Add channel layout support to the AC-3 encoder.
[FFMpeg-mirror/lagarith.git] / libavcodec / vc1.c
blob2de69e1923eb172a67c1ff187c251cd44bfc3de3
1 /*
2 * VC-1 and WMV3 decoder
3 * Copyright (c) 2006-2007 Konstantin Shishkov
4 * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 /**
24 * @file libavcodec/vc1.c
25 * VC-1 and WMV3 decoder
28 #include "internal.h"
29 #include "dsputil.h"
30 #include "avcodec.h"
31 #include "mpegvideo.h"
32 #include "vc1.h"
33 #include "vc1data.h"
34 #include "vc1acdata.h"
35 #include "msmpeg4data.h"
36 #include "unary.h"
37 #include "simple_idct.h"
38 #include "mathops.h"
39 #include "vdpau_internal.h"
41 #undef NDEBUG
42 #include <assert.h>
44 #define MB_INTRA_VLC_BITS 9
45 #define DC_VLC_BITS 9
46 #define AC_VLC_BITS 9
47 static const uint16_t table_mb_intra[64][2];
50 /**
51 * Init VC-1 specific tables and VC1Context members
52 * @param v The VC1Context to initialize
53 * @return Status
55 static int vc1_init_common(VC1Context *v)
57 static int done = 0;
58 int i = 0;
60 v->hrd_rate = v->hrd_buffer = NULL;
62 /* VLC tables */
63 if(!done)
65 done = 1;
66 init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
67 ff_vc1_bfraction_bits, 1, 1,
68 ff_vc1_bfraction_codes, 1, 1, INIT_VLC_USE_STATIC);
69 init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
70 ff_vc1_norm2_bits, 1, 1,
71 ff_vc1_norm2_codes, 1, 1, INIT_VLC_USE_STATIC);
72 init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
73 ff_vc1_norm6_bits, 1, 1,
74 ff_vc1_norm6_codes, 2, 2, INIT_VLC_USE_STATIC);
75 init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
76 ff_vc1_imode_bits, 1, 1,
77 ff_vc1_imode_codes, 1, 1, INIT_VLC_USE_STATIC);
78 for (i=0; i<3; i++)
80 init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
81 ff_vc1_ttmb_bits[i], 1, 1,
82 ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_STATIC);
83 init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
84 ff_vc1_ttblk_bits[i], 1, 1,
85 ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_STATIC);
86 init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
87 ff_vc1_subblkpat_bits[i], 1, 1,
88 ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_STATIC);
90 for(i=0; i<4; i++)
92 init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
93 ff_vc1_4mv_block_pattern_bits[i], 1, 1,
94 ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_STATIC);
95 init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
96 ff_vc1_cbpcy_p_bits[i], 1, 1,
97 ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_STATIC);
98 init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
99 ff_vc1_mv_diff_bits[i], 1, 1,
100 ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_STATIC);
102 for(i=0; i<8; i++)
103 init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
104 &vc1_ac_tables[i][0][1], 8, 4,
105 &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_STATIC);
106 init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
107 &ff_msmp4_mb_i_table[0][1], 4, 2,
108 &ff_msmp4_mb_i_table[0][0], 4, 2, INIT_VLC_USE_STATIC);
111 /* Other defaults */
112 v->pq = -1;
113 v->mvrange = 0; /* 7.1.1.18, p80 */
115 return 0;
118 /***********************************************************************/
120 * @defgroup vc1bitplane VC-1 Bitplane decoding
121 * @see 8.7, p56
122 * @{
126 * Imode types
127 * @{
129 enum Imode {
130 IMODE_RAW,
131 IMODE_NORM2,
132 IMODE_DIFF2,
133 IMODE_NORM6,
134 IMODE_DIFF6,
135 IMODE_ROWSKIP,
136 IMODE_COLSKIP
138 /** @} */ //imode defines
140 /** Decode rows by checking if they are skipped
141 * @param plane Buffer to store decoded bits
142 * @param[in] width Width of this buffer
143 * @param[in] height Height of this buffer
144 * @param[in] stride of this buffer
146 static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
147 int x, y;
149 for (y=0; y<height; y++){
150 if (!get_bits1(gb)) //rowskip
151 memset(plane, 0, width);
152 else
153 for (x=0; x<width; x++)
154 plane[x] = get_bits1(gb);
155 plane += stride;
159 /** Decode columns by checking if they are skipped
160 * @param plane Buffer to store decoded bits
161 * @param[in] width Width of this buffer
162 * @param[in] height Height of this buffer
163 * @param[in] stride of this buffer
164 * @todo FIXME: Optimize
166 static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
167 int x, y;
169 for (x=0; x<width; x++){
170 if (!get_bits1(gb)) //colskip
171 for (y=0; y<height; y++)
172 plane[y*stride] = 0;
173 else
174 for (y=0; y<height; y++)
175 plane[y*stride] = get_bits1(gb);
176 plane ++;
180 /** Decode a bitplane's bits
181 * @param data bitplane where to store the decode bits
182 * @param[out] raw_flag pointer to the flag indicating that this bitplane is not coded explicitly
183 * @param v VC-1 context for bit reading and logging
184 * @return Status
185 * @todo FIXME: Optimize
187 static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
189 GetBitContext *gb = &v->s.gb;
191 int imode, x, y, code, offset;
192 uint8_t invert, *planep = data;
193 int width, height, stride;
195 width = v->s.mb_width;
196 height = v->s.mb_height;
197 stride = v->s.mb_stride;
198 invert = get_bits1(gb);
199 imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
201 *raw_flag = 0;
202 switch (imode)
204 case IMODE_RAW:
205 //Data is actually read in the MB layer (same for all tests == "raw")
206 *raw_flag = 1; //invert ignored
207 return invert;
208 case IMODE_DIFF2:
209 case IMODE_NORM2:
210 if ((height * width) & 1)
212 *planep++ = get_bits1(gb);
213 offset = 1;
215 else offset = 0;
216 // decode bitplane as one long line
217 for (y = offset; y < height * width; y += 2) {
218 code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
219 *planep++ = code & 1;
220 offset++;
221 if(offset == width) {
222 offset = 0;
223 planep += stride - width;
225 *planep++ = code >> 1;
226 offset++;
227 if(offset == width) {
228 offset = 0;
229 planep += stride - width;
232 break;
233 case IMODE_DIFF6:
234 case IMODE_NORM6:
235 if(!(height % 3) && (width % 3)) { // use 2x3 decoding
236 for(y = 0; y < height; y+= 3) {
237 for(x = width & 1; x < width; x += 2) {
238 code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
239 if(code < 0){
240 av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
241 return -1;
243 planep[x + 0] = (code >> 0) & 1;
244 planep[x + 1] = (code >> 1) & 1;
245 planep[x + 0 + stride] = (code >> 2) & 1;
246 planep[x + 1 + stride] = (code >> 3) & 1;
247 planep[x + 0 + stride * 2] = (code >> 4) & 1;
248 planep[x + 1 + stride * 2] = (code >> 5) & 1;
250 planep += stride * 3;
252 if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
253 } else { // 3x2
254 planep += (height & 1) * stride;
255 for(y = height & 1; y < height; y += 2) {
256 for(x = width % 3; x < width; x += 3) {
257 code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
258 if(code < 0){
259 av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
260 return -1;
262 planep[x + 0] = (code >> 0) & 1;
263 planep[x + 1] = (code >> 1) & 1;
264 planep[x + 2] = (code >> 2) & 1;
265 planep[x + 0 + stride] = (code >> 3) & 1;
266 planep[x + 1 + stride] = (code >> 4) & 1;
267 planep[x + 2 + stride] = (code >> 5) & 1;
269 planep += stride * 2;
271 x = width % 3;
272 if(x) decode_colskip(data , x, height , stride, &v->s.gb);
273 if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
275 break;
276 case IMODE_ROWSKIP:
277 decode_rowskip(data, width, height, stride, &v->s.gb);
278 break;
279 case IMODE_COLSKIP:
280 decode_colskip(data, width, height, stride, &v->s.gb);
281 break;
282 default: break;
285 /* Applying diff operator */
286 if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
288 planep = data;
289 planep[0] ^= invert;
290 for (x=1; x<width; x++)
291 planep[x] ^= planep[x-1];
292 for (y=1; y<height; y++)
294 planep += stride;
295 planep[0] ^= planep[-stride];
296 for (x=1; x<width; x++)
298 if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
299 else planep[x] ^= planep[x-1];
303 else if (invert)
305 planep = data;
306 for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
308 return (imode<<1) + invert;
311 /** @} */ //Bitplane group
313 static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
315 int i, j;
316 if(!s->first_slice_line)
317 s->dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
318 s->dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
319 for(i = !s->mb_x*8; i < 16; i += 8)
320 s->dsp.vc1_h_loop_filter16(s->dest[0] + i, s->linesize, pq);
321 for(j = 0; j < 2; j++){
322 if(!s->first_slice_line)
323 s->dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
324 if(s->mb_x)
325 s->dsp.vc1_h_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
329 /***********************************************************************/
330 /** VOP Dquant decoding
331 * @param v VC-1 Context
333 static int vop_dquant_decoding(VC1Context *v)
335 GetBitContext *gb = &v->s.gb;
336 int pqdiff;
338 //variable size
339 if (v->dquant == 2)
341 pqdiff = get_bits(gb, 3);
342 if (pqdiff == 7) v->altpq = get_bits(gb, 5);
343 else v->altpq = v->pq + pqdiff + 1;
345 else
347 v->dquantfrm = get_bits1(gb);
348 if ( v->dquantfrm )
350 v->dqprofile = get_bits(gb, 2);
351 switch (v->dqprofile)
353 case DQPROFILE_SINGLE_EDGE:
354 case DQPROFILE_DOUBLE_EDGES:
355 v->dqsbedge = get_bits(gb, 2);
356 break;
357 case DQPROFILE_ALL_MBS:
358 v->dqbilevel = get_bits1(gb);
359 if(!v->dqbilevel)
360 v->halfpq = 0;
361 default: break; //Forbidden ?
363 if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
365 pqdiff = get_bits(gb, 3);
366 if (pqdiff == 7) v->altpq = get_bits(gb, 5);
367 else v->altpq = v->pq + pqdiff + 1;
371 return 0;
374 /** Put block onto picture
376 static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
378 uint8_t *Y;
379 int ys, us, vs;
380 DSPContext *dsp = &v->s.dsp;
382 if(v->rangeredfrm) {
383 int i, j, k;
384 for(k = 0; k < 6; k++)
385 for(j = 0; j < 8; j++)
386 for(i = 0; i < 8; i++)
387 block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
390 ys = v->s.current_picture.linesize[0];
391 us = v->s.current_picture.linesize[1];
392 vs = v->s.current_picture.linesize[2];
393 Y = v->s.dest[0];
395 dsp->put_pixels_clamped(block[0], Y, ys);
396 dsp->put_pixels_clamped(block[1], Y + 8, ys);
397 Y += ys * 8;
398 dsp->put_pixels_clamped(block[2], Y, ys);
399 dsp->put_pixels_clamped(block[3], Y + 8, ys);
401 if(!(v->s.flags & CODEC_FLAG_GRAY)) {
402 dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
403 dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
407 /** Do motion compensation over 1 macroblock
408 * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
410 static void vc1_mc_1mv(VC1Context *v, int dir)
412 MpegEncContext *s = &v->s;
413 DSPContext *dsp = &v->s.dsp;
414 uint8_t *srcY, *srcU, *srcV;
415 int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
417 if(!v->s.last_picture.data[0])return;
419 mx = s->mv[dir][0][0];
420 my = s->mv[dir][0][1];
422 // store motion vectors for further use in B frames
423 if(s->pict_type == FF_P_TYPE) {
424 s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
425 s->current_picture.motion_val[1][s->block_index[0]][1] = my;
427 uvmx = (mx + ((mx & 3) == 3)) >> 1;
428 uvmy = (my + ((my & 3) == 3)) >> 1;
429 if(v->fastuvmc) {
430 uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
431 uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
433 if(!dir) {
434 srcY = s->last_picture.data[0];
435 srcU = s->last_picture.data[1];
436 srcV = s->last_picture.data[2];
437 } else {
438 srcY = s->next_picture.data[0];
439 srcU = s->next_picture.data[1];
440 srcV = s->next_picture.data[2];
443 src_x = s->mb_x * 16 + (mx >> 2);
444 src_y = s->mb_y * 16 + (my >> 2);
445 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
446 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
448 if(v->profile != PROFILE_ADVANCED){
449 src_x = av_clip( src_x, -16, s->mb_width * 16);
450 src_y = av_clip( src_y, -16, s->mb_height * 16);
451 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
452 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
453 }else{
454 src_x = av_clip( src_x, -17, s->avctx->coded_width);
455 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
456 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
457 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
460 srcY += src_y * s->linesize + src_x;
461 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
462 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
464 /* for grayscale we should not try to read from unknown area */
465 if(s->flags & CODEC_FLAG_GRAY) {
466 srcU = s->edge_emu_buffer + 18 * s->linesize;
467 srcV = s->edge_emu_buffer + 18 * s->linesize;
470 if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
471 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
472 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
473 uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
475 srcY -= s->mspel * (1 + s->linesize);
476 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
477 src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
478 srcY = s->edge_emu_buffer;
479 ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
480 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
481 ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
482 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
483 srcU = uvbuf;
484 srcV = uvbuf + 16;
485 /* if we deal with range reduction we need to scale source blocks */
486 if(v->rangeredfrm) {
487 int i, j;
488 uint8_t *src, *src2;
490 src = srcY;
491 for(j = 0; j < 17 + s->mspel*2; j++) {
492 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
493 src += s->linesize;
495 src = srcU; src2 = srcV;
496 for(j = 0; j < 9; j++) {
497 for(i = 0; i < 9; i++) {
498 src[i] = ((src[i] - 128) >> 1) + 128;
499 src2[i] = ((src2[i] - 128) >> 1) + 128;
501 src += s->uvlinesize;
502 src2 += s->uvlinesize;
505 /* if we deal with intensity compensation we need to scale source blocks */
506 if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
507 int i, j;
508 uint8_t *src, *src2;
510 src = srcY;
511 for(j = 0; j < 17 + s->mspel*2; j++) {
512 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
513 src += s->linesize;
515 src = srcU; src2 = srcV;
516 for(j = 0; j < 9; j++) {
517 for(i = 0; i < 9; i++) {
518 src[i] = v->lutuv[src[i]];
519 src2[i] = v->lutuv[src2[i]];
521 src += s->uvlinesize;
522 src2 += s->uvlinesize;
525 srcY += s->mspel * (1 + s->linesize);
528 if(s->mspel) {
529 dxy = ((my & 3) << 2) | (mx & 3);
530 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
531 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
532 srcY += s->linesize * 8;
533 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
534 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
535 } else { // hpel mc - always used for luma
536 dxy = (my & 2) | ((mx & 2) >> 1);
538 if(!v->rnd)
539 dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
540 else
541 dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
544 if(s->flags & CODEC_FLAG_GRAY) return;
545 /* Chroma MC always uses qpel bilinear */
546 uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
547 uvmx = (uvmx&3)<<1;
548 uvmy = (uvmy&3)<<1;
549 if(!v->rnd){
550 dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
551 dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
552 }else{
553 dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
554 dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
558 /** Do motion compensation for 4-MV macroblock - luminance block
560 static void vc1_mc_4mv_luma(VC1Context *v, int n)
562 MpegEncContext *s = &v->s;
563 DSPContext *dsp = &v->s.dsp;
564 uint8_t *srcY;
565 int dxy, mx, my, src_x, src_y;
566 int off;
568 if(!v->s.last_picture.data[0])return;
569 mx = s->mv[0][n][0];
570 my = s->mv[0][n][1];
571 srcY = s->last_picture.data[0];
573 off = s->linesize * 4 * (n&2) + (n&1) * 8;
575 src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
576 src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
578 if(v->profile != PROFILE_ADVANCED){
579 src_x = av_clip( src_x, -16, s->mb_width * 16);
580 src_y = av_clip( src_y, -16, s->mb_height * 16);
581 }else{
582 src_x = av_clip( src_x, -17, s->avctx->coded_width);
583 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
586 srcY += src_y * s->linesize + src_x;
588 if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
589 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
590 || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
591 srcY -= s->mspel * (1 + s->linesize);
592 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
593 src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
594 srcY = s->edge_emu_buffer;
595 /* if we deal with range reduction we need to scale source blocks */
596 if(v->rangeredfrm) {
597 int i, j;
598 uint8_t *src;
600 src = srcY;
601 for(j = 0; j < 9 + s->mspel*2; j++) {
602 for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
603 src += s->linesize;
606 /* if we deal with intensity compensation we need to scale source blocks */
607 if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
608 int i, j;
609 uint8_t *src;
611 src = srcY;
612 for(j = 0; j < 9 + s->mspel*2; j++) {
613 for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
614 src += s->linesize;
617 srcY += s->mspel * (1 + s->linesize);
620 if(s->mspel) {
621 dxy = ((my & 3) << 2) | (mx & 3);
622 dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
623 } else { // hpel mc - always used for luma
624 dxy = (my & 2) | ((mx & 2) >> 1);
625 if(!v->rnd)
626 dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
627 else
628 dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
632 static inline int median4(int a, int b, int c, int d)
634 if(a < b) {
635 if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
