Add channel layout support to the AC-3 encoder.
[FFMpeg-mirror/lagarith.git] / libavcodec / rv34.c
blob0e83f77ff5ba55881bebd9fb50c00c2e00e8bf89
1 /*
2 * RV30/40 decoder common data
3 * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 /**
23 * @file libavcodec/rv34.c
24 * RV30/40 decoder common data
27 #include "avcodec.h"
28 #include "dsputil.h"
29 #include "mpegvideo.h"
30 #include "golomb.h"
31 #include "mathops.h"
32 #include "rectangle.h"
34 #include "rv34vlc.h"
35 #include "rv34data.h"
36 #include "rv34.h"
38 //#define DEBUG
40 /** translation of RV30/40 macroblock types to lavc ones */
41 static const int rv34_mb_type_to_lavc[12] = {
42 MB_TYPE_INTRA,
43 MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC,
44 MB_TYPE_16x16 | MB_TYPE_L0,
45 MB_TYPE_8x8 | MB_TYPE_L0,
46 MB_TYPE_16x16 | MB_TYPE_L0,
47 MB_TYPE_16x16 | MB_TYPE_L1,
48 MB_TYPE_SKIP,
49 MB_TYPE_DIRECT2 | MB_TYPE_16x16,
50 MB_TYPE_16x8 | MB_TYPE_L0,
51 MB_TYPE_8x16 | MB_TYPE_L0,
52 MB_TYPE_16x16 | MB_TYPE_L0L1,
53 MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC
57 static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
59 /**
60 * @defgroup vlc RV30/40 VLC generating functions
61 * @{
64 /**
65 * Generate VLC from codeword lengths.
66 * @param bits codeword lengths (zeroes are accepted)
67 * @param size length of input data
68 * @param vlc output VLC
69 * @param insyms symbols for input codes (NULL for default ones)
71 static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms)
73 int i;
74 int counts[17] = {0}, codes[17];
75 uint16_t cw[size], syms[size];
76 uint8_t bits2[size];
77 int maxbits = 0, realsize = 0;
79 for(i = 0; i < size; i++){
80 if(bits[i]){
81 bits2[realsize] = bits[i];
82 syms[realsize] = insyms ? insyms[i] : i;
83 realsize++;
84 maxbits = FFMAX(maxbits, bits[i]);
85 counts[bits[i]]++;
89 codes[0] = 0;
90 for(i = 0; i < 16; i++)
91 codes[i+1] = (codes[i] + counts[i]) << 1;
92 for(i = 0; i < realsize; i++)
93 cw[i] = codes[bits2[i]]++;
95 init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
96 bits2, 1, 1,
97 cw, 2, 2,
98 syms, 2, 2, INIT_VLC_USE_STATIC);
102 * Initialize all tables.
104 static av_cold void rv34_init_tables(void)
106 int i, j, k;
108 for(i = 0; i < NUM_INTRA_TABLES; i++){
109 for(j = 0; j < 2; j++){
110 rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL);
111 rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL);
112 rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL);
113 for(k = 0; k < 4; k++)
114 rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code);
116 for(j = 0; j < 4; j++)
117 rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL);
118 rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL);
121 for(i = 0; i < NUM_INTER_TABLES; i++){
122 rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL);
123 for(j = 0; j < 4; j++)
124 rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code);
125 for(j = 0; j < 2; j++){
126 rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL);
127 rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL);
128 rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL);
130 rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL);
134 /** @} */ // vlc group
138 * @defgroup transform RV30/40 inverse transform functions
139 * @{
142 static av_always_inline void rv34_row_transform(int temp[16], DCTELEM *block)
144 int i;
146 for(i=0; i<4; i++){
147 const int z0= 13*(block[i+8*0] + block[i+8*2]);
148 const int z1= 13*(block[i+8*0] - block[i+8*2]);
149 const int z2= 7* block[i+8*1] - 17*block[i+8*3];
150 const int z3= 17* block[i+8*1] + 7*block[i+8*3];
152 temp[4*i+0]= z0+z3;
153 temp[4*i+1]= z1+z2;
154 temp[4*i+2]= z1-z2;
155 temp[4*i+3]= z0-z3;
160 * Real Video 3.0/4.0 inverse transform
161 * Code is almost the same as in SVQ3, only scaling is different.
