded, flag
574 * a boolean to decode the list of fully-coded superblocks */
575 if (bit == 0) {
576 decode_fully_flags = 1;
577 } else {
579 /* make a note of the fact that there are partially coded
580 * superblocks */
581 decode_partial_blocks = 1;
584 s->superblock_coding[current_superblock++] = bit;
587 /* unpack the list of fully coded superblocks if any of the blocks were
588 * not marked as partially coded in the previous step */
589 if (decode_fully_flags) {
591 current_superblock = 0;
592 current_run = 0;
593 bit = get_bits1(gb);
594 /* toggle the bit because as soon as the first run length is
595 * fetched the bit will be toggled again */
596 bit ^= 1;
597 while (current_superblock < s->superblock_count) {
599 /* skip any superblocks already marked as partially coded */
600 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
602 if (current_run-- == 0) {
603 bit ^= 1;
604 current_run = get_vlc2(gb,
605 s->superblock_run_length_vlc.table, 6, 2);
606 if (current_run == 33)
607 current_run += get_bits(gb, 12);
609 s->superblock_coding[current_superblock] = 2*bit;
611 current_superblock++;
615 /* if there were partial blocks, initialize bitstream for
616 * unpacking fragment codings */
617 if (decode_partial_blocks) {
619 current_run = 0;
620 bit = get_bits1(gb);
621 /* toggle the bit because as soon as the first run length is
622 * fetched the bit will be toggled again */
623 bit ^= 1;
627 /* figure out which fragments are coded; iterate through each
628 * superblock (all planes) */
629 s->coded_fragment_list_index = 0;
630 s->next_coeff= s->coeffs + s->fragment_count;
631 s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
632 s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
633 first_c_fragment_seen = 0;
634 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
635 for (i = 0; i < s->superblock_count; i++) {
637 /* iterate through all 16 fragments in a superblock */
638 for (j = 0; j < 16; j++) {
640 /* if the fragment is in bounds, check its coding status */
641 current_fragment = s->superblock_fragments[i * 16 + j];
642 if (current_fragment >= s->fragment_count) {
643 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
644 current_fragment, s->fragment_count);
645 return 1;
647 if (current_fragment != -1) {
648 if (s->superblock_coding[i] == SB_NOT_CODED) {
650 /* copy all the fragments from the prior frame */
651 s->all_fragments[current_fragment].coding_method =
652 MODE_COPY;
654 } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
656 /* fragment may or may not be coded; this is the case
657 * that cares about the fragment coding runs */
658 if (current_run-- == 0) {
659 bit ^= 1;
660 current_run = get_vlc2(gb,
661 s->fragment_run_length_vlc.table, 5, 2);
664 if (bit) {
665 /* default mode; actual mode will be decoded in
666 * the next phase */
667 s->all_fragments[current_fragment].coding_method =
668 MODE_INTER_NO_MV;
669 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
670 s->coded_fragment_list[s->coded_fragment_list_index] =
671 current_fragment;
672 if ((current_fragment >= s->fragment_start[1]) &&
673 (s->last_coded_y_fragment == -1) &&
674 (!first_c_fragment_seen)) {
675 s->first_coded_c_fragment = s->coded_fragment_list_index;
676 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
677 first_c_fragment_seen = 1;
679 s->coded_fragment_list_index++;
680 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
681 } else {
682 /* not coded; copy this fragment from the prior frame */
683 s->all_fragments[current_fragment].coding_method =
684 MODE_COPY;
687 } else {
689 /* fragments are fully coded in this superblock; actual
690 * coding will be determined in next step */
691 s->all_fragments[current_fragment].coding_method =
692 MODE_INTER_NO_MV;
693 s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
694 s->coded_fragment_list[s->coded_fragment_list_index] =
695 current_fragment;
696 if ((current_fragment >= s->fragment_start[1]) &&
697 (s->last_coded_y_fragment == -1) &&
698 (!first_c_fragment_seen)) {
699 s->first_coded_c_fragment = s->coded_fragment_list_index;
700 s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
701 first_c_fragment_seen = 1;
703 s->coded_fragment_list_index++;
704 s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
710 if (!first_c_fragment_seen)
711 /* only Y fragments coded in this frame */
712 s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
713 else
714 /* end the list of coded C fragments */
715 s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
717 return 0;
721 * This function unpacks all the coding mode data for individual macroblocks
722 * from the bitstream.
724 static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
726 int i, j, k;
727 int scheme;
728 int current_macroblock;
729 int current_fragment;
730 int coding_mode;
731 int custom_mode_alphabet[CODING_MODE_COUNT];
733 if (s->keyframe) {
734 for (i = 0; i < s->fragment_count; i++)
735 s->all_fragments[i].coding_method = MODE_INTRA;
737 } else {
739 /* fetch the mode coding scheme for this frame */
740 scheme = get_bits(gb, 3);
742 /* is it a custom coding scheme? */
743 if (scheme == 0) {
744 for (i = 0; i < 8; i++)
745 custom_mode_alphabet[i] = MODE_INTER_NO_MV;
746 for (i = 0; i < 8; i++)
747 custom_mode_alphabet[get_bits(gb, 3)] = i;
750 /* iterate through all of the macroblocks that contain 1 or more
751 * coded fragments */
752 for (i = 0; i < s->u_superblock_start; i++) {
754 for (j = 0; j < 4; j++) {
755 current_macroblock = s->superblock_macroblocks[i * 4 + j];
756 if ((current_macroblock == -1) ||
757 (s->macroblock_coding[current_macroblock] == MODE_COPY))
758 continue;
759 if (current_macroblock >= s->macroblock_count) {
760 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
761 current_macroblock, s->macroblock_count);
762 return 1;
765 /* mode 7 means get 3 bits for each coding mode */
766 if (scheme == 7)
767 coding_mode = get_bits(gb, 3);
768 else if(scheme == 0)
769 coding_mode = custom_mode_alphabet
770 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
771 else
772 coding_mode = ModeAlphabet[scheme-1]
773 [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
775 s->macroblock_coding[current_macroblock] = coding_mode;
776 for (k = 0; k < 6; k++) {
777 current_fragment =
778 s->macroblock_fragments[current_macroblock * 6 + k];
779 if (current_fragment == -1)
780 continue;
781 if (current_fragment >= s->fragment_count) {
782 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
783 current_fragment, s->fragment_count);
784 return 1;
786 if (s->all_fragments[current_fragment].coding_method !=
787 MODE_COPY)
788 s->all_fragments[current_fragment].coding_method =
789 coding_mode;
795 return 0;
799 * This function unpacks all the motion vectors for the individual
800 * macroblocks from the bitstream.