636 else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
637 } else {
638 if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
639 else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
644 /** Do motion compensation for 4-MV macroblock - both chroma blocks
646 static void vc1_mc_4mv_chroma(VC1Context *v)
648 MpegEncContext *s = &v->s;
649 DSPContext *dsp = &v->s.dsp;
650 uint8_t *srcU, *srcV;
651 int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
652 int i, idx, tx = 0, ty = 0;
653 int mvx[4], mvy[4], intra[4];
654 static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
656 if(!v->s.last_picture.data[0])return;
657 if(s->flags & CODEC_FLAG_GRAY) return;
659 for(i = 0; i < 4; i++) {
660 mvx[i] = s->mv[0][i][0];
661 mvy[i] = s->mv[0][i][1];
662 intra[i] = v->mb_type[0][s->block_index[i]];
665 /* calculate chroma MV vector from four luma MVs */
666 idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
667 if(!idx) { // all blocks are inter
668 tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
669 ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
670 } else if(count[idx] == 1) { // 3 inter blocks
671 switch(idx) {
672 case 0x1:
673 tx = mid_pred(mvx[1], mvx[2], mvx[3]);
674 ty = mid_pred(mvy[1], mvy[2], mvy[3]);
675 break;
676 case 0x2:
677 tx = mid_pred(mvx[0], mvx[2], mvx[3]);
678 ty = mid_pred(mvy[0], mvy[2], mvy[3]);
679 break;
680 case 0x4:
681 tx = mid_pred(mvx[0], mvx[1], mvx[3]);
682 ty = mid_pred(mvy[0], mvy[1], mvy[3]);
683 break;
684 case 0x8:
685 tx = mid_pred(mvx[0], mvx[1], mvx[2]);
686 ty = mid_pred(mvy[0], mvy[1], mvy[2]);
687 break;
689 } else if(count[idx] == 2) {
690 int t1 = 0, t2 = 0;
691 for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
692 for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
693 tx = (mvx[t1] + mvx[t2]) / 2;
694 ty = (mvy[t1] + mvy[t2]) / 2;
695 } else {
696 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
697 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
698 return; //no need to do MC for inter blocks
701 s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
702 s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
703 uvmx = (tx + ((tx&3) == 3)) >> 1;
704 uvmy = (ty + ((ty&3) == 3)) >> 1;
705 if(v->fastuvmc) {
706 uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
707 uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
710 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
711 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
713 if(v->profile != PROFILE_ADVANCED){
714 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
715 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
716 }else{
717 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
718 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
721 srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
722 srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
723 if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
724 || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
725 || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
726 ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
727 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
728 ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
729 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
730 srcU = s->edge_emu_buffer;
731 srcV = s->edge_emu_buffer + 16;
733 /* if we deal with range reduction we need to scale source blocks */
734 if(v->rangeredfrm) {
735 int i, j;
736 uint8_t *src, *src2;
738 src = srcU; src2 = srcV;
739 for(j = 0; j < 9; j++) {
740 for(i = 0; i < 9; i++) {
741 src[i] = ((src[i] - 128) >> 1) + 128;
742 src2[i] = ((src2[i] - 128) >> 1) + 128;
744 src += s->uvlinesize;
745 src2 += s->uvlinesize;
748 /* if we deal with intensity compensation we need to scale source blocks */
749 if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
750 int i, j;
751 uint8_t *src, *src2;
753 src = srcU; src2 = srcV;
754 for(j = 0; j < 9; j++) {
755 for(i = 0; i < 9; i++) {
756 src[i] = v->lutuv[src[i]];
757 src2[i] = v->lutuv[src2[i]];
759 src += s->uvlinesize;
760 src2 += s->uvlinesize;
765 /* Chroma MC always uses qpel bilinear */
766 uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
767 uvmx = (uvmx&3)<<1;
768 uvmy = (uvmy&3)<<1;
769 if(!v->rnd){
770 dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
771 dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
772 }else{
773 dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
774 dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
778 static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
781 * Decode Simple/Main Profiles sequence header
782 * @see Figure 7-8, p16-17
783 * @param avctx Codec context
784 * @param gb GetBit context initialized from Codec context extra_data
785 * @return Status
787 static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
789 VC1Context *v = avctx->priv_data;
791 av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
792 v->profile = get_bits(gb, 2);
793 if (v->profile == PROFILE_COMPLEX)
795 av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
798 if (v->profile == PROFILE_ADVANCED)
800 v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
801 v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
802 return decode_sequence_header_adv(v, gb);
804 else
806 v->zz_8x4 = wmv2_scantableA;
807 v->zz_4x8 = wmv2_scantableB;
808 v->res_sm = get_bits(gb, 2); //reserved
809 if (v->res_sm)
811 av_log(avctx, AV_LOG_ERROR,
812 "Reserved RES_SM=%i is forbidden\n", v->res_sm);
813 return -1;
817 // (fps-2)/4 (->30)
818 v->frmrtq_postproc = get_bits(gb, 3); //common
819 // (bitrate-32kbps)/64kbps
820 v->bitrtq_postproc = get_bits(gb, 5); //common
821 v->s.loop_filter = get_bits1(gb); //common
822 if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
824 av_log(avctx, AV_LOG_ERROR,
825 "LOOPFILTER shell not be enabled in simple profile\n");
827 if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
828 v->s.loop_filter = 0;
830 v->res_x8 = get_bits1(gb); //reserved
831 v->multires = get_bits1(gb);
832 v->res_fasttx = get_bits1(gb);
833 if (!v->res_fasttx)
835 v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
836 v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
837 v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
838 v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
841 v->fastuvmc = get_bits1(gb); //common
842 if (!v->profile && !v->fastuvmc)
844 av_log(avctx, AV_LOG_ERROR,
845 "FASTUVMC unavailable in Simple Profile\n");
846 return -1;
848 v->extended_mv = get_bits1(gb); //common
849 if (!v->profile && v->extended_mv)
851 av_log(avctx, AV_LOG_ERROR,
852 "Extended MVs unavailable in Simple Profile\n");
853 return -1;
855 v->dquant = get_bits(gb, 2); //common
856 v->vstransform = get_bits1(gb); //common
858 v->res_transtab = get_bits1(gb);
859 if (v->res_transtab)
861 av_log(avctx, AV_LOG_ERROR,
862 "1 for reserved RES_TRANSTAB is forbidden\n");
863 return -1;
866 v->overlap = get_bits1(gb); //common
868 v->s.resync_marker = get_bits1(gb);
869 v->rangered = get_bits1(gb);
870 if (v->rangered && v->profile == PROFILE_SIMPLE)
872 av_log(avctx, AV_LOG_INFO,
873 "RANGERED should be set to 0 in simple profile\n");
876 v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
877 v->quantizer_mode = get_bits(gb, 2); //common
879 v->finterpflag = get_bits1(gb); //common
880 v->res_rtm_flag = get_bits1(gb); //reserved
881 if (!v->res_rtm_flag)
883 // av_log(avctx, AV_LOG_ERROR,
884 // "0 for reserved RES_RTM_FLAG is forbidden\n");
885 av_log(avctx, AV_LOG_ERROR,
886 "Old WMV3 version detected, only I-frames will be decoded\n");
887 //return -1;
889 //TODO: figure out what they mean (always 0x402F)
890 if(!v->res_fasttx) skip_bits(gb, 16);
891 av_log(avctx, AV_LOG_DEBUG,
892 "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
893 "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
894 "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
895 "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
896 v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
897 v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
898 v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
899 v->dquant, v->quantizer_mode, avctx->max_b_frames
901 return 0;
904 static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
906 v->res_rtm_flag = 1;
907 v->level = get_bits(gb, 3);
908 if(v->level >= 5)
910 av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
912 v->chromaformat = get_bits(gb, 2);
913 if (v->chromaformat != 1)
915 av_log(v->s.avctx, AV_LOG_ERROR,
916 "Only 4:2:0 chroma format supported\n");
917 return -1;
920 // (fps-2)/4 (->30)
921 v->frmrtq_postproc = get_bits(gb, 3); //common
922 // (bitrate-32kbps)/64kbps
923 v->bitrtq_postproc = get_bits(gb, 5); //common
924 v->postprocflag = get_bits1(gb); //common
926 v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
927 v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
928 v->s.avctx->width = v->s.avctx->coded_width;
929 v->s.avctx->height = v->s.avctx->coded_height;
930 v->broadcast = get_bits1(gb);
931 v->interlace = get_bits1(gb);
932 v->tfcntrflag = get_bits1(gb);
933 v->finterpflag = get_bits1(gb);
934 skip_bits1(gb); // reserved
936 v->s.h_edge_pos = v->s.avctx->coded_width;
937 v->s.v_edge_pos = v->s.avctx->coded_height;
939 av_log(v->s.avctx, AV_LOG_DEBUG,
940 "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
941 "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
942 "TFCTRflag=%i, FINTERPflag=%i\n",
943 v->level, v->frmrtq_postproc, v->bitrtq_postproc,
944 v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
945 v->tfcntrflag, v->finterpflag
948 v->psf = get_bits1(gb);
949 if(v->psf) { //PsF, 6.1.13
950 av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
951 return -1;
953 v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
954 if(get_bits1(gb)) { //Display Info - decoding is not affected by it
955 int w, h, ar = 0;
956 av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
957 v->s.avctx->coded_width = w = get_bits(gb, 14) + 1;
958 v->s.avctx->coded_height = h = get_bits(gb, 14) + 1;
959 av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
960 if(get_bits1(gb))
961 ar = get_bits(gb, 4);
962 if(ar && ar < 14){
963 v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
964 }else if(ar == 15){
965 w = get_bits(gb, 8);
966 h = get_bits(gb, 8);
967 v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
969 av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n", v->s.avctx->sample_aspect_ratio.num, v->s.avctx->sample_aspect_ratio.den);
971 if(get_bits1(gb)){ //framerate stuff
972 if(get_bits1(gb)) {
973 v->s.avctx->time_base.num = 32;
974 v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
975 } else {
976 int nr, dr;
977 nr = get_bits(gb, 8);
978 dr = get_bits(gb, 4);
979 if(nr && nr < 8 && dr && dr < 3){
980 v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
981 v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
986 if(get_bits1(gb)){
987 v->color_prim = get_bits(gb, 8);
988 v->transfer_char = get_bits(gb, 8);
989 v->matrix_coef = get_bits(gb, 8);
993 v->hrd_param_flag = get_bits1(gb);
994 if(v->hrd_param_flag) {
995 int i;
996 v->hrd_num_leaky_buckets = get_bits(gb, 5);
997 skip_bits(gb, 4); //bitrate exponent
998 skip_bits(gb, 4); //buffer size exponent
999 for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
1000 skip_bits(gb, 16); //hrd_rate[n]
1001 skip_bits(gb, 16); //hrd_buffer[n]
1004 return 0;
1007 static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
1009 VC1Context *v = avctx->priv_data;
1010 int i;
1012 av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
1013 v->broken_link = get_bits1(gb);
1014 v->closed_entry = get_bits1(gb);
1015 v->panscanflag = get_bits1(gb);
1016 v->refdist_flag = get_bits1(gb);
1017 v->s.loop_filter = get_bits1(gb);
1018 v->fastuvmc = get_bits1(gb);
1019 v->extended_mv = get_bits1(gb);
1020 v->dquant = get_bits(gb, 2);
1021 v->vstransform = get_bits1(gb);
1022 v->overlap = get_bits1(gb);
1023 v->quantizer_mode = get_bits(gb, 2);
1025 if(v->hrd_param_flag){
1026 for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
1027 skip_bits(gb, 8); //hrd_full[n]
1031 if(get_bits1(gb)){
1032 avctx->coded_width = (get_bits(gb, 12)+1)<<1;
1033 avctx->coded_height = (get_bits(gb, 12)+1)<<1;
1035 if(v->extended_mv)
1036 v->extended_dmv = get_bits1(gb);
1037 if((v->range_mapy_flag = get_bits1(gb))) {
1038 av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
1039 v->range_mapy = get_bits(gb, 3);
1041 if((v->range_mapuv_flag = get_bits1(gb))) {
1042 av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
1043 v->range_mapuv = get_bits(gb, 3);
1046 av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
1047 "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
1048 "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
1049 "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
1050 v->broken_link, v->closed_entry, v->panscanflag, v->refdist_flag, v->s.loop_filter,
1051 v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
1053 return 0;
1056 static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
1058 int pqindex, lowquant, status;
1060 if(v->finterpflag) v->interpfrm = get_bits1(gb);
1061 skip_bits(gb, 2); //framecnt unused
1062 v->rangeredfrm = 0;
1063 if (v->rangered) v->rangeredfrm = get_bits1(gb);
1064 v->s.pict_type = get_bits1(gb);
1065 if (v->s.avctx->max_b_frames) {
1066 if (!v->s.pict_type) {
1067 if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
1068 else v->s.pict_type = FF_B_TYPE;
1069 } else v->s.pict_type = FF_P_TYPE;
1070 } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
1072 v->bi_type = 0;
1073 if(v->s.pict_type == FF_B_TYPE) {
1074 v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
1075 v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
1076 if(v->bfraction == 0) {
1077 v->s.pict_type = FF_BI_TYPE;
1080 if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
1081 skip_bits(gb, 7); // skip buffer fullness
1083 /* calculate RND */
1084 if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
1085 v->rnd = 1;
1086 if(v->s.pict_type == FF_P_TYPE)
1087 v->rnd ^= 1;
1089 /* Quantizer stuff */
1090 pqindex = get_bits(gb, 5);
1091 if(!pqindex) return -1;
1092 if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1093 v->pq = ff_vc1_pquant_table[0][pqindex];
1094 else
1095 v->pq = ff_vc1_pquant_table[1][pqindex];
1097 v->pquantizer = 1;
1098 if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1099 v->pquantizer = pqindex < 9;
1100 if (v->quantizer_mode == QUANT_NON_UNIFORM)
1101 v->pquantizer = 0;
1102 v->pqindex = pqindex;
1103 if (pqindex < 9) v->halfpq = get_bits1(gb);
1104 else v->halfpq = 0;
1105 if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
1106 v->pquantizer = get_bits1(gb);
1107 v->dquantfrm = 0;
1108 if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
1109 v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1110 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1111 v->range_x = 1 << (v->k_x - 1);
1112 v->range_y = 1 << (v->k_y - 1);
1113 if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
1115 if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
1116 v->x8_type = get_bits1(gb);
1117 }else v->x8_type = 0;
1118 //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
1119 // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
1121 if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
1123 switch(v->s.pict_type) {
1124 case FF_P_TYPE:
1125 if (v->pq < 5) v->tt_index = 0;
1126 else if(v->pq < 13) v->tt_index = 1;
1127 else v->tt_index = 2;
1129 lowquant = (v->pq > 12) ? 0 : 1;
1130 v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
1131 if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1133 int scale, shift, i;
1134 v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
1135 v->lumscale = get_bits(gb, 6);
1136 v->lumshift = get_bits(gb, 6);
1137 v->use_ic = 1;
1138 /* fill lookup tables for intensity compensation */
1139 if(!v->lumscale) {
1140 scale = -64;
1141 shift = (255 - v->lumshift * 2) << 6;
1142 if(v->lumshift > 31)
1143 shift += 128 << 6;
1144 } else {
1145 scale = v->lumscale + 32;
1146 if(v->lumshift > 31)
1147 shift = (v->lumshift - 64) << 6;
1148 else
1149 shift = v->lumshift << 6;
1151 for(i = 0; i < 256; i++) {
1152 v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
1153 v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
1156 if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
1157 v->s.quarter_sample = 0;
1158 else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1159 if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
1160 v->s.quarter_sample = 0;
1161 else
1162 v->s.quarter_sample = 1;
1163 } else
1164 v->s.quarter_sample = 1;
1165 v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
1167 if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
1168 v->mv_mode2 == MV_PMODE_MIXED_MV)
1169 || v->mv_mode == MV_PMODE_MIXED_MV)
1171 status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
1172 if (status < 0) return -1;
1173 av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
1174 "Imode: %i, Invert: %i\n", status>>1, status&1);
1175 } else {
1176 v->mv_type_is_raw = 0;
1177 memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
1179 status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1180 if (status < 0) return -1;
1181 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1182 "Imode: %i, Invert: %i\n", status>>1, status&1);
1184 /* Hopefully this is correct for P frames */
1185 v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
1186 v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1188 if (v->dquant)
1190 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1191 vop_dquant_decoding(v);
1194 v->ttfrm = 0; //FIXME Is that so ?