163 static void rv34_inv_transform(DCTELEM *block){
164 int temp[16];
165 int i;
167 rv34_row_transform(temp, block);
169 for(i=0; i<4; i++){
170 const int z0= 13*(temp[4*0+i] + temp[4*2+i]) + 0x200;
171 const int z1= 13*(temp[4*0+i] - temp[4*2+i]) + 0x200;
172 const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
173 const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
175 block[i*8+0]= (z0 + z3)>>10;
176 block[i*8+1]= (z1 + z2)>>10;
177 block[i*8+2]= (z1 - z2)>>10;
178 block[i*8+3]= (z0 - z3)>>10;
184 * RealVideo 3.0/4.0 inverse transform for DC block
186 * Code is almost the same as rv34_inv_transform()
187 * but final coefficients are multiplied by 1.5 and have no rounding.
189 static void rv34_inv_transform_noround(DCTELEM *block){
190 int temp[16];
191 int i;
193 rv34_row_transform(temp, block);
195 for(i=0; i<4; i++){
196 const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
197 const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
198 const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
199 const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
201 block[i*8+0]= ((z0 + z3)*3)>>11;
202 block[i*8+1]= ((z1 + z2)*3)>>11;
203 block[i*8+2]= ((z1 - z2)*3)>>11;
204 block[i*8+3]= ((z0 - z3)*3)>>11;
209 /** @} */ // transform
213 * @defgroup block RV30/40 4x4 block decoding functions
214 * @{
218 * Decode coded block pattern.
220 static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
222 int pattern, code, cbp=0;
223 int ones;
224 static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
225 static const int shifts[4] = { 0, 2, 8, 10 };
226 const int *curshift = shifts;
227 int i, t, mask;
229 code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
230 pattern = code & 0xF;
231 code >>= 4;
233 ones = rv34_count_ones[pattern];
235 for(mask = 8; mask; mask >>= 1, curshift++){
236 if(pattern & mask)
237 cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
240 for(i = 0; i < 4; i++){
241 t = modulo_three_table[code][i];
242 if(t == 1)
243 cbp |= cbp_masks[get_bits1(gb)] << i;
244 if(t == 2)
245 cbp |= cbp_masks[2] << i;
247 return cbp;
251 * Get one coefficient value from the bistream and store it.
253 static inline void decode_coeff(DCTELEM *dst, int coef, int esc, GetBitContext *gb, VLC* vlc)
255 if(coef){
256 if(coef == esc){
257 coef = get_vlc2(gb, vlc->table, 9, 2);
258 if(coef > 23){
259 coef -= 23;
260 coef = 22 + ((1 << coef) | get_bits(gb, coef));
262 coef += esc;
264 if(get_bits1(gb))
265 coef = -coef;
266 *dst = coef;
271 * Decode 2x2 subblock of coefficients.
273 static inline void decode_subblock(DCTELEM *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc)
275 int coeffs[4];
277 coeffs[0] = modulo_three_table[code][0];
278 coeffs[1] = modulo_three_table[code][1];
279 coeffs[2] = modulo_three_table[code][2];
280 coeffs[3] = modulo_three_table[code][3];
281 decode_coeff(dst , coeffs[0], 3, gb, vlc);
282 if(is_block2){
283 decode_coeff(dst+8, coeffs[1], 2, gb, vlc);
284 decode_coeff(dst+1, coeffs[2], 2, gb, vlc);
285 }else{
286 decode_coeff(dst+1, coeffs[1], 2, gb, vlc);
287 decode_coeff(dst+8, coeffs[2], 2, gb, vlc);
289 decode_coeff(dst+9, coeffs[3], 2, gb, vlc);
293 * Decode coefficients for 4x4 block.
295 * This is done by filling 2x2 subblocks with decoded coefficients
296 * in this order (the same for subblocks and subblock coefficients):
297 * o--o
300 * o--o
303 static inline void rv34_decode_block(DCTELEM *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc)
305 int code, pattern;
307 code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
309 pattern = code & 0x7;
311 code >>= 3;
312 decode_subblock(dst, code, 0, gb, &rvlc->coefficient);
314 if(pattern & 4){
315 code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
316 decode_subblock(dst + 2, code, 0, gb, &rvlc->coefficient);
318 if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
319 code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
320 decode_subblock(dst + 8*2, code, 1, gb, &rvlc->coefficient);
322 if(pattern & 1){
323 code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
324 decode_subblock(dst + 8*2+2, code, 0, gb, &rvlc->coefficient);
330 * Dequantize ordinary 4x4 block.