802 static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
804 int i, j, k, l;
805 int coding_mode;
806 int motion_x[6];
807 int motion_y[6];
808 int last_motion_x = 0;
809 int last_motion_y = 0;
810 int prior_last_motion_x = 0;
811 int prior_last_motion_y = 0;
812 int current_macroblock;
813 int current_fragment;
815 if (s->keyframe)
816 return 0;
818 memset(motion_x, 0, 6 * sizeof(int));
819 memset(motion_y, 0, 6 * sizeof(int));
821 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
822 coding_mode = get_bits1(gb);
824 /* iterate through all of the macroblocks that contain 1 or more
825 * coded fragments */
826 for (i = 0; i < s->u_superblock_start; i++) {
828 for (j = 0; j < 4; j++) {
829 current_macroblock = s->superblock_macroblocks[i * 4 + j];
830 if ((current_macroblock == -1) ||
831 (s->macroblock_coding[current_macroblock] == MODE_COPY))
832 continue;
833 if (current_macroblock >= s->macroblock_count) {
834 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
835 current_macroblock, s->macroblock_count);
836 return 1;
839 current_fragment = s->macroblock_fragments[current_macroblock * 6];
840 if (current_fragment >= s->fragment_count) {
841 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
842 current_fragment, s->fragment_count);
843 return 1;
845 switch (s->macroblock_coding[current_macroblock]) {
847 case MODE_INTER_PLUS_MV:
848 case MODE_GOLDEN_MV:
849 /* all 6 fragments use the same motion vector */
850 if (coding_mode == 0) {
851 motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
852 motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
853 } else {
854 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
855 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
858 for (k = 1; k < 6; k++) {
859 motion_x[k] = motion_x[0];
860 motion_y[k] = motion_y[0];
863 /* vector maintenance, only on MODE_INTER_PLUS_MV */
864 if (s->macroblock_coding[current_macroblock] ==
865 MODE_INTER_PLUS_MV) {
866 prior_last_motion_x = last_motion_x;
867 prior_last_motion_y = last_motion_y;
868 last_motion_x = motion_x[0];
869 last_motion_y = motion_y[0];
871 break;
873 case MODE_INTER_FOURMV:
874 /* vector maintenance */
875 prior_last_motion_x = last_motion_x;
876 prior_last_motion_y = last_motion_y;
878 /* fetch 4 vectors from the bitstream, one for each
879 * Y fragment, then average for the C fragment vectors */
880 motion_x[4] = motion_y[4] = 0;
881 for (k = 0; k < 4; k++) {
882 for (l = 0; l < s->coded_fragment_list_index; l++)
883 if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k])
884 break;
885 if (l < s->coded_fragment_list_index) {
886 if (coding_mode == 0) {
887 motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
888 motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
889 } else {
890 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
891 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
893 last_motion_x = motion_x[k];
894 last_motion_y = motion_y[k];
895 } else {
896 motion_x[k] = 0;
897 motion_y[k] = 0;
899 motion_x[4] += motion_x[k];
900 motion_y[4] += motion_y[k];
903 motion_x[5]=
904 motion_x[4]= RSHIFT(motion_x[4], 2);
905 motion_y[5]=
906 motion_y[4]= RSHIFT(motion_y[4], 2);
907 break;
909 case MODE_INTER_LAST_MV:
910 /* all 6 fragments use the last motion vector */
911 motion_x[0] = last_motion_x;
912 motion_y[0] = last_motion_y;
913 for (k = 1; k < 6; k++) {
914 motion_x[k] = motion_x[0];
915 motion_y[k] = motion_y[0];
918 /* no vector maintenance (last vector remains the
919 * last vector) */
920 break;
922 case MODE_INTER_PRIOR_LAST:
923 /* all 6 fragments use the motion vector prior to the
924 * last motion vector */
925 motion_x[0] = prior_last_motion_x;
926 motion_y[0] = prior_last_motion_y;
927 for (k = 1; k < 6; k++) {
928 motion_x[k] = motion_x[0];
929 motion_y[k] = motion_y[0];
932 /* vector maintenance */
933 prior_last_motion_x = last_motion_x;
934 prior_last_motion_y = last_motion_y;
935 last_motion_x = motion_x[0];
936 last_motion_y = motion_y[0];
937 break;
939 default:
940 /* covers intra, inter without MV, golden without MV */
941 memset(motion_x, 0, 6 * sizeof(int));
942 memset(motion_y, 0, 6 * sizeof(int));
944 /* no vector maintenance */
945 break;
948 /* assign the motion vectors to the correct fragments */
949 for (k = 0; k < 6; k++) {
950 current_fragment =
951 s->macroblock_fragments[current_macroblock * 6 + k];
952 if (current_fragment == -1)
953 continue;
954 if (current_fragment >= s->fragment_count) {
955 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
956 current_fragment, s->fragment_count);
957 return 1;
959 s->all_fragments[current_fragment].motion_x = motion_x[k];
960 s->all_fragments[current_fragment].motion_y = motion_y[k];
965 return 0;
969 * This function is called by unpack_dct_coeffs() to extract the VLCs from
970 * the bitstream. The VLCs encode tokens which are used to unpack DCT
971 * data. This function unpacks all the VLCs for either the Y plane or both
972 * C planes, and is called for DC coefficients or different AC coefficient
973 * levels (since different coefficient types require different VLC tables.
975 * This function returns a residual eob run. E.g, if a particular token gave
976 * instructions to EOB the next 5 fragments and there were only 2 fragments
977 * left in the current fragment range, 3 would be returned so that it could
978 * be passed into the next call to this same function.
980 static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
981 VLC *table, int coeff_index,
982 int first_fragment, int last_fragment,
983 int eob_run)
985 int i;
986 int token;
987 int zero_run = 0;
988 DCTELEM coeff = 0;
989 Vp3Fragment *fragment;
990 uint8_t *perm= s->scantable.permutated;
991 int bits_to_get;
993 if ((first_fragment >= s->fragment_count) ||
994 (last_fragment >= s->fragment_count)) {
996 av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
997 first_fragment, last_fragment);
998 return 0;
1001 for (i = first_fragment; i <= last_fragment; i++) {
1002 int fragment_num = s->coded_fragment_list[i];
1004 if (s->coeff_counts[fragment_num] > coeff_index)
1005 continue;
1006 fragment = &s->all_fragments[fragment_num];
1008 if (!eob_run) {
1009 /* decode a VLC into a token */
1010 token = get_vlc2(gb, table->table, 5, 3);
1011 /* use the token to get a zero run, a coefficient, and an eob run */
1012 if (token <= 6) {
1013 eob_run = eob_run_base[token];
1014 if (eob_run_get_bits[token])
1015 eob_run += get_bits(gb, eob_run_get_bits[token]);
1016 coeff = zero_run = 0;
1017 } else {
1018 bits_to_get = coeff_get_bits[token];
1019 if (!bits_to_get)
1020 coeff = coeff_tables[token][0];
1021 else
1022 coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
1024 zero_run = zero_run_base[token];
1025 if (zero_run_get_bits[token])
1026 zero_run += get_bits(gb, zero_run_get_bits[token]);
1030 if (!eob_run) {
1031 s->coeff_counts[fragment_num] += zero_run;
1032 if (s->coeff_counts[fragment_num] < 64){
1033 fragment->next_coeff->coeff= coeff;
1034 fragment->next_coeff->index= perm[s->coeff_counts[fragment_num]++]; //FIXME perm here already?