1195 if (v->vstransform)
1197 v->ttmbf = get_bits1(gb);
1198 if (v->ttmbf)
1200 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1202 } else {
1203 v->ttmbf = 1;
1204 v->ttfrm = TT_8X8;
1206 break;
1207 case FF_B_TYPE:
1208 if (v->pq < 5) v->tt_index = 0;
1209 else if(v->pq < 13) v->tt_index = 1;
1210 else v->tt_index = 2;
1212 lowquant = (v->pq > 12) ? 0 : 1;
1213 v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
1214 v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
1215 v->s.mspel = v->s.quarter_sample;
1217 status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
1218 if (status < 0) return -1;
1219 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
1220 "Imode: %i, Invert: %i\n", status>>1, status&1);
1221 status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1222 if (status < 0) return -1;
1223 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1224 "Imode: %i, Invert: %i\n", status>>1, status&1);
1226 v->s.mv_table_index = get_bits(gb, 2);
1227 v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1229 if (v->dquant)
1231 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1232 vop_dquant_decoding(v);
1235 v->ttfrm = 0;
1236 if (v->vstransform)
1238 v->ttmbf = get_bits1(gb);
1239 if (v->ttmbf)
1241 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1243 } else {
1244 v->ttmbf = 1;
1245 v->ttfrm = TT_8X8;
1247 break;
1250 if(!v->x8_type)
1252 /* AC Syntax */
1253 v->c_ac_table_index = decode012(gb);
1254 if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
1256 v->y_ac_table_index = decode012(gb);
1258 /* DC Syntax */
1259 v->s.dc_table_index = get_bits1(gb);
1262 if(v->s.pict_type == FF_BI_TYPE) {
1263 v->s.pict_type = FF_B_TYPE;
1264 v->bi_type = 1;
1266 return 0;
1269 static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
1271 int pqindex, lowquant;
1272 int status;
1274 v->p_frame_skipped = 0;
1276 if(v->interlace){
1277 v->fcm = decode012(gb);
1278 if(v->fcm) return -1; // interlaced frames/fields are not implemented
1280 switch(get_unary(gb, 0, 4)) {
1281 case 0:
1282 v->s.pict_type = FF_P_TYPE;
1283 break;
1284 case 1:
1285 v->s.pict_type = FF_B_TYPE;
1286 break;
1287 case 2:
1288 v->s.pict_type = FF_I_TYPE;
1289 break;
1290 case 3:
1291 v->s.pict_type = FF_BI_TYPE;
1292 break;
1293 case 4:
1294 v->s.pict_type = FF_P_TYPE; // skipped pic
1295 v->p_frame_skipped = 1;
1296 return 0;
1298 if(v->tfcntrflag)
1299 skip_bits(gb, 8);
1300 if(v->broadcast) {
1301 if(!v->interlace || v->psf) {
1302 v->rptfrm = get_bits(gb, 2);
1303 } else {
1304 v->tff = get_bits1(gb);
1305 v->rptfrm = get_bits1(gb);
1308 if(v->panscanflag) {
1309 //...
1311 v->rnd = get_bits1(gb);
1312 if(v->interlace)
1313 v->uvsamp = get_bits1(gb);
1314 if(v->finterpflag) v->interpfrm = get_bits1(gb);
1315 if(v->s.pict_type == FF_B_TYPE) {
1316 v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
1317 v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
1318 if(v->bfraction == 0) {
1319 v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
1322 pqindex = get_bits(gb, 5);
1323 if(!pqindex) return -1;
1324 v->pqindex = pqindex;
1325 if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1326 v->pq = ff_vc1_pquant_table[0][pqindex];
1327 else
1328 v->pq = ff_vc1_pquant_table[1][pqindex];
1330 v->pquantizer = 1;
1331 if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
1332 v->pquantizer = pqindex < 9;
1333 if (v->quantizer_mode == QUANT_NON_UNIFORM)
1334 v->pquantizer = 0;
1335 v->pqindex = pqindex;
1336 if (pqindex < 9) v->halfpq = get_bits1(gb);
1337 else v->halfpq = 0;
1338 if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
1339 v->pquantizer = get_bits1(gb);
1340 if(v->postprocflag)
1341 v->postproc = get_bits(gb, 2);
1343 if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
1345 switch(v->s.pict_type) {
1346 case FF_I_TYPE:
1347 case FF_BI_TYPE:
1348 status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
1349 if (status < 0) return -1;
1350 av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
1351 "Imode: %i, Invert: %i\n", status>>1, status&1);
1352 v->condover = CONDOVER_NONE;
1353 if(v->overlap && v->pq <= 8) {
1354 v->condover = decode012(gb);
1355 if(v->condover == CONDOVER_SELECT) {
1356 status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
1357 if (status < 0) return -1;
1358 av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
1359 "Imode: %i, Invert: %i\n", status>>1, status&1);
1362 break;
1363 case FF_P_TYPE:
1364 if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
1365 else v->mvrange = 0;
1366 v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1367 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1368 v->range_x = 1 << (v->k_x - 1);
1369 v->range_y = 1 << (v->k_y - 1);
1371 if (v->pq < 5) v->tt_index = 0;
1372 else if(v->pq < 13) v->tt_index = 1;
1373 else v->tt_index = 2;
1375 lowquant = (v->pq > 12) ? 0 : 1;
1376 v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
1377 if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1379 int scale, shift, i;
1380 v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
1381 v->lumscale = get_bits(gb, 6);
1382 v->lumshift = get_bits(gb, 6);
1383 /* fill lookup tables for intensity compensation */
1384 if(!v->lumscale) {
1385 scale = -64;
1386 shift = (255 - v->lumshift * 2) << 6;
1387 if(v->lumshift > 31)
1388 shift += 128 << 6;
1389 } else {
1390 scale = v->lumscale + 32;
1391 if(v->lumshift > 31)
1392 shift = (v->lumshift - 64) << 6;
1393 else
1394 shift = v->lumshift << 6;
1396 for(i = 0; i < 256; i++) {
1397 v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
1398 v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
1400 v->use_ic = 1;
1402 if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
1403 v->s.quarter_sample = 0;
1404 else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1405 if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
1406 v->s.quarter_sample = 0;
1407 else
1408 v->s.quarter_sample = 1;
1409 } else
1410 v->s.quarter_sample = 1;
1411 v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
1413 if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
1414 v->mv_mode2 == MV_PMODE_MIXED_MV)
1415 || v->mv_mode == MV_PMODE_MIXED_MV)
1417 status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
1418 if (status < 0) return -1;
1419 av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
1420 "Imode: %i, Invert: %i\n", status>>1, status&1);
1421 } else {
1422 v->mv_type_is_raw = 0;
1423 memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
1425 status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1426 if (status < 0) return -1;
1427 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1428 "Imode: %i, Invert: %i\n", status>>1, status&1);
1430 /* Hopefully this is correct for P frames */
1431 v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
1432 v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1433 if (v->dquant)
1435 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1436 vop_dquant_decoding(v);
1439 v->ttfrm = 0; //FIXME Is that so ?
1440 if (v->vstransform)
1442 v->ttmbf = get_bits1(gb);
1443 if (v->ttmbf)
1445 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1447 } else {
1448 v->ttmbf = 1;
1449 v->ttfrm = TT_8X8;
1451 break;
1452 case FF_B_TYPE:
1453 if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
1454 else v->mvrange = 0;
1455 v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
1456 v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
1457 v->range_x = 1 << (v->k_x - 1);
1458 v->range_y = 1 << (v->k_y - 1);
1460 if (v->pq < 5) v->tt_index = 0;
1461 else if(v->pq < 13) v->tt_index = 1;
1462 else v->tt_index = 2;
1464 lowquant = (v->pq > 12) ? 0 : 1;
1465 v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
1466 v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
1467 v->s.mspel = v->s.quarter_sample;
1469 status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
1470 if (status < 0) return -1;
1471 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
1472 "Imode: %i, Invert: %i\n", status>>1, status&1);
1473 status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
1474 if (status < 0) return -1;
1475 av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
1476 "Imode: %i, Invert: %i\n", status>>1, status&1);
1478 v->s.mv_table_index = get_bits(gb, 2);
1479 v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
1481 if (v->dquant)
1483 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1484 vop_dquant_decoding(v);
1487 v->ttfrm = 0;
1488 if (v->vstransform)
1490 v->ttmbf = get_bits1(gb);
1491 if (v->ttmbf)
1493 v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
1495 } else {
1496 v->ttmbf = 1;
1497 v->ttfrm = TT_8X8;
1499 break;
1502 /* AC Syntax */
1503 v->c_ac_table_index = decode012(gb);
1504 if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
1506 v->y_ac_table_index = decode012(gb);
1508 /* DC Syntax */
1509 v->s.dc_table_index = get_bits1(gb);
1510 if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
1511 av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
1512 vop_dquant_decoding(v);
1515 v->bi_type = 0;
1516 if(v->s.pict_type == FF_BI_TYPE) {
1517 v->s.pict_type = FF_B_TYPE;
1518 v->bi_type = 1;
1520 return 0;
1523 /***********************************************************************/
1525 * @defgroup vc1block VC-1 Block-level functions
1526 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1527 * @{
1531 * @def GET_MQUANT
1532 * @brief Get macroblock-level quantizer scale
1534 #define GET_MQUANT() \
1535 if (v->dquantfrm) \
1537 int edges = 0; \
1538 if (v->dqprofile == DQPROFILE_ALL_MBS) \
1540 if (v->dqbilevel) \
1542 mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
1544 else \
1546 mqdiff = get_bits(gb, 3); \
1547 if (mqdiff != 7) mquant = v->pq + mqdiff; \
1548 else mquant = get_bits(gb, 5); \
1551 if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
1552 edges = 1 << v->dqsbedge; \
1553 else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
1554 edges = (3 << v->dqsbedge) % 15; \
1555 else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
1556 edges = 15; \
1557 if((edges&1) && !s->mb_x) \
1558 mquant = v->altpq; \
1559 if((edges&2) && s->first_slice_line) \
1560 mquant = v->altpq; \
1561 if((edges&4) && s->mb_x == (s->mb_width - 1)) \
1562 mquant = v->altpq; \
1563 if((edges&8) && s->mb_y == (s->mb_height - 1)) \
1564 mquant = v->altpq; \
1568 * @def GET_MVDATA(_dmv_x, _dmv_y)
1569 * @brief Get MV differentials
1570 * @see MVDATA decoding from 8.3.5.2, p(1)20
1571 * @param _dmv_x Horizontal differential for decoded MV
1572 * @param _dmv_y Vertical differential for decoded MV
1574 #define GET_MVDATA(_dmv_x, _dmv_y) \
1575 index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
1576 VC1_MV_DIFF_VLC_BITS, 2); \
1577 if (index > 36) \
1579 mb_has_coeffs = 1; \
1580 index -= 37; \
1582 else mb_has_coeffs = 0; \
1583 s->mb_intra = 0; \
1584 if (!index) { _dmv_x = _dmv_y = 0; } \
1585 else if (index == 35) \
1587 _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
1588 _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
1590 else if (index == 36) \
1592 _dmv_x = 0; \
1593 _dmv_y = 0; \
1594 s->mb_intra = 1; \
1596 else \
1598 index1 = index%6; \
1599 if (!s->quarter_sample && index1 == 5) val = 1; \
1600 else val = 0; \
1601 if(size_table[index1] - val > 0) \
1602 val = get_bits(gb, size_table[index1] - val); \
1603 else val = 0; \
1604 sign = 0 - (val&1); \
1605 _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1607 index1 = index/6; \
1608 if (!s->quarter_sample && index1 == 5) val = 1; \
1609 else val = 0; \
1610 if(size_table[index1] - val > 0) \
1611 val = get_bits(gb, size_table[index1] - val); \
1612 else val = 0; \
1613 sign = 0 - (val&1); \
1614 _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1617 /** Predict and set motion vector
1619 static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
1621 int xy, wrap, off = 0;
1622 int16_t *A, *B, *C;
1623 int px, py;
1624 int sum;
1626 /* scale MV difference to be quad-pel */
1627 dmv_x <<= 1 - s->quarter_sample;
1628 dmv_y <<= 1 - s->quarter_sample;
1630 wrap = s->b8_stride;
1631 xy = s->block_index[n];
1633 if(s->mb_intra){
1634 s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
1635 s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
1636 s->current_picture.motion_val[1][xy][0] = 0;
1637 s->current_picture.motion_val[1][xy][1] = 0;
1638 if(mv1) { /* duplicate motion data for 1-MV block */
1639 s->current_picture.motion_val[0][xy + 1][0] = 0;
1640 s->current_picture.motion_val[0][xy + 1][1] = 0;
1641 s->current_picture.motion_val[0][xy + wrap][0] = 0;
1642 s->current_picture.motion_val[0][xy + wrap][1] = 0;
1643 s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
1644 s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
1645 s->current_picture.motion_val[1][xy + 1][0] = 0;
1646 s->current_picture.motion_val[1][xy + 1][1] = 0;
1647 s->current_picture.motion_val[1][xy + wrap][0] = 0;
1648 s->current_picture.motion_val[1][xy + wrap][1] = 0;
1649 s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
1650 s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
1652 return;
1655 C = s->current_picture.motion_val[0][xy - 1];
1656 A = s->current_picture.motion_val[0][xy - wrap];
1657 if(mv1)
1658 off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
1659 else {
1660 //in 4-MV mode different blocks have different B predictor position
1661 switch(n){
1662 case 0:
1663 off = (s->mb_x > 0) ? -1 : 1;
1664 break;
1665 case 1:
1666 off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
1667 break;
1668 case 2:
1669 off = 1;
1670 break;
1671 case 3:
1672 off = -1;
1675 B = s->current_picture.motion_val[0][xy - wrap + off];
1677 if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
1678 if(s->mb_width == 1) {
1679 px = A[0];
1680 py = A[1];
1681 } else {
1682 px = mid_pred(A[0], B[0], C[0]);
1683 py = mid_pred(A[1], B[1], C[1]);
1685 } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
1686 px = C[0];
1687 py = C[1];
1688 } else {
1689 px = py = 0;
1691 /* Pullback MV as specified in 8.3.5.3.4 */
1693 int qx, qy, X, Y;
1694 qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
1695 qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
1696 X = (s->mb_width << 6) - 4;
1697 Y = (s->mb_height << 6) - 4;
1698 if(mv1) {
1699 if(qx + px < -60) px = -60 - qx;
1700 if(qy + py < -60) py = -60 - qy;
1701 } else {
1702 if(qx + px < -28) px = -28 - qx;
1703 if(qy + py < -28) py = -28 - qy;
1705 if(qx + px > X) px = X - qx;
1706 if(qy + py > Y) py = Y - qy;
1708 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
1709 if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
1710 if(is_intra[xy - wrap])
1711 sum = FFABS(px) + FFABS(py);
1712 else
1713 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
1714 if(sum > 32) {
1715 if(get_bits1(&s->gb)) {
1716 px = A[0];
1717 py = A[1];
1718 } else {
1719 px = C[0];
1720 py = C[1];
1722 } else {
1723 if(is_intra[xy - 1])
1724 sum = FFABS(px) + FFABS(py);
1725 else
1726 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
1727 if(sum > 32) {
1728 if(get_bits1(&s->gb)) {
1729 px = A[0];
1730 py = A[1];
1731 } else {
1732 px = C[0];
1733 py = C[1];
1738 /* store MV using signed modulus of MV range defined in 4.11 */
1739 s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1740 s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
1741 if(mv1) { /* duplicate motion data for 1-MV block */
1742 s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
1743 s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
1744 s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