331 * @todo optimize
333 static inline void rv34_dequant4x4(DCTELEM *block, int Qdc, int Q)
335 int i, j;
337 block[0] = (block[0] * Qdc + 8) >> 4;
338 for(i = 0; i < 4; i++)
339 for(j = !i; j < 4; j++)
340 block[j + i*8] = (block[j + i*8] * Q + 8) >> 4;
344 * Dequantize 4x4 block of DC values for 16x16 macroblock.
345 * @todo optimize
347 static inline void rv34_dequant4x4_16x16(DCTELEM *block, int Qdc, int Q)
349 int i;
351 for(i = 0; i < 3; i++)
352 block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Qdc + 8) >> 4;
353 for(; i < 16; i++)
354 block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Q + 8) >> 4;
356 /** @} */ //block functions
360 * @defgroup bitstream RV30/40 bitstream parsing
361 * @{
365 * Decode starting slice position.
366 * @todo Maybe replace with ff_h263_decode_mba() ?
368 int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
370 int i;
371 for(i = 0; i < 5; i++)
372 if(rv34_mb_max_sizes[i] >= mb_size - 1)
373 break;
374 return rv34_mb_bits_sizes[i];
378 * Select VLC set for decoding from current quantizer, modifier and frame type.
380 static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
382 if(mod == 2 && quant < 19) quant += 10;
383 else if(mod && quant < 26) quant += 5;
384 return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
385 : &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
389 * Decode quantizer difference and return modified quantizer.
391 static inline int rv34_decode_dquant(GetBitContext *gb, int quant)
393 if(get_bits1(gb))
394 return rv34_dquant_tab[get_bits1(gb)][quant];
395 else
396 return get_bits(gb, 5);
399 /** @} */ //bitstream functions
402 * @defgroup mv motion vector related code (prediction, reconstruction, motion compensation)
403 * @{
406 /** macroblock partition width in 8x8 blocks */
407 static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
409 /** macroblock partition height in 8x8 blocks */
410 static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
412 /** availability index for subblocks */
413 static const uint8_t avail_indexes[4] = { 5, 6, 9, 10 };
416 * motion vector prediction
418 * Motion prediction performed for the block by using median prediction of
419 * motion vectors from the left, top and right top blocks but in corner cases
420 * some other vectors may be used instead.
422 static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
424 MpegEncContext *s = &r->s;
425 int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
426 int A[2] = {0}, B[2], C[2];
427 int i, j;
428 int mx, my;
429 int avail_index = avail_indexes[subblock_no];
430 int c_off = part_sizes_w[block_type];
432 mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
433 if(subblock_no == 3)
434 c_off = -1;
436 if(r->avail_cache[avail_index - 1]){
437 A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
438 A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
440 if(r->avail_cache[avail_index - 4]){
441 B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
442 B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
443 }else{
444 B[0] = A[0];
445 B[1] = A[1];
447 if(!r->avail_cache[avail_index - 4 + c_off]){
448 if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1] || r->rv30)){
449 C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
450 C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
451 }else{
452 C[0] = A[0];
453 C[1] = A[1];
455 }else{
456 C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
457 C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
459 mx = mid_pred(A[0], B[0], C[0]);
460 my = mid_pred(A[1], B[1], C[1]);
461 mx += r->dmv[dmv_no][0];
462 my += r->dmv[dmv_no][1];
463 for(j = 0; j < part_sizes_h[block_type]; j++){
464 for(i = 0; i < part_sizes_w[block_type]; i++){
465 s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
466 s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
471 #define GET_PTS_DIFF(a, b) ((a - b + 8192) & 0x1FFF)
474 * Calculate motion vector component that should be added for direct blocks.