1035 fragment->next_coeff->next= s->next_coeff;
1036 s->next_coeff->next=NULL;
1037 fragment->next_coeff= s->next_coeff++;
1039 } else {
1040 s->coeff_counts[fragment_num] |= 128;
1041 eob_run--;
1045 return eob_run;
1049 * This function unpacks all of the DCT coefficient data from the
1050 * bitstream.
1052 static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1054 int i;
1055 int dc_y_table;
1056 int dc_c_table;
1057 int ac_y_table;
1058 int ac_c_table;
1059 int residual_eob_run = 0;
1061 /* fetch the DC table indexes */
1062 dc_y_table = get_bits(gb, 4);
1063 dc_c_table = get_bits(gb, 4);
1065 /* unpack the Y plane DC coefficients */
1066 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1067 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1069 /* unpack the C plane DC coefficients */
1070 residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1071 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1073 /* fetch the AC table indexes */
1074 ac_y_table = get_bits(gb, 4);
1075 ac_c_table = get_bits(gb, 4);
1077 /* unpack the group 1 AC coefficients (coeffs 1-5) */
1078 for (i = 1; i <= 5; i++) {
1079 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1080 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1082 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1083 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1086 /* unpack the group 2 AC coefficients (coeffs 6-14) */
1087 for (i = 6; i <= 14; i++) {
1088 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1089 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1091 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1092 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1095 /* unpack the group 3 AC coefficients (coeffs 15-27) */
1096 for (i = 15; i <= 27; i++) {
1097 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1098 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1100 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1101 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1104 /* unpack the group 4 AC coefficients (coeffs 28-63) */
1105 for (i = 28; i <= 63; i++) {
1106 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1107 s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1109 residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1110 s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1113 return 0;
1117 * This function reverses the DC prediction for each coded fragment in
1118 * the frame. Much of this function is adapted directly from the original
1119 * VP3 source code.
1121 #define COMPATIBLE_FRAME(x) \
1122 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1123 #define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1124 #define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1126 static void reverse_dc_prediction(Vp3DecodeContext *s,
1127 int first_fragment,
1128 int fragment_width,
1129 int fragment_height)
1132 #define PUL 8
1133 #define PU 4
1134 #define PUR 2
1135 #define PL 1
1137 int x, y;
1138 int i = first_fragment;
1140 int predicted_dc;
1142 /* DC values for the left, up-left, up, and up-right fragments */
1143 int vl, vul, vu, vur;
1145 /* indexes for the left, up-left, up, and up-right fragments */
1146 int l, ul, u, ur;
1149 * The 6 fields mean:
1150 * 0: up-left multiplier
1151 * 1: up multiplier
1152 * 2: up-right multiplier
1153 * 3: left multiplier
1155 int predictor_transform[16][4] = {
1156 { 0, 0, 0, 0},
1157 { 0, 0, 0,128}, // PL
1158 { 0, 0,128, 0}, // PUR
1159 { 0, 0, 53, 75}, // PUR|PL
1160 { 0,128, 0, 0}, // PU
1161 { 0, 64, 0, 64}, // PU|PL
1162 { 0,128, 0, 0}, // PU|PUR
1163 { 0, 0, 53, 75}, // PU|PUR|PL
1164 {128, 0, 0, 0}, // PUL
1165 { 0, 0, 0,128}, // PUL|PL
1166 { 64, 0, 64, 0}, // PUL|PUR
1167 { 0, 0, 53, 75}, // PUL|PUR|PL
1168 { 0,128, 0, 0}, // PUL|PU
1169 {-104,116, 0,116}, // PUL|PU|PL
1170 { 24, 80, 24, 0}, // PUL|PU|PUR
1171 {-104,116, 0,116} // PUL|PU|PUR|PL
1174 /* This table shows which types of blocks can use other blocks for
1175 * prediction. For example, INTRA is the only mode in this table to
1176 * have a frame number of 0. That means INTRA blocks can only predict
1177 * from other INTRA blocks. There are 2 golden frame coding types;
1178 * blocks encoding in these modes can only predict from other blocks
1179 * that were encoded with these 1 of these 2 modes. */
1180 unsigned char compatible_frame[8] = {
1181 1, /* MODE_INTER_NO_MV */
1182 0, /* MODE_INTRA */
1183 1, /* MODE_INTER_PLUS_MV */
1184 1, /* MODE_INTER_LAST_MV */
1185 1, /* MODE_INTER_PRIOR_MV */
1186 2, /* MODE_USING_GOLDEN */
1187 2, /* MODE_GOLDEN_MV */
1188 1 /* MODE_INTER_FOUR_MV */
1190 int current_frame_type;
1192 /* there is a last DC predictor for each of the 3 frame types */
1193 short last_dc[3];
1195 int transform = 0;
1197 vul = vu = vur = vl = 0;
1198 last_dc[0] = last_dc[1] = last_dc[2] = 0;
1200 /* for each fragment row... */
1201 for (y = 0; y < fragment_height; y++) {
1203 /* for each fragment in a row... */
1204 for (x = 0; x < fragment_width; x++, i++) {
1206 /* reverse prediction if this block was coded */
1207 if (s->all_fragments[i].coding_method != MODE_COPY) {
1209 current_frame_type =
1210 compatible_frame[s->all_fragments[i].coding_method];
1212 transform= 0;
1213 if(x){
1214 l= i-1;
1215 vl = DC_COEFF(l);
1216 if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
1217 transform |= PL;
1219 if(y){
1220 u= i-fragment_width;
1221 vu = DC_COEFF(u);
1222 if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
1223 transform |= PU;
1224 if(x){
1225 ul= i-fragment_width-1;
1226 vul = DC_COEFF(ul);
1227 if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
1228 transform |= PUL;
1230 if(x + 1 < fragment_width){
1231 ur= i-fragment_width+1;
1232 vur = DC_COEFF(ur);
1233 if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
1234 transform |= PUR;
1238 if (transform == 0) {
1240 /* if there were no fragments to predict from, use last
1241 * DC saved */
1242 predicted_dc = last_dc[current_frame_type];
1243 } else {
1245 /* apply the appropriate predictor transform */
1246 predicted_dc =
1247 (predictor_transform[transform][0] * vul) +
1248 (predictor_transform[transform][1] * vu) +
1249 (predictor_transform[transform][2] * vur) +
1250 (predictor_transform[transform][3] * vl);
1252 predicted_dc /= 128;
1254 /* check for outranging on the [ul u l] and
1255 * [ul u ur l] predictors */
1256 if ((transform == 13) || (transform == 15)) {
1257 if (FFABS(predicted_dc - vu) > 128)
1258 predicted_dc = vu;
1259 else if (FFABS(predicted_dc - vl) > 128)
1260 predicted_dc = vl;
1261 else if (FFABS(predicted_dc - vul) > 128)
1262 predicted_dc = vul;
1266 /* at long last, apply the predictor */
1267 if(s->coeffs[i].index){
1268 *s->next_coeff= s->coeffs[i];
1269 s->coeffs[i].index=0;
1270 s->coeffs[i].coeff=0;
1271 s->coeffs[i].next= s->next_coeff++;
1273 s->coeffs[i].coeff += predicted_dc;
1274 /* save the DC */
1275 last_dc[current_frame_type] = DC_COEFF(i);
1276 if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1277 s->coeff_counts[i]= 129;
1278 // s->all_fragments[i].next_coeff= s->next_coeff;
1279 s->coeffs[i].next= s->next_coeff;
1280 (s->next_coeff++)->next=NULL;
1288 * Perform the final rendering for a particular slice of data.