1745 s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
1746 s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
1747 s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
1751 /** Motion compensation for direct or interpolated blocks in B-frames
1753 static void vc1_interp_mc(VC1Context *v)
1755 MpegEncContext *s = &v->s;
1756 DSPContext *dsp = &v->s.dsp;
1757 uint8_t *srcY, *srcU, *srcV;
1758 int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
1760 if(!v->s.next_picture.data[0])return;
1762 mx = s->mv[1][0][0];
1763 my = s->mv[1][0][1];
1764 uvmx = (mx + ((mx & 3) == 3)) >> 1;
1765 uvmy = (my + ((my & 3) == 3)) >> 1;
1766 if(v->fastuvmc) {
1767 uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
1768 uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
1770 srcY = s->next_picture.data[0];
1771 srcU = s->next_picture.data[1];
1772 srcV = s->next_picture.data[2];
1774 src_x = s->mb_x * 16 + (mx >> 2);
1775 src_y = s->mb_y * 16 + (my >> 2);
1776 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
1777 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
1779 if(v->profile != PROFILE_ADVANCED){
1780 src_x = av_clip( src_x, -16, s->mb_width * 16);
1781 src_y = av_clip( src_y, -16, s->mb_height * 16);
1782 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
1783 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
1784 }else{
1785 src_x = av_clip( src_x, -17, s->avctx->coded_width);
1786 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
1787 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
1788 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
1791 srcY += src_y * s->linesize + src_x;
1792 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
1793 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
1795 /* for grayscale we should not try to read from unknown area */
1796 if(s->flags & CODEC_FLAG_GRAY) {
1797 srcU = s->edge_emu_buffer + 18 * s->linesize;
1798 srcV = s->edge_emu_buffer + 18 * s->linesize;
1801 if(v->rangeredfrm
1802 || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
1803 || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
1804 uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
1806 srcY -= s->mspel * (1 + s->linesize);
1807 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
1808 src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
1809 srcY = s->edge_emu_buffer;
1810 ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
1811 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
1812 ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
1813 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
1814 srcU = uvbuf;
1815 srcV = uvbuf + 16;
1816 /* if we deal with range reduction we need to scale source blocks */
1817 if(v->rangeredfrm) {
1818 int i, j;
1819 uint8_t *src, *src2;
1821 src = srcY;
1822 for(j = 0; j < 17 + s->mspel*2; j++) {
1823 for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
1824 src += s->linesize;
1826 src = srcU; src2 = srcV;
1827 for(j = 0; j < 9; j++) {
1828 for(i = 0; i < 9; i++) {
1829 src[i] = ((src[i] - 128) >> 1) + 128;
1830 src2[i] = ((src2[i] - 128) >> 1) + 128;
1832 src += s->uvlinesize;
1833 src2 += s->uvlinesize;
1836 srcY += s->mspel * (1 + s->linesize);
1839 if(s->mspel) {
1840 dxy = ((my & 3) << 2) | (mx & 3);
1841 dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
1842 dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
1843 srcY += s->linesize * 8;
1844 dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
1845 dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
1846 } else { // hpel mc
1847 dxy = (my & 2) | ((mx & 2) >> 1);
1849 if(!v->rnd)
1850 dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
1851 else
1852 dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
1855 if(s->flags & CODEC_FLAG_GRAY) return;
1856 /* Chroma MC always uses qpel blilinear */
1857 uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
1858 uvmx = (uvmx&3)<<1;
1859 uvmy = (uvmy&3)<<1;
1860 if(!v->rnd){
1861 dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
1862 dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
1863 }else{
1864 dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
1865 dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
1869 static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
1871 int n = bfrac;
1873 #if B_FRACTION_DEN==256
1874 if(inv)
1875 n -= 256;
1876 if(!qs)
1877 return 2 * ((value * n + 255) >> 9);
1878 return (value * n + 128) >> 8;
1879 #else
1880 if(inv)
1881 n -= B_FRACTION_DEN;
1882 if(!qs)
1883 return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
1884 return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
1885 #endif
1888 /** Reconstruct motion vector for B-frame and do motion compensation
1890 static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
1892 if(v->use_ic) {
1893 v->mv_mode2 = v->mv_mode;
1894 v->mv_mode = MV_PMODE_INTENSITY_COMP;
1896 if(direct) {
1897 vc1_mc_1mv(v, 0);
1898 vc1_interp_mc(v);
1899 if(v->use_ic) v->mv_mode = v->mv_mode2;
1900 return;
1902 if(mode == BMV_TYPE_INTERPOLATED) {
1903 vc1_mc_1mv(v, 0);
1904 vc1_interp_mc(v);
1905 if(v->use_ic) v->mv_mode = v->mv_mode2;
1906 return;
1909 if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
1910 vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
1911 if(v->use_ic) v->mv_mode = v->mv_mode2;
1914 static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
1916 MpegEncContext *s = &v->s;
1917 int xy, wrap, off = 0;
1918 int16_t *A, *B, *C;
1919 int px, py;
1920 int sum;
1921 int r_x, r_y;
1922 const uint8_t *is_intra = v->mb_type[0];
1924 r_x = v->range_x;
1925 r_y = v->range_y;
1926 /* scale MV difference to be quad-pel */
1927 dmv_x[0] <<= 1 - s->quarter_sample;
1928 dmv_y[0] <<= 1 - s->quarter_sample;
1929 dmv_x[1] <<= 1 - s->quarter_sample;
1930 dmv_y[1] <<= 1 - s->quarter_sample;
1932 wrap = s->b8_stride;
1933 xy = s->block_index[0];
1935 if(s->mb_intra) {
1936 s->current_picture.motion_val[0][xy][0] =
1937 s->current_picture.motion_val[0][xy][1] =
1938 s->current_picture.motion_val[1][xy][0] =
1939 s->current_picture.motion_val[1][xy][1] = 0;
1940 return;
1942 s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
1943 s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
1944 s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
1945 s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
1947 /* Pullback predicted motion vectors as specified in 8.4.5.4 */
1948 s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
1949 s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1950 s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
1951 s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
1952 if(direct) {
1953 s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
1954 s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
1955 s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
1956 s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
1957 return;
1960 if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
1961 C = s->current_picture.motion_val[0][xy - 2];
1962 A = s->current_picture.motion_val[0][xy - wrap*2];
1963 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1964 B = s->current_picture.motion_val[0][xy - wrap*2 + off];
1966 if(!s->mb_x) C[0] = C[1] = 0;
1967 if(!s->first_slice_line) { // predictor A is not out of bounds
1968 if(s->mb_width == 1) {
1969 px = A[0];
1970 py = A[1];
1971 } else {
1972 px = mid_pred(A[0], B[0], C[0]);
1973 py = mid_pred(A[1], B[1], C[1]);
1975 } else if(s->mb_x) { // predictor C is not out of bounds
1976 px = C[0];
1977 py = C[1];
1978 } else {
1979 px = py = 0;
1981 /* Pullback MV as specified in 8.3.5.3.4 */
1983 int qx, qy, X, Y;
1984 if(v->profile < PROFILE_ADVANCED) {
1985 qx = (s->mb_x << 5);
1986 qy = (s->mb_y << 5);
1987 X = (s->mb_width << 5) - 4;
1988 Y = (s->mb_height << 5) - 4;
1989 if(qx + px < -28) px = -28 - qx;
1990 if(qy + py < -28) py = -28 - qy;
1991 if(qx + px > X) px = X - qx;
1992 if(qy + py > Y) py = Y - qy;
1993 } else {
1994 qx = (s->mb_x << 6);
1995 qy = (s->mb_y << 6);
1996 X = (s->mb_width << 6) - 4;
1997 Y = (s->mb_height << 6) - 4;
1998 if(qx + px < -60) px = -60 - qx;
1999 if(qy + py < -60) py = -60 - qy;
2000 if(qx + px > X) px = X - qx;
2001 if(qy + py > Y) py = Y - qy;
2004 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2005 if(0 && !s->first_slice_line && s->mb_x) {
2006 if(is_intra[xy - wrap])
2007 sum = FFABS(px) + FFABS(py);
2008 else
2009 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2010 if(sum > 32) {
2011 if(get_bits1(&s->gb)) {
2012 px = A[0];
2013 py = A[1];
2014 } else {
2015 px = C[0];
2016 py = C[1];
2018 } else {
2019 if(is_intra[xy - 2])
2020 sum = FFABS(px) + FFABS(py);
2021 else
2022 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2023 if(sum > 32) {
2024 if(get_bits1(&s->gb)) {
2025 px = A[0];
2026 py = A[1];
2027 } else {
2028 px = C[0];
2029 py = C[1];
2034 /* store MV using signed modulus of MV range defined in 4.11 */
2035 s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
2036 s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
2038 if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2039 C = s->current_picture.motion_val[1][xy - 2];
2040 A = s->current_picture.motion_val[1][xy - wrap*2];
2041 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2042 B = s->current_picture.motion_val[1][xy - wrap*2 + off];
2044 if(!s->mb_x) C[0] = C[1] = 0;
2045 if(!s->first_slice_line) { // predictor A is not out of bounds
2046 if(s->mb_width == 1) {
2047 px = A[0];
2048 py = A[1];
2049 } else {
2050 px = mid_pred(A[0], B[0], C[0]);
2051 py = mid_pred(A[1], B[1], C[1]);
2053 } else if(s->mb_x) { // predictor C is not out of bounds
2054 px = C[0];
2055 py = C[1];
2056 } else {
2057 px = py = 0;
2059 /* Pullback MV as specified in 8.3.5.3.4 */
2061 int qx, qy, X, Y;
2062 if(v->profile < PROFILE_ADVANCED) {
2063 qx = (s->mb_x << 5);
2064 qy = (s->mb_y << 5);
2065 X = (s->mb_width << 5) - 4;
2066 Y = (s->mb_height << 5) - 4;
2067 if(qx + px < -28) px = -28 - qx;
2068 if(qy + py < -28) py = -28 - qy;
2069 if(qx + px > X) px = X - qx;
2070 if(qy + py > Y) py = Y - qy;
2071 } else {
2072 qx = (s->mb_x << 6);
2073 qy = (s->mb_y << 6);
2074 X = (s->mb_width << 6) - 4;
2075 Y = (s->mb_height << 6) - 4;
2076 if(qx + px < -60) px = -60 - qx;
2077 if(qy + py < -60) py = -60 - qy;
2078 if(qx + px > X) px = X - qx;
2079 if(qy + py > Y) py = Y - qy;
2082 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2083 if(0 && !s->first_slice_line && s->mb_x) {
2084 if(is_intra[xy - wrap])
2085 sum = FFABS(px) + FFABS(py);
2086 else
2087 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2088 if(sum > 32) {
2089 if(get_bits1(&s->gb)) {
2090 px = A[0];
2091 py = A[1];
2092 } else {
2093 px = C[0];
2094 py = C[1];
2096 } else {
2097 if(is_intra[xy - 2])
2098 sum = FFABS(px) + FFABS(py);
2099 else
2100 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2101 if(sum > 32) {
2102 if(get_bits1(&s->gb)) {
2103 px = A[0];
2104 py = A[1];
2105 } else {
2106 px = C[0];
2107 py = C[1];
2112 /* store MV using signed modulus of MV range defined in 4.11 */
2114 s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
2115 s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
2117 s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
2118 s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
2119 s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
2120 s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
2123 /** Get predicted DC value for I-frames only
2124 * prediction dir: left=0, top=1
2125 * @param s MpegEncContext
2126 * @param overlap flag indicating that overlap filtering is used
2127 * @param pq integer part of picture quantizer
2128 * @param[in] n block index in the current MB
2129 * @param dc_val_ptr Pointer to DC predictor
2130 * @param dir_ptr Prediction direction for use in AC prediction
2132 static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2133 int16_t **dc_val_ptr, int *dir_ptr)
2135 int a, b, c, wrap, pred, scale;
2136 int16_t *dc_val;
2137 static const uint16_t dcpred[32] = {
2138 -1, 1024, 512, 341, 256, 205, 171, 146, 128,
2139 114, 102, 93, 85, 79, 73, 68, 64,
2140 60, 57, 54, 51, 49, 47, 45, 43,
2141 41, 39, 38, 37, 35, 34, 33
2144 /* find prediction - wmv3_dc_scale always used here in fact */
2145 if (n < 4) scale = s->y_dc_scale;
2146 else scale = s->c_dc_scale;
2148 wrap = s->block_wrap[n];
2149 dc_val= s->dc_val[0] + s->block_index[n];
2151 /* B A
2152 * C X
2154 c = dc_val[ - 1];
2155 b = dc_val[ - 1 - wrap];
2156 a = dc_val[ - wrap];
2158 if (pq < 9 || !overlap)
2160 /* Set outer values */
2161 if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
2162 if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
2164 else
2166 /* Set outer values */
2167 if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
2168 if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
2171 if (abs(a - b) <= abs(b - c)) {
2172 pred = c;
2173 *dir_ptr = 1;//left
2174 } else {
2175 pred = a;
2176 *dir_ptr = 0;//top
2179 /* update predictor */
2180 *dc_val_ptr = &dc_val[0];
2181 return pred;
2185 /** Get predicted DC value
2186 * prediction dir: left=0, top=1
2187 * @param s MpegEncContext
2188 * @param overlap flag indicating that overlap filtering is used
2189 * @param pq integer part of picture quantizer
2190 * @param[in] n block index in the current MB
2191 * @param a_avail flag indicating top block availability
2192 * @param c_avail flag indicating left block availability
2193 * @param dc_val_ptr Pointer to DC predictor
2194 * @param dir_ptr Prediction direction for use in AC prediction
2196 static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2197 int a_avail, int c_avail,
2198 int16_t **dc_val_ptr, int *dir_ptr)
2200 int a, b, c, wrap, pred, scale;
2201 int16_t *dc_val;
2202 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2203 int q1, q2 = 0;
2205 /* find prediction - wmv3_dc_scale always used here in fact */
2206 if (n < 4) scale = s->y_dc_scale;
2207 else scale = s->c_dc_scale;
2209 wrap = s->block_wrap[n];
2210 dc_val= s->dc_val[0] + s->block_index[n];
2212 /* B A
2213 * C X
2215 c = dc_val[ - 1];
2216 b = dc_val[ - 1 - wrap];
2217 a = dc_val[ - wrap];
2218 /* scale predictors if needed */
2219 q1 = s->current_picture.qscale_table[mb_pos];
2220 if(c_avail && (n!= 1 && n!=3)) {
2221 q2 = s->current_picture.qscale_table[mb_pos - 1];
2222 if(q2 && q2 != q1)
2223 c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2225 if(a_avail && (n!= 2 && n!=3)) {
2226 q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2227 if(q2 && q2 != q1)
2228 a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2230 if(a_avail && c_avail && (n!=3)) {
2231 int off = mb_pos;
2232 if(n != 1) off--;
2233 if(n != 2) off -= s->mb_stride;
2234 q2 = s->current_picture.qscale_table[off];
2235 if(q2 && q2 != q1)
2236 b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2239 if(a_avail && c_avail) {
2240 if(abs(a - b) <= abs(b - c)) {
2241 pred = c;
2242 *dir_ptr = 1;//left
2243 } else {
2244 pred = a;
2245 *dir_ptr = 0;//top
2247 } else if(a_avail) {
2248 pred = a;
2249 *dir_ptr = 0;//top
2250 } else if(c_avail) {
2251 pred = c;
2252 *dir_ptr = 1;//left
2253 } else {
2254 pred = 0;
2255 *dir_ptr = 1;//left
2258 /* update predictor */
2259 *dc_val_ptr = &dc_val[0];
2260 return pred;
2263 /** @} */ // Block group
2266 * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
2267 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
2268 * @{
2271 static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
2273 int xy, wrap, pred, a, b, c;