476 static int calc_add_mv(RV34DecContext *r, int dir, int val)
478 int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
479 int dist = dir ? -GET_PTS_DIFF(r->next_pts, r->cur_pts) : GET_PTS_DIFF(r->cur_pts, r->last_pts);
480 int mul;
482 if(!refdist) return 0;
483 mul = (dist << 14) / refdist;
484 return (val * mul + 0x2000) >> 14;
488 * Predict motion vector for B-frame macroblock.
490 static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
491 int A_avail, int B_avail, int C_avail,
492 int *mx, int *my)
494 if(A_avail + B_avail + C_avail != 3){
495 *mx = A[0] + B[0] + C[0];
496 *my = A[1] + B[1] + C[1];
497 if(A_avail + B_avail + C_avail == 2){
498 *mx /= 2;
499 *my /= 2;
501 }else{
502 *mx = mid_pred(A[0], B[0], C[0]);
503 *my = mid_pred(A[1], B[1], C[1]);
508 * motion vector prediction for B-frames
510 static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
512 MpegEncContext *s = &r->s;
513 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
514 int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
515 int A[2], B[2], C[2];
516 int has_A = 0, has_B = 0, has_C = 0;
517 int mx, my;
518 int i, j;
519 Picture *cur_pic = s->current_picture_ptr;
520 const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
521 int type = cur_pic->mb_type[mb_pos];
523 memset(A, 0, sizeof(A));
524 memset(B, 0, sizeof(B));
525 memset(C, 0, sizeof(C));
526 if((r->avail_cache[5-1] & type) & mask){
527 A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
528 A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
529 has_A = 1;
531 if((r->avail_cache[5-4] & type) & mask){
532 B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
533 B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
534 has_B = 1;
536 if(r->avail_cache[5-4] && (r->avail_cache[5-2] & type) & mask){
537 C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
538 C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
539 has_C = 1;
540 }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[5-5] & type) & mask){
541 C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
542 C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
543 has_C = 1;
546 rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
548 mx += r->dmv[dir][0];
549 my += r->dmv[dir][1];
551 for(j = 0; j < 2; j++){
552 for(i = 0; i < 2; i++){
553 cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
554 cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
557 if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD)
558 fill_rectangle(cur_pic->motion_val[!dir][mv_pos], 2, 2, s->b8_stride, 0, 4);
562 * motion vector prediction - RV3 version
564 static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
566 MpegEncContext *s = &r->s;
567 int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
568 int A[2] = {0}, B[2], C[2];
569 int i, j, k;
570 int mx, my;
571 int avail_index = avail_indexes[0];
573 if(r->avail_cache[avail_index - 1]){
574 A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
575 A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
577 if(r->avail_cache[avail_index - 4]){
578 B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
579 B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
580 }else{
581 B[0] = A[0];
582 B[1] = A[1];
584 if(!r->avail_cache[avail_index - 4 + 2]){
585 if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1])){
586 C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
587 C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
588 }else{
589 C[0] = A[0];
590 C[1] = A[1];
592 }else{
593 C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+2][0];
594 C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+2][1];
596 mx = mid_pred(A[0], B[0], C[0]);
597 my = mid_pred(A[1], B[1], C[1]);
598 mx += r->dmv[0][0];
599 my += r->dmv[0][1];
600 for(j = 0; j < 2; j++){
601 for(i = 0; i < 2; i++){
602 for(k = 0; k < 2; k++){
603 s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
604 s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
610 static const int chroma_coeffs[3] = { 0, 3, 5 };
613 * generic motion compensation function
615 * @param r decoder context
616 * @param block_type type of the current block
617 * @param xoff horizontal offset from the start of the current block
618 * @param yoff vertical offset from the start of the current block
619 * @param mv_off offset to the motion vector information
620 * @param width width of the current partition in 8x8 blocks
621 * @param height height of the current partition in 8x8 blocks
622 * @param dir motion compensation direction (i.e. from the last or the next reference frame)
623 * @param thirdpel motion vectors are specified in 1/3 of pixel
624 * @param qpel_mc a set of functions used to perform luma motion compensation
625 * @param chroma_mc a set of functions used to perform chroma motion compensation
627 static inline void rv34_mc(RV34DecContext *r, const int block_type,
628 const int xoff, const int yoff, int mv_off,
629 const int width, const int height, int dir,
630 const int thirdpel,
631 qpel_mc_func (*qpel_mc)[16],
632 h264_chroma_mc_func (*chroma_mc))
634 MpegEncContext *s = &r->s;
635 uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
636 int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