1289 * The slice number ranges from 0..(macroblock_height - 1).
1291 static void render_slice(Vp3DecodeContext *s, int slice)
1293 int x;
1294 int16_t *dequantizer;
1295 DECLARE_ALIGNED_16(DCTELEM, block[64]);
1296 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1297 int motion_halfpel_index;
1298 uint8_t *motion_source;
1299 int plane;
1300 int current_macroblock_entry = slice * s->macroblock_width * 6;
1302 if (slice >= s->macroblock_height)
1303 return;
1305 for (plane = 0; plane < 3; plane++) {
1306 uint8_t *output_plane = s->current_frame.data [plane];
1307 uint8_t * last_plane = s-> last_frame.data [plane];
1308 uint8_t *golden_plane = s-> golden_frame.data [plane];
1309 int stride = s->current_frame.linesize[plane];
1310 int plane_width = s->width >> !!plane;
1311 int plane_height = s->height >> !!plane;
1312 int y = slice * FRAGMENT_PIXELS << !plane ;
1313 int slice_height = y + (FRAGMENT_PIXELS << !plane);
1314 int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1316 if (!s->flipped_image) stride = -stride;
1319 if(FFABS(stride) > 2048)
1320 return; //various tables are fixed size
1322 /* for each fragment row in the slice (both of them)... */
1323 for (; y < slice_height; y += 8) {
1325 /* for each fragment in a row... */
1326 for (x = 0; x < plane_width; x += 8, i++) {
1328 if ((i < 0) || (i >= s->fragment_count)) {
1329 av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
1330 return;
1333 /* transform if this block was coded */
1334 if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1335 !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1337 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1338 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1339 motion_source= golden_plane;
1340 else
1341 motion_source= last_plane;
1343 motion_source += s->all_fragments[i].first_pixel;
1344 motion_halfpel_index = 0;
1346 /* sort out the motion vector if this fragment is coded
1347 * using a motion vector method */
1348 if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1349 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1350 int src_x, src_y;
1351 motion_x = s->all_fragments[i].motion_x;
1352 motion_y = s->all_fragments[i].motion_y;
1353 if(plane){
1354 motion_x= (motion_x>>1) | (motion_x&1);
1355 motion_y= (motion_y>>1) | (motion_y&1);
1358 src_x= (motion_x>>1) + x;
1359 src_y= (motion_y>>1) + y;
1360 if ((motion_x == 127) || (motion_y == 127))
1361 av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1363 motion_halfpel_index = motion_x & 0x01;
1364 motion_source += (motion_x >> 1);
1366 motion_halfpel_index |= (motion_y & 0x01) << 1;
1367 motion_source += ((motion_y >> 1) * stride);
1369 if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1370 uint8_t *temp= s->edge_emu_buffer;
1371 if(stride<0) temp -= 9*stride;
1372 else temp += 9*stride;
1374 ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1375 motion_source= temp;
1380 /* first, take care of copying a block from either the
1381 * previous or the golden frame */
1382 if (s->all_fragments[i].coding_method != MODE_INTRA) {
1383 /* Note, it is possible to implement all MC cases with
1384 put_no_rnd_pixels_l2 which would look more like the
1385 VP3 source but this would be slower as
1386 put_no_rnd_pixels_tab is better optimzed */
1387 if(motion_halfpel_index != 3){
1388 s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1389 output_plane + s->all_fragments[i].first_pixel,
1390 motion_source, stride, 8);
1391 }else{
1392 int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1393 s->dsp.put_no_rnd_pixels_l2[1](
1394 output_plane + s->all_fragments[i].first_pixel,
1395 motion_source - d,
1396 motion_source + stride + 1 + d,
1397 stride, 8);
1399 dequantizer = s->qmat[1][plane];
1400 }else{
1401 dequantizer = s->qmat[0][plane];
1404 /* dequantize the DCT coefficients */
1405 if(s->avctx->idct_algo==FF_IDCT_VP3){
1406 Coeff *coeff= s->coeffs + i;
1407 s->dsp.clear_block(block);
1408 while(coeff->next){
1409 block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1410 coeff= coeff->next;
1412 }else{
1413 Coeff *coeff= s->coeffs + i;
1414 s->dsp.clear_block(block);
1415 while(coeff->next){
1416 block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1417 coeff= coeff->next;
1421 /* invert DCT and place (or add) in final output */
1423 if (s->all_fragments[i].coding_method == MODE_INTRA) {
1424 if(s->avctx->idct_algo!=FF_IDCT_VP3)
1425 block[0] += 128<<3;
1426 s->dsp.idct_put(
1427 output_plane + s->all_fragments[i].first_pixel,
1428 stride,
1429 block);
1430 } else {
1431 s->dsp.idct_add(
1432 output_plane + s->all_fragments[i].first_pixel,
1433 stride,
1434 block);
1436 } else {
1438 /* copy directly from the previous frame */
1439 s->dsp.put_pixels_tab[1][0](
1440 output_plane + s->all_fragments[i].first_pixel,
1441 last_plane + s->all_fragments[i].first_pixel,
1442 stride, 8);
1445 #if 0
1446 /* perform the left edge filter if:
1447 * - the fragment is not on the left column
1448 * - the fragment is coded in this frame
1449 * - the fragment is not coded in this frame but the left
1450 * fragment is coded in this frame (this is done instead
1451 * of a right edge filter when rendering the left fragment
1452 * since this fragment is not available yet) */
1453 if ((x > 0) &&