2275 xy = s->block_index[n];
2276 wrap = s->b8_stride;
2278 /* B C
2279 * A X
2281 a = s->coded_block[xy - 1 ];
2282 b = s->coded_block[xy - 1 - wrap];
2283 c = s->coded_block[xy - wrap];
2285 if (b == c) {
2286 pred = a;
2287 } else {
2288 pred = c;
2291 /* store value */
2292 *coded_block_ptr = &s->coded_block[xy];
2294 return pred;
2298 * Decode one AC coefficient
2299 * @param v The VC1 context
2300 * @param last Last coefficient
2301 * @param skip How much zero coefficients to skip
2302 * @param value Decoded AC coefficient value
2303 * @param codingset set of VLC to decode data
2304 * @see 8.1.3.4
2306 static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
2308 GetBitContext *gb = &v->s.gb;
2309 int index, escape, run = 0, level = 0, lst = 0;
2311 index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2312 if (index != vc1_ac_sizes[codingset] - 1) {
2313 run = vc1_index_decode_table[codingset][index][0];
2314 level = vc1_index_decode_table[codingset][index][1];
2315 lst = index >= vc1_last_decode_table[codingset];
2316 if(get_bits1(gb))
2317 level = -level;
2318 } else {
2319 escape = decode210(gb);
2320 if (escape != 2) {
2321 index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2322 run = vc1_index_decode_table[codingset][index][0];
2323 level = vc1_index_decode_table[codingset][index][1];
2324 lst = index >= vc1_last_decode_table[codingset];
2325 if(escape == 0) {
2326 if(lst)
2327 level += vc1_last_delta_level_table[codingset][run];
2328 else
2329 level += vc1_delta_level_table[codingset][run];
2330 } else {
2331 if(lst)
2332 run += vc1_last_delta_run_table[codingset][level] + 1;
2333 else
2334 run += vc1_delta_run_table[codingset][level] + 1;
2336 if(get_bits1(gb))
2337 level = -level;
2338 } else {
2339 int sign;
2340 lst = get_bits1(gb);
2341 if(v->s.esc3_level_length == 0) {
2342 if(v->pq < 8 || v->dquantfrm) { // table 59
2343 v->s.esc3_level_length = get_bits(gb, 3);
2344 if(!v->s.esc3_level_length)
2345 v->s.esc3_level_length = get_bits(gb, 2) + 8;
2346 } else { //table 60
2347 v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
2349 v->s.esc3_run_length = 3 + get_bits(gb, 2);
2351 run = get_bits(gb, v->s.esc3_run_length);
2352 sign = get_bits1(gb);
2353 level = get_bits(gb, v->s.esc3_level_length);
2354 if(sign)
2355 level = -level;
2359 *last = lst;
2360 *skip = run;
2361 *value = level;
2364 /** Decode intra block in intra frames - should be faster than decode_intra_block
2365 * @param v VC1Context
2366 * @param block block to decode
2367 * @param[in] n subblock index
2368 * @param coded are AC coeffs present or not
2369 * @param codingset set of VLC to decode data
2371 static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
2373 GetBitContext *gb = &v->s.gb;
2374 MpegEncContext *s = &v->s;
2375 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2376 int run_diff, i;
2377 int16_t *dc_val;
2378 int16_t *ac_val, *ac_val2;
2379 int dcdiff;
2381 /* Get DC differential */
2382 if (n < 4) {
2383 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2384 } else {
2385 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2387 if (dcdiff < 0){
2388 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2389 return -1;
2391 if (dcdiff)
2393 if (dcdiff == 119 /* ESC index value */)
2395 /* TODO: Optimize */
2396 if (v->pq == 1) dcdiff = get_bits(gb, 10);
2397 else if (v->pq == 2) dcdiff = get_bits(gb, 9);
2398 else dcdiff = get_bits(gb, 8);
2400 else
2402 if (v->pq == 1)
2403 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2404 else if (v->pq == 2)
2405 dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
2407 if (get_bits1(gb))
2408 dcdiff = -dcdiff;
2411 /* Prediction */
2412 dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
2413 *dc_val = dcdiff;
2415 /* Store the quantized DC coeff, used for prediction */
2416 if (n < 4) {
2417 block[0] = dcdiff * s->y_dc_scale;
2418 } else {
2419 block[0] = dcdiff * s->c_dc_scale;
2421 /* Skip ? */
2422 run_diff = 0;
2423 i = 0;
2424 if (!coded) {
2425 goto not_coded;
2428 //AC Decoding
2429 i = 1;
2432 int last = 0, skip, value;
2433 const int8_t *zz_table;
2434 int scale;
2435 int k;
2437 scale = v->pq * 2 + v->halfpq;
2439 if(v->s.ac_pred) {
2440 if(!dc_pred_dir)
2441 zz_table = wmv1_scantable[2];
2442 else
2443 zz_table = wmv1_scantable[3];
2444 } else
2445 zz_table = wmv1_scantable[1];
2447 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2448 ac_val2 = ac_val;
2449 if(dc_pred_dir) //left
2450 ac_val -= 16;
2451 else //top
2452 ac_val -= 16 * s->block_wrap[n];
2454 while (!last) {
2455 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2456 i += skip;
2457 if(i > 63)
2458 break;
2459 block[zz_table[i++]] = value;
2462 /* apply AC prediction if needed */
2463 if(s->ac_pred) {
2464 if(dc_pred_dir) { //left
2465 for(k = 1; k < 8; k++)
2466 block[k << 3] += ac_val[k];
2467 } else { //top
2468 for(k = 1; k < 8; k++)
2469 block[k] += ac_val[k + 8];
2472 /* save AC coeffs for further prediction */
2473 for(k = 1; k < 8; k++) {
2474 ac_val2[k] = block[k << 3];
2475 ac_val2[k + 8] = block[k];
2478 /* scale AC coeffs */
2479 for(k = 1; k < 64; k++)
2480 if(block[k]) {
2481 block[k] *= scale;
2482 if(!v->pquantizer)
2483 block[k] += (block[k] < 0) ? -v->pq : v->pq;
2486 if(s->ac_pred) i = 63;
2489 not_coded:
2490 if(!coded) {
2491 int k, scale;
2492 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2493 ac_val2 = ac_val;
2495 scale = v->pq * 2 + v->halfpq;
2496 memset(ac_val2, 0, 16 * 2);
2497 if(dc_pred_dir) {//left
2498 ac_val -= 16;
2499 if(s->ac_pred)
2500 memcpy(ac_val2, ac_val, 8 * 2);
2501 } else {//top
2502 ac_val -= 16 * s->block_wrap[n];
2503 if(s->ac_pred)
2504 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2507 /* apply AC prediction if needed */
2508 if(s->ac_pred) {
2509 if(dc_pred_dir) { //left
2510 for(k = 1; k < 8; k++) {
2511 block[k << 3] = ac_val[k] * scale;
2512 if(!v->pquantizer && block[k << 3])
2513 block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
2515 } else { //top
2516 for(k = 1; k < 8; k++) {
2517 block[k] = ac_val[k + 8] * scale;
2518 if(!v->pquantizer && block[k])
2519 block[k] += (block[k] < 0) ? -v->pq : v->pq;
2522 i = 63;
2525 s->block_last_index[n] = i;
2527 return 0;
2530 /** Decode intra block in intra frames - should be faster than decode_intra_block
2531 * @param v VC1Context
2532 * @param block block to decode
2533 * @param[in] n subblock number
2534 * @param coded are AC coeffs present or not
2535 * @param codingset set of VLC to decode data
2536 * @param mquant quantizer value for this macroblock
2538 static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
2540 GetBitContext *gb = &v->s.gb;
2541 MpegEncContext *s = &v->s;
2542 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2543 int run_diff, i;
2544 int16_t *dc_val;
2545 int16_t *ac_val, *ac_val2;
2546 int dcdiff;
2547 int a_avail = v->a_avail, c_avail = v->c_avail;
2548 int use_pred = s->ac_pred;
2549 int scale;
2550 int q1, q2 = 0;
2551 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2553 /* Get DC differential */
2554 if (n < 4) {
2555 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2556 } else {
2557 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2559 if (dcdiff < 0){
2560 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2561 return -1;
2563 if (dcdiff)
2565 if (dcdiff == 119 /* ESC index value */)
2567 /* TODO: Optimize */
2568 if (mquant == 1) dcdiff = get_bits(gb, 10);
2569 else if (mquant == 2) dcdiff = get_bits(gb, 9);
2570 else dcdiff = get_bits(gb, 8);
2572 else
2574 if (mquant == 1)
2575 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2576 else if (mquant == 2)
2577 dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
2579 if (get_bits1(gb))
2580 dcdiff = -dcdiff;
2583 /* Prediction */
2584 dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
2585 *dc_val = dcdiff;
2587 /* Store the quantized DC coeff, used for prediction */
2588 if (n < 4) {
2589 block[0] = dcdiff * s->y_dc_scale;
2590 } else {
2591 block[0] = dcdiff * s->c_dc_scale;
2593 /* Skip ? */
2594 run_diff = 0;
2595 i = 0;
2597 //AC Decoding
2598 i = 1;
2600 /* check if AC is needed at all */
2601 if(!a_avail && !c_avail) use_pred = 0;
2602 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2603 ac_val2 = ac_val;
2605 scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
2607 if(dc_pred_dir) //left
2608 ac_val -= 16;
2609 else //top
2610 ac_val -= 16 * s->block_wrap[n];
2612 q1 = s->current_picture.qscale_table[mb_pos];
2613 if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
2614 if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2615 if(dc_pred_dir && n==1) q2 = q1;
2616 if(!dc_pred_dir && n==2) q2 = q1;
2617 if(n==3) q2 = q1;
2619 if(coded) {
2620 int last = 0, skip, value;
2621 const int8_t *zz_table;
2622 int k;
2624 if(v->s.ac_pred) {
2625 if(!dc_pred_dir)
2626 zz_table = wmv1_scantable[2];
2627 else
2628 zz_table = wmv1_scantable[3];
2629 } else
2630 zz_table = wmv1_scantable[1];
2632 while (!last) {
2633 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2634 i += skip;
2635 if(i > 63)
2636 break;
2637 block[zz_table[i++]] = value;
2640 /* apply AC prediction if needed */
2641 if(use_pred) {
2642 /* scale predictors if needed*/
2643 if(q2 && q1!=q2) {
2644 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2645 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2647 if(dc_pred_dir) { //left
2648 for(k = 1; k < 8; k++)
2649 block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2650 } else { //top
2651 for(k = 1; k < 8; k++)
2652 block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2654 } else {
2655 if(dc_pred_dir) { //left
2656 for(k = 1; k < 8; k++)
2657 block[k << 3] += ac_val[k];
2658 } else { //top
2659 for(k = 1; k < 8; k++)
2660 block[k] += ac_val[k + 8];
2664 /* save AC coeffs for further prediction */
2665 for(k = 1; k < 8; k++) {
2666 ac_val2[k] = block[k << 3];
2667 ac_val2[k + 8] = block[k];
2670 /* scale AC coeffs */
2671 for(k = 1; k < 64; k++)
2672 if(block[k]) {
2673 block[k] *= scale;
2674 if(!v->pquantizer)
2675 block[k] += (block[k] < 0) ? -mquant : mquant;
2678 if(use_pred) i = 63;
2679 } else { // no AC coeffs
2680 int k;
2682 memset(ac_val2, 0, 16 * 2);
2683 if(dc_pred_dir) {//left
2684 if(use_pred) {
2685 memcpy(ac_val2, ac_val, 8 * 2);
2686 if(q2 && q1!=q2) {
2687 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2688 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2689 for(k = 1; k < 8; k++)
2690 ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2693 } else {//top
2694 if(use_pred) {
2695 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2696 if(q2 && q1!=q2) {
2697 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2698 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2699 for(k = 1; k < 8; k++)
2700 ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2705 /* apply AC prediction if needed */
2706 if(use_pred) {
2707 if(dc_pred_dir) { //left
2708 for(k = 1; k < 8; k++) {
2709 block[k << 3] = ac_val2[k] * scale;
2710 if(!v->pquantizer && block[k << 3])
2711 block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
2713 } else { //top
2714 for(k = 1; k < 8; k++) {
2715 block[k] = ac_val2[k + 8] * scale;
2716 if(!v->pquantizer && block[k])
2717 block[k] += (block[k] < 0) ? -mquant : mquant;
2720 i = 63;
2723 s->block_last_index[n] = i;
2725 return 0;
2728 /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
2729 * @param v VC1Context
2730 * @param block block to decode
2731 * @param[in] n subblock index
2732 * @param coded are AC coeffs present or not
2733 * @param mquant block quantizer
2734 * @param codingset set of VLC to decode data
2736 static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
2738 GetBitContext *gb = &v->s.gb;
2739 MpegEncContext *s = &v->s;
2740 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2741 int run_diff, i;
2742 int16_t *dc_val;
2743 int16_t *ac_val, *ac_val2;
2744 int dcdiff;
2745 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2746 int a_avail = v->a_avail, c_avail = v->c_avail;
2747 int use_pred = s->ac_pred;
2748 int scale;
2749 int q1, q2 = 0;
2751 /* XXX: Guard against dumb values of mquant */
2752 mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
2754 /* Set DC scale - y and c use the same */
2755 s->y_dc_scale = s->y_dc_scale_table[mquant];
2756 s->c_dc_scale = s->c_dc_scale_table[mquant];
2758 /* Get DC differential */
2759 if (n < 4) {
2760 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2761 } else {
2762 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2764 if (dcdiff < 0){
2765 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2766 return -1;
2768 if (dcdiff)
2770 if (dcdiff == 119 /* ESC index value */)
2772 /* TODO: Optimize */
2773 if (mquant == 1) dcdiff = get_bits(gb, 10);
2774 else if (mquant == 2) dcdiff = get_bits(gb, 9);
2775 else dcdiff = get_bits(gb, 8);
2777 else
2779 if (mquant == 1)
2780 dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
2781 else if (mquant == 2)
2782 dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
2784 if (get_bits1(gb))
2785 dcdiff = -dcdiff;
2788 /* Prediction */
2789 dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
2790 *dc_val = dcdiff;
2792 /* Store the quantized DC coeff, used for prediction */
2794 if (n < 4) {
2795 block[0] = dcdiff * s->y_dc_scale;
2796 } else {
2797 block[0] = dcdiff * s->c_dc_scale;
2799 /* Skip ? */
2800 run_diff = 0;
2801 i = 0;
2803 //AC Decoding
2804 i = 1;
2806 /* check if AC is needed at all and adjust direction if needed */
2807 if(!a_avail) dc_pred_dir = 1;
2808 if(!c_avail) dc_pred_dir = 0;
2809 if(!a_avail && !c_avail) use_pred = 0;
2810 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2811 ac_val2 = ac_val;
2813 scale = mquant * 2 + v->halfpq;
2815 if(dc_pred_dir) //left
2816 ac_val -= 16;
2817 else //top
2818 ac_val -= 16 * s->block_wrap[n];
2820 q1 = s->current_picture.qscale_table[mb_pos];
2821 if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
2822 if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
2823 if(dc_pred_dir && n==1) q2 = q1;
2824 if(!dc_pred_dir && n==2) q2 = q1;
2825 if(n==3) q2 = q1;
2827 if(coded) {
2828 int last = 0, skip, value;
2829 const int8_t *zz_table;
2830 int k;
2832 zz_table = wmv1_scantable[0];
2834 while (!last) {
2835 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2836 i += skip;
2837 if(i > 63)
2838 break;
2839 block[zz_table[i++]] = value;
2842 /* apply AC prediction if needed */
2843 if(use_pred) {
2844 /* scale predictors if needed*/
2845 if(q2 && q1!=q2) {
2846 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2847 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2849 if(dc_pred_dir) { //left
2850 for(k = 1; k < 8; k++)
2851 block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2852 } else { //top
2853 for(k = 1; k < 8; k++)
2854 block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2856 } else {
2857 if(dc_pred_dir) { //left
2858 for(k = 1; k < 8; k++)
2859 block[k << 3] += ac_val[k];
2860 } else { //top
2861 for(k = 1; k < 8; k++)
2862 block[k] += ac_val[k + 8];
2866 /* save AC coeffs for further prediction */
2867 for(k = 1; k < 8; k++) {
2868 ac_val2[k] = block[k << 3];
2869 ac_val2[k + 8] = block[k];
2872 /* scale AC coeffs */
2873 for(k = 1; k < 64; k++)
2874 if(block[k]) {
2875 block[k] *= scale;
2876 if(!v->pquantizer)
2877 block[k] += (block[k] < 0) ? -mquant : mquant;
2880 if(use_pred) i = 63;
2881 } else { // no AC coeffs
2882 int k;
2884 memset(ac_val2, 0, 16 * 2);
2885 if(dc_pred_dir) {//left
2886 if(use_pred) {
2887 memcpy(ac_val2, ac_val, 8 * 2);
2888 if(q2 && q1!=q2) {