637 int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
638 int is16x16 = 1;
640 if(thirdpel){
641 int chroma_mx, chroma_my;
642 mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
643 my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
644 lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
645 ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
646 chroma_mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + 1) >> 1;
647 chroma_my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + 1) >> 1;
648 umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
649 umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
650 uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
651 uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
652 }else{
653 int cx, cy;
654 mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
655 my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
656 lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
657 ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
658 cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
659 cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
660 umx = cx >> 2;
661 umy = cy >> 2;
662 uvmx = (cx & 3) << 1;
663 uvmy = (cy & 3) << 1;
664 //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
665 if(uvmx == 6 && uvmy == 6)
666 uvmx = uvmy = 4;
668 dxy = ly*4 + lx;
669 srcY = dir ? s->next_picture_ptr->data[0] : s->last_picture_ptr->data[0];
670 srcU = dir ? s->next_picture_ptr->data[1] : s->last_picture_ptr->data[1];
671 srcV = dir ? s->next_picture_ptr->data[2] : s->last_picture_ptr->data[2];
672 src_x = s->mb_x * 16 + xoff + mx;
673 src_y = s->mb_y * 16 + yoff + my;
674 uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
675 uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
676 srcY += src_y * s->linesize + src_x;
677 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
678 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
679 if( (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4
680 || (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4){
681 uint8_t *uvbuf= s->edge_emu_buffer + 22 * s->linesize;
683 srcY -= 2 + 2*s->linesize;
684 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, (width<<3)+6, (height<<3)+6,
685 src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos);
686 srcY = s->edge_emu_buffer + 2 + 2*s->linesize;
687 ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, (width<<2)+1, (height<<2)+1,
688 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
689 ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, (width<<2)+1, (height<<2)+1,
690 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
691 srcU = uvbuf;
692 srcV = uvbuf + 16;
694 Y = s->dest[0] + xoff + yoff *s->linesize;
695 U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
696 V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
698 if(block_type == RV34_MB_P_16x8){
699 qpel_mc[1][dxy](Y, srcY, s->linesize);
700 Y += 8;
701 srcY += 8;
702 }else if(block_type == RV34_MB_P_8x16){
703 qpel_mc[1][dxy](Y, srcY, s->linesize);
704 Y += 8 * s->linesize;
705 srcY += 8 * s->linesize;
707 is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
708 qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
709 chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
710 chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
713 static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
714 const int xoff, const int yoff, int mv_off,
715 const int width, const int height, int dir)
717 rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30,
718 r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
719 : r->s.dsp.put_rv40_qpel_pixels_tab,
720 r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
721 : r->s.dsp.put_rv40_chroma_pixels_tab);
724 static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
726 rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30,
727 r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
728 : r->s.dsp.put_rv40_qpel_pixels_tab,
729 r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
730 : r->s.dsp.put_rv40_chroma_pixels_tab);
731 rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30,
732 r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
733 : r->s.dsp.avg_rv40_qpel_pixels_tab,
734 r->rv30 ? r->s.dsp.avg_h264_chroma_pixels_tab
735 : r->s.dsp.avg_rv40_chroma_pixels_tab);
738 static void rv34_mc_2mv_skip(RV34DecContext *r)
740 int i, j;
741 for(j = 0; j < 2; j++)
742 for(i = 0; i < 2; i++){
743 rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
744 r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
745 : r->s.dsp.put_rv40_qpel_pixels_tab,
746 r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
747 : r->s.dsp.put_rv40_chroma_pixels_tab);
748 rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
749 r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
750 : r->s.dsp.avg_rv40_qpel_pixels_tab,
751 r->rv30 ? r->s.dsp.avg_h264_chroma_pixels_tab
752 : r->s.dsp.avg_rv40_chroma_pixels_tab);
756 /** number of motion vectors in each macroblock type */
757 static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
760 * Decode motion vector differences
761 * and perform motion vector reconstruction and motion compensation.