1454 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1455 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1456 (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1457 horizontal_filter(
1458 output_plane + s->all_fragments[i].first_pixel + 7*stride,
1459 -stride, s->bounding_values_array + 127);
1462 /* perform the top edge filter if:
1463 * - the fragment is not on the top row
1464 * - the fragment is coded in this frame
1465 * - the fragment is not coded in this frame but the above
1466 * fragment is coded in this frame (this is done instead
1467 * of a bottom edge filter when rendering the above
1468 * fragment since this fragment is not available yet) */
1469 if ((y > 0) &&
1470 ((s->all_fragments[i].coding_method != MODE_COPY) ||
1471 ((s->all_fragments[i].coding_method == MODE_COPY) &&
1472 (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1473 vertical_filter(
1474 output_plane + s->all_fragments[i].first_pixel - stride,
1475 -stride, s->bounding_values_array + 127);
1477 #endif
1482 /* this looks like a good place for slice dispatch... */
1483 /* algorithm:
1484 * if (slice == s->macroblock_height - 1)
1485 * dispatch (both last slice & 2nd-to-last slice);
1486 * else if (slice > 0)
1487 * dispatch (slice - 1);
1490 emms_c();
1493 static void apply_loop_filter(Vp3DecodeContext *s)
1495 int plane;
1496 int x, y;
1497 int *bounding_values= s->bounding_values_array+127;
1499 #if 0
1500 int bounding_values_array[256];
1501 int filter_limit;
1503 /* find the right loop limit value */
1504 for (x = 63; x >= 0; x--) {
1505 if (vp31_ac_scale_factor[x] >= s->quality_index)
1506 break;
1508 filter_limit = vp31_filter_limit_values[s->quality_index];
1510 /* set up the bounding values */
1511 memset(bounding_values_array, 0, 256 * sizeof(int));
1512 for (x = 0; x < filter_limit; x++) {
1513 bounding_values[-x - filter_limit] = -filter_limit + x;
1514 bounding_values[-x] = -x;
1515 bounding_values[x] = x;
1516 bounding_values[x + filter_limit] = filter_limit - x;
1518 #endif
1520 for (plane = 0; plane < 3; plane++) {
1521 int width = s->fragment_width >> !!plane;
1522 int height = s->fragment_height >> !!plane;
1523 int fragment = s->fragment_start [plane];
1524 int stride = s->current_frame.linesize[plane];
1525 uint8_t *plane_data = s->current_frame.data [plane];
1526 if (!s->flipped_image) stride = -stride;
1528 for (y = 0; y < height; y++) {
1530 for (x = 0; x < width; x++) {
1531 /* do not perform left edge filter for left columns frags */
1532 if ((x > 0) &&
1533 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1534 s->dsp.vp3_h_loop_filter(
1535 plane_data + s->all_fragments[fragment].first_pixel,
1536 stride, bounding_values);
1539 /* do not perform top edge filter for top row fragments */
1540 if ((y > 0) &&
1541 (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1542 s->dsp.vp3_v_loop_filter(
1543 plane_data + s->all_fragments[fragment].first_pixel,
1544 stride, bounding_values);
1547 /* do not perform right edge filter for right column
1548 * fragments or if right fragment neighbor is also coded
1549 * in this frame (it will be filtered in next iteration) */
1550 if ((x < width - 1) &&
1551 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1552 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1553 s->dsp.vp3_h_loop_filter(
1554 plane_data + s->all_fragments[fragment + 1].first_pixel,
1555 stride, bounding_values);
1558 /* do not perform bottom edge filter for bottom row
1559 * fragments or if bottom fragment neighbor is also coded
1560 * in this frame (it will be filtered in the next row) */
1561 if ((y < height - 1) &&
1562 (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1563 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1564 s->dsp.vp3_v_loop_filter(
1565 plane_data + s->all_fragments[fragment + width].first_pixel,
1566 stride, bounding_values);
1569 fragment++;
1576 * This function computes the first pixel addresses for each fragment.
1577 * This function needs to be invoked after the first frame is allocated
1578 * so that it has access to the plane strides.
1580 static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1582 #define Y_INITIAL(chroma_shift) s->flipped_image ? 1 : s->fragment_height >> chroma_shift
1583 #define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0
1585 int i, x, y;
1586 const int y_inc = s->flipped_image ? 1 : -1;
1588 /* figure out the first pixel addresses for each of the fragments */
1589 /* Y plane */
1590 i = 0;
1591 for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) {
1592 for (x = 0; x < s->fragment_width; x++) {
1593 s->all_fragments[i++].first_pixel =
1594 s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1595 s->golden_frame.linesize[0] +
1596 x * FRAGMENT_PIXELS;
1600 /* U plane */
1601 i = s->fragment_start[1];
1602 for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1603 for (x = 0; x < s->fragment_width / 2; x++) {
1604 s->all_fragments[i++].first_pixel =
1605 s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1606 s->golden_frame.linesize[1] +
1607 x * FRAGMENT_PIXELS;
1611 /* V plane */
1612 i = s->fragment_start[2];
1613 for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1614 for (x = 0; x < s->fragment_width / 2; x++) {
1615 s->all_fragments[i++].first_pixel =
1616 s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1617 s->golden_frame.linesize[2] +
1618 x * FRAGMENT_PIXELS;
1624 * This is the ffmpeg/libavcodec API init function.