2889 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2890 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2891 for(k = 1; k < 8; k++)
2892 ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2895 } else {//top
2896 if(use_pred) {
2897 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2898 if(q2 && q1!=q2) {
2899 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2900 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2901 for(k = 1; k < 8; k++)
2902 ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2907 /* apply AC prediction if needed */
2908 if(use_pred) {
2909 if(dc_pred_dir) { //left
2910 for(k = 1; k < 8; k++) {
2911 block[k << 3] = ac_val2[k] * scale;
2912 if(!v->pquantizer && block[k << 3])
2913 block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
2915 } else { //top
2916 for(k = 1; k < 8; k++) {
2917 block[k] = ac_val2[k + 8] * scale;
2918 if(!v->pquantizer && block[k])
2919 block[k] += (block[k] < 0) ? -mquant : mquant;
2922 i = 63;
2925 s->block_last_index[n] = i;
2927 return 0;
2930 /** Decode P block
2932 static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
2933 uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
2935 MpegEncContext *s = &v->s;
2936 GetBitContext *gb = &s->gb;
2937 int i, j;
2938 int subblkpat = 0;
2939 int scale, off, idx, last, skip, value;
2940 int ttblk = ttmb & 7;
2941 int pat = 0;
2943 if(ttmb == -1) {
2944 ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
2946 if(ttblk == TT_4X4) {
2947 subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
2949 if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
2950 subblkpat = decode012(gb);
2951 if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
2952 if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
2953 if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
2955 scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
2957 // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
2958 if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
2959 subblkpat = 2 - (ttblk == TT_8X4_TOP);
2960 ttblk = TT_8X4;
2962 if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
2963 subblkpat = 2 - (ttblk == TT_4X8_LEFT);
2964 ttblk = TT_4X8;
2966 switch(ttblk) {
2967 case TT_8X8:
2968 pat = 0xF;
2969 i = 0;
2970 last = 0;
2971 while (!last) {
2972 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2973 i += skip;
2974 if(i > 63)
2975 break;
2976 idx = wmv1_scantable[0][i++];
2977 block[idx] = value * scale;
2978 if(!v->pquantizer)
2979 block[idx] += (block[idx] < 0) ? -mquant : mquant;
2981 if(!skip_block){
2982 s->dsp.vc1_inv_trans_8x8(block);
2983 s->dsp.add_pixels_clamped(block, dst, linesize);
2984 if(apply_filter && cbp_top & 0xC)
2985 s->dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
2986 if(apply_filter && cbp_left & 0xA)
2987 s->dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
2989 break;
2990 case TT_4X4:
2991 pat = ~subblkpat & 0xF;
2992 for(j = 0; j < 4; j++) {
2993 last = subblkpat & (1 << (3 - j));
2994 i = 0;
2995 off = (j & 1) * 4 + (j & 2) * 16;
2996 while (!last) {
2997 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
2998 i += skip;
2999 if(i > 15)
3000 break;
3001 idx = ff_vc1_simple_progressive_4x4_zz[i++];
3002 block[idx + off] = value * scale;
3003 if(!v->pquantizer)
3004 block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3006 if(!(subblkpat & (1 << (3 - j))) && !skip_block){
3007 s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
3008 if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
3009 s->dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
3010 if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
3011 s->dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
3014 break;
3015 case TT_8X4:
3016 pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
3017 for(j = 0; j < 2; j++) {
3018 last = subblkpat & (1 << (1 - j));
3019 i = 0;
3020 off = j * 32;
3021 while (!last) {
3022 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3023 i += skip;
3024 if(i > 31)
3025 break;
3026 idx = v->zz_8x4[i++]+off;
3027 block[idx] = value * scale;
3028 if(!v->pquantizer)
3029 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3031 if(!(subblkpat & (1 << (1 - j))) && !skip_block){
3032 s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
3033 if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
3034 s->dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
3035 if(apply_filter && cbp_left & (2 << j))
3036 s->dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
3039 break;
3040 case TT_4X8:
3041 pat = ~(subblkpat*5) & 0xF;
3042 for(j = 0; j < 2; j++) {
3043 last = subblkpat & (1 << (1 - j));
3044 i = 0;
3045 off = j * 4;
3046 while (!last) {
3047 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3048 i += skip;
3049 if(i > 31)
3050 break;
3051 idx = v->zz_4x8[i++]+off;
3052 block[idx] = value * scale;
3053 if(!v->pquantizer)
3054 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3056 if(!(subblkpat & (1 << (1 - j))) && !skip_block){
3057 s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
3058 if(apply_filter && cbp_top & (2 << j))
3059 s->dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
3060 if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
3061 s->dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
3064 break;
3066 return pat;
3069 /** @} */ // Macroblock group
3071 static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
3072 static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3074 /** Decode one P-frame MB (in Simple/Main profile)
3076 static int vc1_decode_p_mb(VC1Context *v)
3078 MpegEncContext *s = &v->s;
3079 GetBitContext *gb = &s->gb;
3080 int i, j;
3081 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3082 int cbp; /* cbp decoding stuff */
3083 int mqdiff, mquant; /* MB quantization */
3084 int ttmb = v->ttfrm; /* MB Transform type */
3086 int mb_has_coeffs = 1; /* last_flag */
3087 int dmv_x, dmv_y; /* Differential MV components */
3088 int index, index1; /* LUT indexes */
3089 int val, sign; /* temp values */
3090 int first_block = 1;
3091 int dst_idx, off;
3092 int skipped, fourmv;
3093 int block_cbp = 0, pat;
3094 int apply_loop_filter;
3096 mquant = v->pq; /* Loosy initialization */
3098 if (v->mv_type_is_raw)
3099 fourmv = get_bits1(gb);
3100 else
3101 fourmv = v->mv_type_mb_plane[mb_pos];
3102 if (v->skip_is_raw)
3103 skipped = get_bits1(gb);
3104 else
3105 skipped = v->s.mbskip_table[mb_pos];
3107 s->dsp.clear_blocks(s->block[0]);
3109 apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
3110 if (!fourmv) /* 1MV mode */
3112 if (!skipped)
3114 GET_MVDATA(dmv_x, dmv_y);
3116 if (s->mb_intra) {
3117 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3118 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3120 s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
3121 vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
3123 /* FIXME Set DC val for inter block ? */
3124 if (s->mb_intra && !mb_has_coeffs)
3126 GET_MQUANT();
3127 s->ac_pred = get_bits1(gb);
3128 cbp = 0;
3130 else if (mb_has_coeffs)
3132 if (s->mb_intra) s->ac_pred = get_bits1(gb);
3133 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3134 GET_MQUANT();
3136 else
3138 mquant = v->pq;
3139 cbp = 0;
3141 s->current_picture.qscale_table[mb_pos] = mquant;
3143 if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3144 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
3145 VC1_TTMB_VLC_BITS, 2);
3146 if(!s->mb_intra) vc1_mc_1mv(v, 0);
3147 dst_idx = 0;
3148 for (i=0; i<6; i++)
3150 s->dc_val[0][s->block_index[i]] = 0;
3151 dst_idx += i >> 2;
3152 val = ((cbp >> (5 - i)) & 1);
3153 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3154 v->mb_type[0][s->block_index[i]] = s->mb_intra;
3155 if(s->mb_intra) {
3156 /* check if prediction blocks A and C are available */
3157 v->a_avail = v->c_avail = 0;
3158 if(i == 2 || i == 3 || !s->first_slice_line)
3159 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3160 if(i == 1 || i == 3 || s->mb_x)
3161 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3163 vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
3164 if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3165 s->dsp.vc1_inv_trans_8x8(s->block[i]);
3166 if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3167 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3168 if(v->pq >= 9 && v->overlap) {
3169 if(v->c_avail)
3170 s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3171 if(v->a_avail)
3172 s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3174 if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
3175 int left_cbp, top_cbp;
3176 if(i & 4){
3177 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
3178 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
3179 }else{
3180 left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
3181 top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
3183 if(left_cbp & 0xC)
3184 s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
3185 if(top_cbp & 0xA)
3186 s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
3188 block_cbp |= 0xF << (i << 2);
3189 } else if(val) {
3190 int left_cbp = 0, top_cbp = 0, filter = 0;
3191 if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
3192 filter = 1;
3193 if(i & 4){
3194 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
3195 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
3196 }else{
3197 left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
3198 top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
3200 if(left_cbp & 0xC)
3201 s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
3202 if(top_cbp & 0xA)
3203 s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
3205 pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
3206 block_cbp |= pat << (i << 2);
3207 if(!v->ttmbf && ttmb < 8) ttmb = -1;
3208 first_block = 0;
3212 else //Skipped
3214 s->mb_intra = 0;
3215 for(i = 0; i < 6; i++) {
3216 v->mb_type[0][s->block_index[i]] = 0;
3217 s->dc_val[0][s->block_index[i]] = 0;
3219 s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
3220 s->current_picture.qscale_table[mb_pos] = 0;
3221 vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
3222 vc1_mc_1mv(v, 0);
3223 return 0;
3225 } //1MV mode
3226 else //4MV mode
3228 if (!skipped /* unskipped MB */)
3230 int intra_count = 0, coded_inter = 0;
3231 int is_intra[6], is_coded[6];
3232 /* Get CBPCY */
3233 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3234 for (i=0; i<6; i++)
3236 val = ((cbp >> (5 - i)) & 1);
3237 s->dc_val[0][s->block_index[i]] = 0;
3238 s->mb_intra = 0;
3239 if(i < 4) {
3240 dmv_x = dmv_y = 0;
3241 s->mb_intra = 0;
3242 mb_has_coeffs = 0;
3243 if(val) {
3244 GET_MVDATA(dmv_x, dmv_y);
3246 vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
3247 if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
3248 intra_count += s->mb_intra;
3249 is_intra[i] = s->mb_intra;
3250 is_coded[i] = mb_has_coeffs;
3252 if(i&4){
3253 is_intra[i] = (intra_count >= 3);
3254 is_coded[i] = val;
3256 if(i == 4) vc1_mc_4mv_chroma(v);
3257 v->mb_type[0][s->block_index[i]] = is_intra[i];
3258 if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
3260 // if there are no coded blocks then don't do anything more
3261 if(!intra_count && !coded_inter) return 0;
3262 dst_idx = 0;
3263 GET_MQUANT();
3264 s->current_picture.qscale_table[mb_pos] = mquant;
3265 /* test if block is intra and has pred */
3267 int intrapred = 0;
3268 for(i=0; i<6; i++)
3269 if(is_intra[i]) {
3270 if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
3271 || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
3272 intrapred = 1;
3273 break;
3276 if(intrapred)s->ac_pred = get_bits1(gb);
3277 else s->ac_pred = 0;
3279 if (!v->ttmbf && coded_inter)
3280 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3281 for (i=0; i<6; i++)
3283 dst_idx += i >> 2;
3284 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3285 s->mb_intra = is_intra[i];
3286 if (is_intra[i]) {
3287 /* check if prediction blocks A and C are available */
3288 v->a_avail = v->c_avail = 0;
3289 if(i == 2 || i == 3 || !s->first_slice_line)
3290 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3291 if(i == 1 || i == 3 || s->mb_x)
3292 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3294 vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
3295 if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3296 s->dsp.vc1_inv_trans_8x8(s->block[i]);
3297 if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3298 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
3299 if(v->pq >= 9 && v->overlap) {
3300 if(v->c_avail)
3301 s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3302 if(v->a_avail)
3303 s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3305 if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
3306 int left_cbp, top_cbp;
3307 if(i & 4){
3308 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
3309 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
3310 }else{
3311 left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
3312 top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
3314 if(left_cbp & 0xC)
3315 s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
3316 if(top_cbp & 0xA)
3317 s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
3319 block_cbp |= 0xF << (i << 2);
3320 } else if(is_coded[i]) {
3321 int left_cbp = 0, top_cbp = 0, filter = 0;
3322 if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
3323 filter = 1;
3324 if(i & 4){
3325 left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
3326 top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
3327 }else{
3328 left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
3329 top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
3331 if(left_cbp & 0xC)
3332 s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
3333 if(top_cbp & 0xA)
3334 s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
3336 pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
3337 block_cbp |= pat << (i << 2);
3338 if(!v->ttmbf && ttmb < 8) ttmb = -1;
3339 first_block = 0;
3342 return 0;
3344 else //Skipped MB
3346 s->mb_intra = 0;
3347 s->current_picture.qscale_table[mb_pos] = 0;
3348 for (i=0; i<6; i++) {
3349 v->mb_type[0][s->block_index[i]] = 0;
3350 s->dc_val[0][s->block_index[i]] = 0;
3352 for (i=0; i<4; i++)
3354 vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
3355 vc1_mc_4mv_luma(v, i);
3357 vc1_mc_4mv_chroma(v);
3358 s->current_picture.qscale_table[mb_pos] = 0;
3359 return 0;
3362 v->cbp[s->mb_x] = block_cbp;
3364 /* Should never happen */
3365 return -1;
3368 /** Decode one B-frame MB (in Main profile)
3370 static void vc1_decode_b_mb(VC1Context *v)
3372 MpegEncContext *s = &v->s;
3373 GetBitContext *gb = &s->gb;
3374 int i, j;
3375 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3376 int cbp = 0; /* cbp decoding stuff */
3377 int mqdiff, mquant; /* MB quantization */
3378 int ttmb = v->ttfrm; /* MB Transform type */
3379 int mb_has_coeffs = 0; /* last_flag */
3380 int index, index1; /* LUT indexes */
3381 int val, sign; /* temp values */
3382 int first_block = 1;
3383 int dst_idx, off;
3384 int skipped, direct;
3385 int dmv_x[2], dmv_y[2];
3386 int bmvtype = BMV_TYPE_BACKWARD;
3388 mquant = v->pq; /* Loosy initialization */
3389 s->mb_intra = 0;
3391 if (v->dmb_is_raw)
3392 direct = get_bits1(gb);
3393 else
3394 direct = v->direct_mb_plane[mb_pos];
3395 if (v->skip_is_raw)
3396 skipped = get_bits1(gb);
3397 else
3398 skipped = v->s.mbskip_table[mb_pos];
3400 s->dsp.clear_blocks(s->block[0]);
3401 dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