763 static int rv34_decode_mv(RV34DecContext *r, int block_type)
765 MpegEncContext *s = &r->s;
766 GetBitContext *gb = &s->gb;
767 int i, j, k, l;
768 int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
769 int next_bt;
771 memset(r->dmv, 0, sizeof(r->dmv));
772 for(i = 0; i < num_mvs[block_type]; i++){
773 r->dmv[i][0] = svq3_get_se_golomb(gb);
774 r->dmv[i][1] = svq3_get_se_golomb(gb);
776 switch(block_type){
777 case RV34_MB_TYPE_INTRA:
778 case RV34_MB_TYPE_INTRA16x16:
779 fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
780 return 0;
781 case RV34_MB_SKIP:
782 if(s->pict_type == FF_P_TYPE){
783 fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
784 rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
785 break;
787 case RV34_MB_B_DIRECT:
788 //surprisingly, it uses motion scheme from next reference frame
789 next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
790 if(IS_INTRA(next_bt) || IS_SKIP(next_bt)){
791 fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
792 fill_rectangle(s->current_picture_ptr->motion_val[1][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
793 }else
794 for(j = 0; j < 2; j++)
795 for(i = 0; i < 2; i++)
796 for(k = 0; k < 2; k++)
797 for(l = 0; l < 2; l++)
798 s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
799 if(!(IS_16X8(next_bt) || IS_8X16(next_bt) || IS_8X8(next_bt))) //we can use whole macroblock MC
800 rv34_mc_2mv(r, block_type);
801 else
802 rv34_mc_2mv_skip(r);
803 fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
804 break;
805 case RV34_MB_P_16x16:
806 case RV34_MB_P_MIX16x16:
807 rv34_pred_mv(r, block_type, 0, 0);
808 rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
809 break;
810 case RV34_MB_B_FORWARD:
811 case RV34_MB_B_BACKWARD:
812 r->dmv[1][0] = r->dmv[0][0];
813 r->dmv[1][1] = r->dmv[0][1];
814 if(r->rv30)
815 rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
816 else
817 rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
818 rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
819 break;
820 case RV34_MB_P_16x8:
821 case RV34_MB_P_8x16:
822 rv34_pred_mv(r, block_type, 0, 0);
823 rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
824 if(block_type == RV34_MB_P_16x8){
825 rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
826 rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
828 if(block_type == RV34_MB_P_8x16){
829 rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
830 rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
832 break;
833 case RV34_MB_B_BIDIR:
834 rv34_pred_mv_b (r, block_type, 0);
835 rv34_pred_mv_b (r, block_type, 1);
836 rv34_mc_2mv (r, block_type);
837 break;
838 case RV34_MB_P_8x8:
839 for(i=0;i< 4;i++){
840 rv34_pred_mv(r, block_type, i, i);
841 rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
843 break;
846 return 0;
848 /** @} */ // mv group
851 * @defgroup recons Macroblock reconstruction functions
852 * @{
854 /** mapping of RV30/40 intra prediction types to standard H.264 types */
855 static const int ittrans[9] = {
856 DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
857 VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
860 /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
861 static const int ittrans16[4] = {
862 DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
866 * Perform 4x4 intra prediction.
868 static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
870 uint8_t *prev = dst - stride + 4;
871 uint32_t topleft;
873 if(!up && !left)
874 itype = DC_128_PRED;
875 else if(!up){
876 if(itype == VERT_PRED) itype = HOR_PRED;
877 if(itype == DC_PRED) itype = LEFT_DC_PRED;
878 }else if(!left){
879 if(itype == HOR_PRED) itype = VERT_PRED;
880 if(itype == DC_PRED) itype = TOP_DC_PRED;
881 if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
883 if(!down){
884 if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
885 if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
886 if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
888 if(!right && up){
889 topleft = dst[-stride + 3] * 0x01010101;
890 prev = (uint8_t*)&topleft;
892 r->h.pred4x4[itype](dst, prev, stride);
895 /** add_pixels_clamped for 4x4 block */
896 static void rv34_add_4x4_block(uint8_t *dst, int stride, DCTELEM block[64], int off)
898 int x, y;
899 for(y = 0; y < 4; y++)
900 for(x = 0; x < 4; x++)
901 dst[x + y*stride] = av_clip_uint8(dst[x + y*stride] + block[off + x+y*8]);
904 static inline int adjust_pred16(int itype, int up, int left)
906 if(!up && !left)
907 itype = DC_128_PRED8x8;
908 else if(!up){
909 if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
910 if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
911 if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
912 }else if(!left){
913 if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
914 if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
915 if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
917 return itype;
920 static void rv34_output_macroblock(RV34DecContext *r, int8_t *intra_types, int cbp, int is16)
922 MpegEncContext *s = &r->s;
923 DSPContext *dsp = &s->dsp;
924 int i, j;
925 uint8_t *Y, *U, *V;
926 int itype;
927 int avail[6*8] = {0};
928 int idx;
930 // Set neighbour information.