1626 static av_cold int vp3_decode_init(AVCodecContext *avctx)
1628 Vp3DecodeContext *s = avctx->priv_data;
1629 int i, inter, plane;
1630 int c_width;
1631 int c_height;
1632 int y_superblock_count;
1633 int c_superblock_count;
1635 if (avctx->codec_tag == MKTAG('V','P','3','0'))
1636 s->version = 0;
1637 else
1638 s->version = 1;
1640 s->avctx = avctx;
1641 s->width = (avctx->width + 15) & 0xFFFFFFF0;
1642 s->height = (avctx->height + 15) & 0xFFFFFFF0;
1643 avctx->pix_fmt = PIX_FMT_YUV420P;
1644 if(avctx->idct_algo==FF_IDCT_AUTO)
1645 avctx->idct_algo=FF_IDCT_VP3;
1646 dsputil_init(&s->dsp, avctx);
1648 ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1650 /* initialize to an impossible value which will force a recalculation
1651 * in the first frame decode */
1652 s->quality_index = -1;
1654 s->y_superblock_width = (s->width + 31) / 32;
1655 s->y_superblock_height = (s->height + 31) / 32;
1656 y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1658 /* work out the dimensions for the C planes */
1659 c_width = s->width / 2;
1660 c_height = s->height / 2;
1661 s->c_superblock_width = (c_width + 31) / 32;
1662 s->c_superblock_height = (c_height + 31) / 32;
1663 c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1665 s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1666 s->u_superblock_start = y_superblock_count;
1667 s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1668 s->superblock_coding = av_malloc(s->superblock_count);
1670 s->macroblock_width = (s->width + 15) / 16;
1671 s->macroblock_height = (s->height + 15) / 16;
1672 s->macroblock_count = s->macroblock_width * s->macroblock_height;
1674 s->fragment_width = s->width / FRAGMENT_PIXELS;
1675 s->fragment_height = s->height / FRAGMENT_PIXELS;
1677 /* fragment count covers all 8x8 blocks for all 3 planes */
1678 s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1679 s->fragment_start[1] = s->fragment_width * s->fragment_height;
1680 s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1682 s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1683 s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1684 s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1685 s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1686 s->pixel_addresses_initialized = 0;
1688 if (!s->theora_tables)
1690 for (i = 0; i < 64; i++) {
1691 s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1692 s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1693 s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1694 s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1695 s->base_matrix[2][i] = vp31_inter_dequant[i];
1696 s->filter_limit_values[i] = vp31_filter_limit_values[i];
1699 for(inter=0; inter<2; inter++){
1700 for(plane=0; plane<3; plane++){
1701 s->qr_count[inter][plane]= 1;
1702 s->qr_size [inter][plane][0]= 63;
1703 s->qr_base [inter][plane][0]=
1704 s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1708 /* init VLC tables */
1709 for (i = 0; i < 16; i++) {
1711 /* DC histograms */
1712 init_vlc(&s->dc_vlc[i], 5, 32,
1713 &dc_bias[i][0][1], 4, 2,
1714 &dc_bias[i][0][0], 4, 2, 0);
1716 /* group 1 AC histograms */
1717 init_vlc(&s->ac_vlc_1[i], 5, 32,
1718 &ac_bias_0[i][0][1], 4, 2,
1719 &ac_bias_0[i][0][0], 4, 2, 0);
1721 /* group 2 AC histograms */
1722 init_vlc(&s->ac_vlc_2[i], 5, 32,
1723 &ac_bias_1[i][0][1], 4, 2,
1724 &ac_bias_1[i][0][0], 4, 2, 0);
1726 /* group 3 AC histograms */
1727 init_vlc(&s->ac_vlc_3[i], 5, 32,
1728 &ac_bias_2[i][0][1], 4, 2,
1729 &ac_bias_2[i][0][0], 4, 2, 0);
1731 /* group 4 AC histograms */
1732 init_vlc(&s->ac_vlc_4[i], 5, 32,
1733 &ac_bias_3[i][0][1], 4, 2,
1734 &ac_bias_3[i][0][0], 4, 2, 0);
1736 } else {
1737 for (i = 0; i < 16; i++) {
1739 /* DC histograms */
1740 init_vlc(&s->dc_vlc[i], 5, 32,
1741 &s->huffman_table[i][0][1], 4, 2,
1742 &s->huffman_table[i][0][0], 4, 2, 0);
1744 /* group 1 AC histograms */
1745 init_vlc(&s->ac_vlc_1[i], 5, 32,
1746 &s->huffman_table[i+16][0][1], 4, 2,
1747 &s->huffman_table[i+16][0][0], 4, 2, 0);
1749 /* group 2 AC histograms */
1750 init_vlc(&s->ac_vlc_2[i], 5, 32,
1751 &s->huffman_table[i+16*2][0][1], 4, 2,
1752 &s->huffman_table[i+16*2][0][0], 4, 2, 0);
1754 /* group 3 AC histograms */
1755 init_vlc(&s->ac_vlc_3[i], 5, 32,
1756 &s->huffman_table[i+16*3][0][1], 4, 2,
1757 &s->huffman_table[i+16*3][0][0], 4, 2, 0);
1759 /* group 4 AC histograms */
1760 init_vlc(&s->ac_vlc_4[i], 5, 32,
1761 &s->huffman_table[i+16*4][0][1], 4, 2,
1762 &s->huffman_table[i+16*4][0][0], 4, 2, 0);
1766 init_vlc(&s->superblock_run_length_vlc, 6, 34,
1767 &superblock_run_length_vlc_table[0][1], 4, 2,
1768 &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1770 init_vlc(&s->fragment_run_length_vlc, 5, 30,
1771 &fragment_run_length_vlc_table[0][1], 4, 2,
1772 &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1774 init_vlc(&s->mode_code_vlc, 3, 8,
1775 &mode_code_vlc_table[0][1], 2, 1,
1776 &mode_code_vlc_table[0][0], 2, 1, 0);
1778 init_vlc(&s->motion_vector_vlc, 6, 63,
1779 &motion_vector_vlc_table[0][1], 2, 1,
1780 &motion_vector_vlc_table[0][0], 2, 1, 0);
1782 /* work out the block mapping tables */
1783 s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1784 s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
1785 s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
1786 s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1787 init_block_mapping(s);
1789 for (i = 0; i < 3; i++) {
1790 s->current_frame.data[i] = NULL;
1791 s->last_frame.data[i] = NULL;
1792 s->golden_frame.data[i] = NULL;
1795 return 0;
1799 * This is the ffmpeg/libavcodec API frame decode function.