3402 for(i = 0; i < 6; i++) {
3403 v->mb_type[0][s->block_index[i]] = 0;
3404 s->dc_val[0][s->block_index[i]] = 0;
3406 s->current_picture.qscale_table[mb_pos] = 0;
3408 if (!direct) {
3409 if (!skipped) {
3410 GET_MVDATA(dmv_x[0], dmv_y[0]);
3411 dmv_x[1] = dmv_x[0];
3412 dmv_y[1] = dmv_y[0];
3414 if(skipped || !s->mb_intra) {
3415 bmvtype = decode012(gb);
3416 switch(bmvtype) {
3417 case 0:
3418 bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
3419 break;
3420 case 1:
3421 bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
3422 break;
3423 case 2:
3424 bmvtype = BMV_TYPE_INTERPOLATED;
3425 dmv_x[0] = dmv_y[0] = 0;
3429 for(i = 0; i < 6; i++)
3430 v->mb_type[0][s->block_index[i]] = s->mb_intra;
3432 if (skipped) {
3433 if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
3434 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3435 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3436 return;
3438 if (direct) {
3439 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3440 GET_MQUANT();
3441 s->mb_intra = 0;
3442 mb_has_coeffs = 0;
3443 s->current_picture.qscale_table[mb_pos] = mquant;
3444 if(!v->ttmbf)
3445 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3446 dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
3447 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3448 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3449 } else {
3450 if(!mb_has_coeffs && !s->mb_intra) {
3451 /* no coded blocks - effectively skipped */
3452 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3453 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3454 return;
3456 if(s->mb_intra && !mb_has_coeffs) {
3457 GET_MQUANT();
3458 s->current_picture.qscale_table[mb_pos] = mquant;
3459 s->ac_pred = get_bits1(gb);
3460 cbp = 0;
3461 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3462 } else {
3463 if(bmvtype == BMV_TYPE_INTERPOLATED) {
3464 GET_MVDATA(dmv_x[0], dmv_y[0]);
3465 if(!mb_has_coeffs) {
3466 /* interpolated skipped block */
3467 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3468 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3469 return;
3472 vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
3473 if(!s->mb_intra) {
3474 vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
3476 if(s->mb_intra)
3477 s->ac_pred = get_bits1(gb);
3478 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3479 GET_MQUANT();
3480 s->current_picture.qscale_table[mb_pos] = mquant;
3481 if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3482 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3485 dst_idx = 0;
3486 for (i=0; i<6; i++)
3488 s->dc_val[0][s->block_index[i]] = 0;
3489 dst_idx += i >> 2;
3490 val = ((cbp >> (5 - i)) & 1);
3491 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3492 v->mb_type[0][s->block_index[i]] = s->mb_intra;
3493 if(s->mb_intra) {
3494 /* check if prediction blocks A and C are available */
3495 v->a_avail = v->c_avail = 0;
3496 if(i == 2 || i == 3 || !s->first_slice_line)
3497 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3498 if(i == 1 || i == 3 || s->mb_x)
3499 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3501 vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
3502 if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3503 s->dsp.vc1_inv_trans_8x8(s->block[i]);
3504 if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
3505 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
3506 } else if(val) {
3507 vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
3508 if(!v->ttmbf && ttmb < 8) ttmb = -1;
3509 first_block = 0;
3514 /** Decode blocks of I-frame
3516 static void vc1_decode_i_blocks(VC1Context *v)
3518 int k, j;
3519 MpegEncContext *s = &v->s;
3520 int cbp, val;
3521 uint8_t *coded_val;
3522 int mb_pos;
3524 /* select codingmode used for VLC tables selection */
3525 switch(v->y_ac_table_index){
3526 case 0:
3527 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3528 break;
3529 case 1:
3530 v->codingset = CS_HIGH_MOT_INTRA;
3531 break;
3532 case 2:
3533 v->codingset = CS_MID_RATE_INTRA;
3534 break;
3537 switch(v->c_ac_table_index){
3538 case 0:
3539 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3540 break;
3541 case 1:
3542 v->codingset2 = CS_HIGH_MOT_INTER;
3543 break;
3544 case 2:
3545 v->codingset2 = CS_MID_RATE_INTER;
3546 break;
3549 /* Set DC scale - y and c use the same */
3550 s->y_dc_scale = s->y_dc_scale_table[v->pq];
3551 s->c_dc_scale = s->c_dc_scale_table[v->pq];
3553 //do frame decode
3554 s->mb_x = s->mb_y = 0;
3555 s->mb_intra = 1;
3556 s->first_slice_line = 1;
3557 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3558 for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3559 ff_init_block_index(s);
3560 ff_update_block_index(s);
3561 s->dsp.clear_blocks(s->block[0]);
3562 mb_pos = s->mb_x + s->mb_y * s->mb_width;
3563 s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3564 s->current_picture.qscale_table[mb_pos] = v->pq;
3565 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3566 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3568 // do actual MB decoding and displaying
3569 cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
3570 v->s.ac_pred = get_bits1(&v->s.gb);
3572 for(k = 0; k < 6; k++) {
3573 val = ((cbp >> (5 - k)) & 1);
3575 if (k < 4) {
3576 int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
3577 val = val ^ pred;
3578 *coded_val = val;
3580 cbp |= val << (5 - k);
3582 vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
3584 s->dsp.vc1_inv_trans_8x8(s->block[k]);
3585 if(v->pq >= 9 && v->overlap) {
3586 for(j = 0; j < 64; j++) s->block[k][j] += 128;
3590 vc1_put_block(v, s->block);
3591 if(v->pq >= 9 && v->overlap) {
3592 if(s->mb_x) {
3593 s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
3594 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3595 if(!(s->flags & CODEC_FLAG_GRAY)) {
3596 s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
3597 s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
3600 s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
3601 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3602 if(!s->first_slice_line) {
3603 s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
3604 s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
3605 if(!(s->flags & CODEC_FLAG_GRAY)) {
3606 s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
3607 s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
3610 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3611 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3613 if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
3615 if(get_bits_count(&s->gb) > v->bits) {
3616 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
3617 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
3618 return;
3621 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3622 s->first_slice_line = 0;
3624 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3627 /** Decode blocks of I-frame for advanced profile
3629 static void vc1_decode_i_blocks_adv(VC1Context *v)
3631 int k, j;
3632 MpegEncContext *s = &v->s;
3633 int cbp, val;
3634 uint8_t *coded_val;
3635 int mb_pos;
3636 int mquant = v->pq;
3637 int mqdiff;
3638 int overlap;
3639 GetBitContext *gb = &s->gb;
3641 /* select codingmode used for VLC tables selection */
3642 switch(v->y_ac_table_index){
3643 case 0:
3644 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3645 break;
3646 case 1:
3647 v->codingset = CS_HIGH_MOT_INTRA;
3648 break;
3649 case 2:
3650 v->codingset = CS_MID_RATE_INTRA;
3651 break;
3654 switch(v->c_ac_table_index){
3655 case 0:
3656 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3657 break;
3658 case 1:
3659 v->codingset2 = CS_HIGH_MOT_INTER;
3660 break;
3661 case 2:
3662 v->codingset2 = CS_MID_RATE_INTER;
3663 break;
3666 //do frame decode
3667 s->mb_x = s->mb_y = 0;
3668 s->mb_intra = 1;
3669 s->first_slice_line = 1;
3670 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3671 for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3672 ff_init_block_index(s);
3673 ff_update_block_index(s);
3674 s->dsp.clear_blocks(s->block[0]);
3675 mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3676 s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
3677 s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
3678 s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
3680 // do actual MB decoding and displaying
3681 cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
3682 if(v->acpred_is_raw)
3683 v->s.ac_pred = get_bits1(&v->s.gb);
3684 else
3685 v->s.ac_pred = v->acpred_plane[mb_pos];
3687 if(v->condover == CONDOVER_SELECT) {
3688 if(v->overflg_is_raw)
3689 overlap = get_bits1(&v->s.gb);
3690 else
3691 overlap = v->over_flags_plane[mb_pos];
3692 } else
3693 overlap = (v->condover == CONDOVER_ALL);
3695 GET_MQUANT();
3697 s->current_picture.qscale_table[mb_pos] = mquant;
3698 /* Set DC scale - y and c use the same */
3699 s->y_dc_scale = s->y_dc_scale_table[mquant];
3700 s->c_dc_scale = s->c_dc_scale_table[mquant];
3702 for(k = 0; k < 6; k++) {
3703 val = ((cbp >> (5 - k)) & 1);
3705 if (k < 4) {
3706 int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
3707 val = val ^ pred;
3708 *coded_val = val;
3710 cbp |= val << (5 - k);
3712 v->a_avail = !s->first_slice_line || (k==2 || k==3);
3713 v->c_avail = !!s->mb_x || (k==1 || k==3);
3715 vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
3717 s->dsp.vc1_inv_trans_8x8(s->block[k]);
3718 for(j = 0; j < 64; j++) s->block[k][j] += 128;
3721 vc1_put_block(v, s->block);
3722 if(overlap) {
3723 if(s->mb_x) {
3724 s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
3725 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3726 if(!(s->flags & CODEC_FLAG_GRAY)) {
3727 s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
3728 s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
3731 s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
3732 s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3733 if(!s->first_slice_line) {
3734 s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
3735 s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
3736 if(!(s->flags & CODEC_FLAG_GRAY)) {
3737 s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
3738 s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
3741 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
3742 s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
3744 if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
3746 if(get_bits_count(&s->gb) > v->bits) {
3747 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
3748 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
3749 return;
3752 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3753 s->first_slice_line = 0;
3755 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3758 static void vc1_decode_p_blocks(VC1Context *v)
3760 MpegEncContext *s = &v->s;
3762 /* select codingmode used for VLC tables selection */
3763 switch(v->c_ac_table_index){
3764 case 0:
3765 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3766 break;
3767 case 1:
3768 v->codingset = CS_HIGH_MOT_INTRA;
3769 break;
3770 case 2:
3771 v->codingset = CS_MID_RATE_INTRA;
3772 break;
3775 switch(v->c_ac_table_index){
3776 case 0:
3777 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3778 break;
3779 case 1:
3780 v->codingset2 = CS_HIGH_MOT_INTER;
3781 break;
3782 case 2:
3783 v->codingset2 = CS_MID_RATE_INTER;
3784 break;
3787 s->first_slice_line = 1;
3788 memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
3789 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3790 for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3791 ff_init_block_index(s);
3792 ff_update_block_index(s);
3793 s->dsp.clear_blocks(s->block[0]);
3795 vc1_decode_p_mb(v);
3796 if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
3797 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
3798 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
3799 return;
3802 memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
3803 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3804 s->first_slice_line = 0;
3806 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3809 static void vc1_decode_b_blocks(VC1Context *v)
3811 MpegEncContext *s = &v->s;
3813 /* select codingmode used for VLC tables selection */
3814 switch(v->c_ac_table_index){
3815 case 0:
3816 v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
3817 break;
3818 case 1:
3819 v->codingset = CS_HIGH_MOT_INTRA;
3820 break;
3821 case 2:
3822 v->codingset = CS_MID_RATE_INTRA;
3823 break;
3826 switch(v->c_ac_table_index){
3827 case 0:
3828 v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
3829 break;
3830 case 1:
3831 v->codingset2 = CS_HIGH_MOT_INTER;
3832 break;
3833 case 2:
3834 v->codingset2 = CS_MID_RATE_INTER;
3835 break;
3838 s->first_slice_line = 1;
3839 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3840 for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
3841 ff_init_block_index(s);
3842 ff_update_block_index(s);
3843 s->dsp.clear_blocks(s->block[0]);
3845 vc1_decode_b_mb(v);
3846 if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
3847 ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
3848 av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
3849 return;
3851 if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
3853 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3854 s->first_slice_line = 0;
3856 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3859 static void vc1_decode_skip_blocks(VC1Context *v)
3861 MpegEncContext *s = &v->s;
3863 ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
3864 s->first_slice_line = 1;
3865 for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
3866 s->mb_x = 0;
3867 ff_init_block_index(s);
3868 ff_update_block_index(s);
3869 memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
3870 memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
3871 memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
3872 ff_draw_horiz_band(s, s->mb_y * 16, 16);
3873 s->first_slice_line = 0;
3875 s->pict_type = FF_P_TYPE;
3878 static void vc1_decode_blocks(VC1Context *v)
3881 v->s.esc3_level_length = 0;
3882 if(v->x8_type){
3883 ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
3884 }else{
3886 switch(v->s.pict_type) {
3887 case FF_I_TYPE:
3888 if(v->profile == PROFILE_ADVANCED)
3889 vc1_decode_i_blocks_adv(v);
3890 else
3891 vc1_decode_i_blocks(v);
3892 break;
3893 case FF_P_TYPE:
3894 if(v->p_frame_skipped)
3895 vc1_decode_skip_blocks(v);
3896 else
3897 vc1_decode_p_blocks(v);
3898 break;
3899 case FF_B_TYPE:
3900 if(v->bi_type){
3901 if(v->profile == PROFILE_ADVANCED)
3902 vc1_decode_i_blocks_adv(v);
3903 else
3904 vc1_decode_i_blocks(v);
3905 }else
3906 vc1_decode_b_blocks(v);
3907 break;
3912 /** Find VC-1 marker in buffer
3913 * @return position where next marker starts or end of buffer if no marker found
3915 static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
3917 uint32_t mrk = 0xFFFFFFFF;
3919 if(end-src < 4) return end;
3920 while(src < end){
3921 mrk = (mrk << 8) | *src++;
3922 if(IS_MARKER(mrk))
3923 return src-4;
3925 return end;
3928 static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
3930 int dsize = 0, i;
3932 if(size < 4){
3933 for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
3934 return size;
3936 for(i = 0; i < size; i++, src++) {
3937 if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
3938 dst[dsize++] = src[1];
3939 src++;
3940 i++;
3941 } else
3942 dst[dsize++] = *src;
3944 return dsize;
3947 /** Initialize a VC1/WMV3 decoder
3948 * @todo TODO: Handle VC-1 IDUs (Transport level?)