1801 static int vp3_decode_frame(AVCodecContext *avctx,
1802 void *data, int *data_size,
1803 const uint8_t *buf, int buf_size)
1805 Vp3DecodeContext *s = avctx->priv_data;
1806 GetBitContext gb;
1807 static int counter = 0;
1808 int i;
1810 init_get_bits(&gb, buf, buf_size * 8);
1812 if (s->theora && get_bits1(&gb))
1814 av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1815 return -1;
1818 s->keyframe = !get_bits1(&gb);
1819 if (!s->theora)
1820 skip_bits(&gb, 1);
1821 s->last_quality_index = s->quality_index;
1823 s->nqis=0;
1825 s->qis[s->nqis++]= get_bits(&gb, 6);
1826 } while(s->theora >= 0x030200 && s->nqis<3 && get_bits1(&gb));
1828 s->quality_index= s->qis[0];
1830 if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1831 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1832 s->keyframe?"key":"", counter, s->quality_index);
1833 counter++;
1835 if (s->quality_index != s->last_quality_index) {
1836 init_dequantizer(s);
1837 init_loop_filter(s);
1840 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1841 return buf_size;
1843 if (s->keyframe) {
1844 if (!s->theora)
1846 skip_bits(&gb, 4); /* width code */
1847 skip_bits(&gb, 4); /* height code */
1848 if (s->version)
1850 s->version = get_bits(&gb, 5);
1851 if (counter == 1)
1852 av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1855 if (s->version || s->theora)
1857 if (get_bits1(&gb))
1858 av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1859 skip_bits(&gb, 2); /* reserved? */
1862 if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1863 if (s->golden_frame.data[0])
1864 avctx->release_buffer(avctx, &s->golden_frame);
1865 s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1866 } else {
1867 if (s->golden_frame.data[0])
1868 avctx->release_buffer(avctx, &s->golden_frame);
1869 if (s->last_frame.data[0])
1870 avctx->release_buffer(avctx, &s->last_frame);
1873 s->golden_frame.reference = 3;
1874 if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1875 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1876 return -1;
1879 /* golden frame is also the current frame */
1880 s->current_frame= s->golden_frame;
1882 /* time to figure out pixel addresses? */
1883 if (!s->pixel_addresses_initialized)
1885 vp3_calculate_pixel_addresses(s);
1886 s->pixel_addresses_initialized = 1;
1888 } else {
1889 /* allocate a new current frame */
1890 s->current_frame.reference = 3;
1891 if (!s->pixel_addresses_initialized) {
1892 av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1893 return -1;
1895 if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1896 av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1897 return -1;
1901 s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1902 s->current_frame.qstride= 0;
1904 init_frame(s, &gb);
1906 if (unpack_superblocks(s, &gb)){
1907 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1908 return -1;
1910 if (unpack_modes(s, &gb)){
1911 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1912 return -1;
1914 if (unpack_vectors(s, &gb)){
1915 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1916 return -1;
1918 if (unpack_dct_coeffs(s, &gb)){
1919 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1920 return -1;
1923 reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1924 if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
1925 reverse_dc_prediction(s, s->fragment_start[1],
1926 s->fragment_width / 2, s->fragment_height / 2);
1927 reverse_dc_prediction(s, s->fragment_start[2],
1928 s->fragment_width / 2, s->fragment_height / 2);
1931 for (i = 0; i < s->macroblock_height; i++)
1932 render_slice(s, i);
1934 apply_loop_filter(s);
1936 *data_size=sizeof(AVFrame);
1937 *(AVFrame*)data= s->current_frame;
1939 /* release the last frame, if it is allocated and if it is not the
1940 * golden frame */
1941 if ((s->last_frame.data[0]) &&
1942 (s->last_frame.data[0] != s->golden_frame.data[0]))
1943 avctx->release_buffer(avctx, &s->last_frame);
1945 /* shuffle frames (last = current) */
1946 s->last_frame= s->current_frame;
1947 s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
1949 return buf_size;
1953 * This is the ffmpeg/libavcodec API module cleanup function.
1955 static av_cold int vp3_decode_end(AVCodecContext *avctx)
1957 Vp3DecodeContext *s = avctx->priv_data;
1958 int i;
1960 av_free(s->superblock_coding);
1961 av_free(s->all_fragments);
1962 av_free(s->coeff_counts);
1963 av_free(s->coeffs);
1964 av_free(s->coded_fragment_list);
1965 av_free(s->superblock_fragments);
1966 av_free(s->superblock_macroblocks);
1967 av_free(s->macroblock_fragments);
1968 av_free(s->macroblock_coding);
1970 for (i = 0; i < 16; i++) {
1971 free_vlc(&s->dc_vlc[i]);
1972 free_vlc(&s->ac_vlc_1[i]);
1973 free_vlc(&s->ac_vlc_2[i]);
1974 free_vlc(&s->ac_vlc_3[i]);
1975 free_vlc(&s->ac_vlc_4[i]);
1978 free_vlc(&s->superblock_run_length_vlc);
1979 free_vlc(&s->fragment_run_length_vlc);
1980 free_vlc(&s->mode_code_vlc);
1981 free_vlc(&s->motion_vector_vlc);
1983 /* release all frames */
1984 if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
1985 avctx->release_buffer(avctx, &s->golden_frame);
1986 if (s->last_frame.data[0])
1987 avctx->release_buffer(avctx, &s->last_frame);
1988 /* no need to release the current_frame since it will always be pointing
1989 * to the same frame as either the golden or last frame */
1991 return 0;
1994 static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
1996 Vp3DecodeContext *s = avctx->priv_data;
1998 if (get_bits1(gb)) {
1999 int token;
2000 if (s->entries >= 32) { /* overflow */
2001 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2002 return -1;
2004 token = get_bits(gb, 5);
2005 //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2006 s->huffman_table[s->hti][token][0] = s->hbits;
2007 s->huffman_table[s->hti][token][1] = s->huff_code_size;
2008 s->entries++;
2010 else {
2011 if (s->huff_code_size >= 32) {/* overflow */
2012 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2013 return -1;
2015 s->huff_code_size++;
2016 s->hbits <<= 1;
2017 if (read_huffman_tree(avctx, gb))
2018 return -1;
2019 s->hbits |= 1;
2020 if (read_huffman_tree(avctx, gb))
2021 return -1;
2022 s->hbits >>= 1;
2023 s->huff_code_size--;
2025 return 0;
2028 #if CONFIG_THEORA_DECODER
2029 static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2031 Vp3DecodeContext *s = avctx->priv_data;
2032 int visible_width, visible_height;
2034 s->theora = get_bits_long(gb, 24);