3949 * @todo TODO: Decypher remaining bits in extra_data
3951 static av_cold int vc1_decode_init(AVCodecContext *avctx)
3953 VC1Context *v = avctx->priv_data;
3954 MpegEncContext *s = &v->s;
3955 GetBitContext gb;
3957 if (!avctx->extradata_size || !avctx->extradata) return -1;
3958 if (!(avctx->flags & CODEC_FLAG_GRAY))
3959 avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
3960 else
3961 avctx->pix_fmt = PIX_FMT_GRAY8;
3962 avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
3963 v->s.avctx = avctx;
3964 avctx->flags |= CODEC_FLAG_EMU_EDGE;
3965 v->s.flags |= CODEC_FLAG_EMU_EDGE;
3967 if(avctx->idct_algo==FF_IDCT_AUTO){
3968 avctx->idct_algo=FF_IDCT_WMV2;
3971 if(ff_h263_decode_init(avctx) < 0)
3972 return -1;
3973 if (vc1_init_common(v) < 0) return -1;
3975 avctx->coded_width = avctx->width;
3976 avctx->coded_height = avctx->height;
3977 if (avctx->codec_id == CODEC_ID_WMV3)
3979 int count = 0;
3981 // looks like WMV3 has a sequence header stored in the extradata
3982 // advanced sequence header may be before the first frame
3983 // the last byte of the extradata is a version number, 1 for the
3984 // samples we can decode
3986 init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
3988 if (decode_sequence_header(avctx, &gb) < 0)
3989 return -1;
3991 count = avctx->extradata_size*8 - get_bits_count(&gb);
3992 if (count>0)
3994 av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
3995 count, get_bits(&gb, count));
3997 else if (count < 0)
3999 av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
4001 } else { // VC1/WVC1
4002 const uint8_t *start = avctx->extradata;
4003 uint8_t *end = avctx->extradata + avctx->extradata_size;
4004 const uint8_t *next;
4005 int size, buf2_size;
4006 uint8_t *buf2 = NULL;
4007 int seq_initialized = 0, ep_initialized = 0;
4009 if(avctx->extradata_size < 16) {
4010 av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
4011 return -1;
4014 buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
4015 if(start[0]) start++; // in WVC1 extradata first byte is its size
4016 next = start;
4017 for(; next < end; start = next){
4018 next = find_next_marker(start + 4, end);
4019 size = next - start - 4;
4020 if(size <= 0) continue;
4021 buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
4022 init_get_bits(&gb, buf2, buf2_size * 8);
4023 switch(AV_RB32(start)){
4024 case VC1_CODE_SEQHDR:
4025 if(decode_sequence_header(avctx, &gb) < 0){
4026 av_free(buf2);
4027 return -1;
4029 seq_initialized = 1;
4030 break;
4031 case VC1_CODE_ENTRYPOINT:
4032 if(decode_entry_point(avctx, &gb) < 0){
4033 av_free(buf2);
4034 return -1;
4036 ep_initialized = 1;
4037 break;
4040 av_free(buf2);
4041 if(!seq_initialized || !ep_initialized){
4042 av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
4043 return -1;
4046 avctx->has_b_frames= !!(avctx->max_b_frames);
4047 s->low_delay = !avctx->has_b_frames;
4049 s->mb_width = (avctx->coded_width+15)>>4;
4050 s->mb_height = (avctx->coded_height+15)>>4;
4052 /* Allocate mb bitplanes */
4053 v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
4054 v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
4055 v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
4056 v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
4058 v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
4059 v->cbp = v->cbp_base + s->mb_stride;
4061 /* allocate block type info in that way so it could be used with s->block_index[] */
4062 v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
4063 v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
4064 v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
4065 v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
4067 /* Init coded blocks info */
4068 if (v->profile == PROFILE_ADVANCED)
4070 // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
4071 // return -1;
4072 // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
4073 // return -1;
4076 ff_intrax8_common_init(&v->x8,s);
4077 return 0;
4081 /** Decode a VC1/WMV3 frame
4082 * @todo TODO: Handle VC-1 IDUs (Transport level?)
4084 static int vc1_decode_frame(AVCodecContext *avctx,
4085 void *data, int *data_size,
4086 AVPacket *avpkt)
4088 const uint8_t *buf = avpkt->data;
4089 int buf_size = avpkt->size;
4090 VC1Context *v = avctx->priv_data;
4091 MpegEncContext *s = &v->s;
4092 AVFrame *pict = data;
4093 uint8_t *buf2 = NULL;
4094 const uint8_t *buf_start = buf;
4096 /* no supplementary picture */
4097 if (buf_size == 0) {
4098 /* special case for last picture */
4099 if (s->low_delay==0 && s->next_picture_ptr) {
4100 *pict= *(AVFrame*)s->next_picture_ptr;
4101 s->next_picture_ptr= NULL;
4103 *data_size = sizeof(AVFrame);
4106 return 0;
4109 /* We need to set current_picture_ptr before reading the header,
4110 * otherwise we cannot store anything in there. */
4111 if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
4112 int i= ff_find_unused_picture(s, 0);
4113 s->current_picture_ptr= &s->picture[i];
4116 if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
4117 if (v->profile < PROFILE_ADVANCED)
4118 avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
4119 else
4120 avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
4123 //for advanced profile we may need to parse and unescape data
4124 if (avctx->codec_id == CODEC_ID_VC1) {
4125 int buf_size2 = 0;
4126 buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
4128 if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
4129 const uint8_t *start, *end, *next;
4130 int size;
4132 next = buf;
4133 for(start = buf, end = buf + buf_size; next < end; start = next){
4134 next = find_next_marker(start + 4, end);
4135 size = next - start - 4;
4136 if(size <= 0) continue;
4137 switch(AV_RB32(start)){
4138 case VC1_CODE_FRAME:
4139 if (avctx->hwaccel ||
4140 s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
4141 buf_start = start;
4142 buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
4143 break;
4144 case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
4145 buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
4146 init_get_bits(&s->gb, buf2, buf_size2*8);
4147 decode_entry_point(avctx, &s->gb);
4148 break;
4149 case VC1_CODE_SLICE:
4150 av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
4151 av_free(buf2);
4152 return -1;
4155 }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
4156 const uint8_t *divider;
4158 divider = find_next_marker(buf, buf + buf_size);
4159 if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
4160 av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
4161 av_free(buf2);
4162 return -1;
4165 buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
4166 // TODO
4167 av_free(buf2);return -1;
4168 }else{
4169 buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
4171 init_get_bits(&s->gb, buf2, buf_size2*8);
4172 } else
4173 init_get_bits(&s->gb, buf, buf_size*8);
4174 // do parse frame header
4175 if(v->profile < PROFILE_ADVANCED) {
4176 if(vc1_parse_frame_header(v, &s->gb) == -1) {
4177 av_free(buf2);
4178 return -1;
4180 } else {
4181 if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
4182 av_free(buf2);
4183 return -1;
4187 if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
4188 av_free(buf2);
4189 return -1;
4192 // for hurry_up==5
4193 s->current_picture.pict_type= s->pict_type;
4194 s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
4196 /* skip B-frames if we don't have reference frames */
4197 if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
4198 av_free(buf2);
4199 return -1;//buf_size;
4201 /* skip b frames if we are in a hurry */
4202 if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
4203 if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
4204 || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
4205 || avctx->skip_frame >= AVDISCARD_ALL) {
4206 av_free(buf2);
4207 return buf_size;
4209 /* skip everything if we are in a hurry>=5 */
4210 if(avctx->hurry_up>=5) {
4211 av_free(buf2);
4212 return -1;//buf_size;
4215 if(s->next_p_frame_damaged){
4216 if(s->pict_type==FF_B_TYPE)
4217 return buf_size;
4218 else
4219 s->next_p_frame_damaged=0;
4222 if(MPV_frame_start(s, avctx) < 0) {
4223 av_free(buf2);
4224 return -1;
4227 s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
4228 s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
4230 if ((CONFIG_VC1_VDPAU_DECODER || CONFIG_WMV3_VDPAU_DECODER)
4231 &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
4232 ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
4233 else if (avctx->hwaccel) {
4234 if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
4235 return -1;
4236 if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
4237 return -1;
4238 if (avctx->hwaccel->end_frame(avctx) < 0)
4239 return -1;
4240 } else {
4241 ff_er_frame_start(s);
4243 v->bits = buf_size * 8;
4244 vc1_decode_blocks(v);
4245 //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
4246 // if(get_bits_count(&s->gb) > buf_size * 8)
4247 // return -1;
4248 ff_er_frame_end(s);
4251 MPV_frame_end(s);
4253 assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
4254 assert(s->current_picture.pict_type == s->pict_type);
4255 if (s->pict_type == FF_B_TYPE || s->low_delay) {
4256 *pict= *(AVFrame*)s->current_picture_ptr;
4257 } else if (s->last_picture_ptr != NULL) {
4258 *pict= *(AVFrame*)s->last_picture_ptr;
4261 if(s->last_picture_ptr || s->low_delay){
4262 *data_size = sizeof(AVFrame);
4263 ff_print_debug_info(s, pict);
4266 /* Return the Picture timestamp as the frame number */
4267 /* we subtract 1 because it is added on utils.c */
4268 avctx->frame_number = s->picture_number - 1;
4270 av_free(buf2);
4271 return buf_size;
4275 /** Close a VC1/WMV3 decoder
4276 * @warning Initial try at using MpegEncContext stuff
4278 static av_cold int vc1_decode_end(AVCodecContext *avctx)
4280 VC1Context *v = avctx->priv_data;
4282 av_freep(&v->hrd_rate);
4283 av_freep(&v->hrd_buffer);
4284 MPV_common_end(&v->s);
4285 av_freep(&v->mv_type_mb_plane);
4286 av_freep(&v->direct_mb_plane);
4287 av_freep(&v->acpred_plane);
4288 av_freep(&v->over_flags_plane);
4289 av_freep(&v->mb_type_base);
4290 av_freep(&v->cbp_base);
4291 ff_intrax8_common_end(&v->x8);
4292 return 0;
4296 AVCodec vc1_decoder = {
4297 "vc1",
4298 CODEC_TYPE_VIDEO,
4299 CODEC_ID_VC1,
4300 sizeof(VC1Context),
4301 vc1_decode_init,
4302 NULL,
4303 vc1_decode_end,
4304 vc1_decode_frame,
4305 CODEC_CAP_DELAY,
4306 NULL,
4307 .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
4308 .pix_fmts = ff_hwaccel_pixfmt_list_420
4311 AVCodec wmv3_decoder = {
4312 "wmv3",
4313 CODEC_TYPE_VIDEO,
4314 CODEC_ID_WMV3,
4315 sizeof(VC1Context),
4316 vc1_decode_init,
4317 NULL,
4318 vc1_decode_end,
4319 vc1_decode_frame,
4320 CODEC_CAP_DELAY,
4321 NULL,
4322 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
4323 .pix_fmts = ff_hwaccel_pixfmt_list_420
4326 #if CONFIG_WMV3_VDPAU_DECODER
4327 AVCodec wmv3_vdpau_decoder = {
4328 "wmv3_vdpau",
4329 CODEC_TYPE_VIDEO,
4330 CODEC_ID_WMV3,
4331 sizeof(VC1Context),
4332 vc1_decode_init,
4333 NULL,
4334 vc1_decode_end,
4335 vc1_decode_frame,
4336 CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
4337 NULL,
4338 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
4339 .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
4341 #endif
4343 #if CONFIG_VC1_VDPAU_DECODER
4344 AVCodec vc1_vdpau_decoder = {
4345 "vc1_vdpau",
4346 CODEC_TYPE_VIDEO,
4347 CODEC_ID_VC1,
4348 sizeof(VC1Context),
4349 vc1_decode_init,
4350 NULL,
4351 vc1_decode_end,
4352 vc1_decode_frame,
4353 CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
4354 NULL,
4355 .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
4356 .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
4358 #endif