2035 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2037 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2038 /* but previous versions have the image flipped relative to vp3 */
2039 if (s->theora < 0x030200)
2041 s->flipped_image = 1;
2042 av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2045 visible_width = s->width = get_bits(gb, 16) << 4;
2046 visible_height = s->height = get_bits(gb, 16) << 4;
2048 if(avcodec_check_dimensions(avctx, s->width, s->height)){
2049 av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2050 s->width= s->height= 0;
2051 return -1;
2054 if (s->theora >= 0x030400)
2056 skip_bits(gb, 32); /* total number of superblocks in a frame */
2057 // fixme, the next field is 36bits long
2058 skip_bits(gb, 32); /* total number of blocks in a frame */
2059 skip_bits(gb, 4); /* total number of blocks in a frame */
2060 skip_bits(gb, 32); /* total number of macroblocks in a frame */
2063 if (s->theora >= 0x030200) {
2064 visible_width = get_bits_long(gb, 24);
2065 visible_height = get_bits_long(gb, 24);
2067 skip_bits(gb, 8); /* offset x */
2068 skip_bits(gb, 8); /* offset y */
2071 skip_bits(gb, 32); /* fps numerator */
2072 skip_bits(gb, 32); /* fps denumerator */
2073 skip_bits(gb, 24); /* aspect numerator */
2074 skip_bits(gb, 24); /* aspect denumerator */
2076 if (s->theora < 0x030200)
2077 skip_bits(gb, 5); /* keyframe frequency force */
2078 skip_bits(gb, 8); /* colorspace */
2079 if (s->theora >= 0x030400)
2080 skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2081 skip_bits(gb, 24); /* bitrate */
2083 skip_bits(gb, 6); /* quality hint */
2085 if (s->theora >= 0x030200)
2087 skip_bits(gb, 5); /* keyframe frequency force */
2089 if (s->theora < 0x030400)
2090 skip_bits(gb, 5); /* spare bits */
2093 // align_get_bits(gb);
2095 if ( visible_width <= s->width && visible_width > s->width-16
2096 && visible_height <= s->height && visible_height > s->height-16)
2097 avcodec_set_dimensions(avctx, visible_width, visible_height);
2098 else
2099 avcodec_set_dimensions(avctx, s->width, s->height);
2101 return 0;
2104 static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2106 Vp3DecodeContext *s = avctx->priv_data;
2107 int i, n, matrices, inter, plane;
2109 if (s->theora >= 0x030200) {
2110 n = get_bits(gb, 3);
2111 /* loop filter limit values table */
2112 for (i = 0; i < 64; i++)
2113 s->filter_limit_values[i] = get_bits(gb, n);
2116 if (s->theora >= 0x030200)
2117 n = get_bits(gb, 4) + 1;
2118 else
2119 n = 16;
2120 /* quality threshold table */
2121 for (i = 0; i < 64; i++)
2122 s->coded_ac_scale_factor[i] = get_bits(gb, n);
2124 if (s->theora >= 0x030200)
2125 n = get_bits(gb, 4) + 1;
2126 else
2127 n = 16;
2128 /* dc scale factor table */
2129 for (i = 0; i < 64; i++)
2130 s->coded_dc_scale_factor[i] = get_bits(gb, n);
2132 if (s->theora >= 0x030200)
2133 matrices = get_bits(gb, 9) + 1;
2134 else
2135 matrices = 3;
2137 if(matrices > 384){
2138 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2139 return -1;
2142 for(n=0; n<matrices; n++){
2143 for (i = 0; i < 64; i++)
2144 s->base_matrix[n][i]= get_bits(gb, 8);
2147 for (inter = 0; inter <= 1; inter++) {
2148 for (plane = 0; plane <= 2; plane++) {
2149 int newqr= 1;
2150 if (inter || plane > 0)
2151 newqr = get_bits1(gb);
2152 if (!newqr) {
2153 int qtj, plj;
2154 if(inter && get_bits1(gb)){
2155 qtj = 0;
2156 plj = plane;
2157 }else{
2158 qtj= (3*inter + plane - 1) / 3;
2159 plj= (plane + 2) % 3;
2161 s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2162 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2163 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2164 } else {
2165 int qri= 0;
2166 int qi = 0;
2168 for(;;){
2169 i= get_bits(gb, av_log2(matrices-1)+1);
2170 if(i>= matrices){
2171 av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2172 return -1;
2174 s->qr_base[inter][plane][qri]= i;
2175 if(qi >= 63)
2176 break;
2177 i = get_bits(gb, av_log2(63-qi)+1) + 1;
2178 s->qr_size[inter][plane][qri++]= i;
2179 qi += i;
2182 if (qi > 63) {
2183 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2184 return -1;
2186 s->qr_count[inter][plane]= qri;
2191 /* Huffman tables */
2192 for (s->hti = 0; s->hti < 80; s->hti++) {
2193 s->entries = 0;
2194 s->huff_code_size = 1;
2195 if (!get_bits1(gb)) {
2196 s->hbits = 0;
2197 if(read_huffman_tree(avctx, gb))
2198 return -1;
2199 s->hbits = 1;
2200 if(read_huffman_tree(avctx, gb))
2201 return -1;
2205 s->theora_tables = 1;
2207 return 0;
2210 static av_cold int theora_decode_init(AVCodecContext *avctx)
2212 Vp3DecodeContext *s = avctx->priv_data;
2213 GetBitContext gb;
2214 int ptype;
2215 uint8_t *header_start[3];
2216 int header_len[3];
2217 int i;
2219 s->theora = 1;
2221 if (!avctx->extradata_size)
2223 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2224 return -1;
2227 if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2228 42, header_start, header_len) < 0) {
2229 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2230 return -1;
2233 for(i=0;i<3;i++) {
2234 init_get_bits(&gb, header_start[i], header_len[i]);
2236 ptype = get_bits(&gb, 8);
2238 if (!(ptype & 0x80))
2240 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2241 // return -1;
2244 // FIXME: Check for this as well.
2245 skip_bits(&gb, 6*8); /* "theora" */
2247 switch(ptype)
2249 case 0x80:
2250 theora_decode_header(avctx, &gb);
2251 break;
2252 case 0x81:
2253 // FIXME: is this needed? it breaks sometimes
2254 // theora_decode_comments(avctx, gb);
2255 break;
2256 case 0x82:
2257 if (theora_decode_tables(avctx, &gb))
2258 return -1;
2259 break;
2260 default:
2261 av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2262 break;
2264 if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2265 av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2266 if (s->theora < 0x030200)
2267 break;
2270 vp3_decode_init(avctx);
2271 return 0;
2274 AVCodec theora_decoder = {
2275 "theora",
2276 CODEC_TYPE_VIDEO,
2277 CODEC_ID_THEORA,
2278 sizeof(Vp3DecodeContext),
2279 theora_decode_init,
2280 NULL,
2281 vp3_decode_end,
2282 vp3_decode_frame,
2284 NULL,
2285 .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2287 #endif
2289 AVCodec vp3_decoder = {
2290 "vp3",
2291 CODEC_TYPE_VIDEO,
2292 CODEC_ID_VP3,
2293 sizeof(Vp3DecodeContext),
2294 vp3_decode_init,
2295 NULL,
2296 vp3_decode_end,
2297 vp3_decode_frame,
2299 NULL,
2300 .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),