931 if(r->avail_cache[0])
932 avail[0] = 1;
933 if(r->avail_cache[1])
934 avail[1] = avail[2] = 1;
935 if(r->avail_cache[2])
936 avail[3] = avail[4] = 1;
937 if(r->avail_cache[3])
938 avail[5] = 1;
939 if(r->avail_cache[4])
940 avail[8] = avail[16] = 1;
941 if(r->avail_cache[8])
942 avail[24] = avail[32] = 1;
944 Y = s->dest[0];
945 U = s->dest[1];
946 V = s->dest[2];
947 if(!is16){
948 for(j = 0; j < 4; j++){
949 idx = 9 + j*8;
950 for(i = 0; i < 4; i++, cbp >>= 1, Y += 4, idx++){
951 rv34_pred_4x4_block(r, Y, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
952 avail[idx] = 1;
953 if(cbp & 1)
954 rv34_add_4x4_block(Y, s->linesize, s->block[(i>>1)+(j&2)], (i&1)*4+(j&1)*32);
956 Y += s->linesize * 4 - 4*4;
957 intra_types += s->b4_stride;
959 intra_types -= s->b4_stride * 4;
960 fill_rectangle(r->avail_cache + 5, 2, 2, 4, 0, 4);
961 for(j = 0; j < 2; j++){
962 idx = 5 + j*4;
963 for(i = 0; i < 2; i++, cbp >>= 1, idx++){
964 rv34_pred_4x4_block(r, U + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*s->b4_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
965 rv34_pred_4x4_block(r, V + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*s->b4_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
966 r->avail_cache[idx] = 1;
967 if(cbp & 0x01)
968 rv34_add_4x4_block(U + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[4], i*4+j*32);
969 if(cbp & 0x10)
970 rv34_add_4x4_block(V + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[5], i*4+j*32);
973 }else{
974 itype = ittrans16[intra_types[0]];
975 itype = adjust_pred16(itype, r->avail_cache[5-4], r->avail_cache[5-1]);
976 r->h.pred16x16[itype](Y, s->linesize);
977 dsp->add_pixels_clamped(s->block[0], Y, s->linesize);
978 dsp->add_pixels_clamped(s->block[1], Y + 8, s->linesize);
979 Y += s->linesize * 8;
980 dsp->add_pixels_clamped(s->block[2], Y, s->linesize);
981 dsp->add_pixels_clamped(s->block[3], Y + 8, s->linesize);
983 itype = ittrans16[intra_types[0]];
984 if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
985 itype = adjust_pred16(itype, r->avail_cache[5-4], r->avail_cache[5-1]);
986 r->h.pred8x8[itype](U, s->uvlinesize);
987 dsp->add_pixels_clamped(s->block[4], U, s->uvlinesize);
988 r->h.pred8x8[itype](V, s->uvlinesize);
989 dsp->add_pixels_clamped(s->block[5], V, s->uvlinesize);
993 /** @} */ // recons group
996 * @addtogroup bitstream
997 * Decode macroblock header and return CBP in case of success, -1 otherwise.
999 static int rv34_decode_mb_header(RV34DecContext *r, int8_t *intra_types)
1001 MpegEncContext *s = &r->s;
1002 GetBitContext *gb = &s->gb;
1003 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1004 int i, t;
1006 if(!r->si.type){
1007 r->is16 = get_bits1(gb);
1008 if(!r->is16 && !r->rv30){
1009 if(!get_bits1(gb))
1010 av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
1012 s->current_picture_ptr->mb_type[mb_pos] = r->is16 ? MB_TYPE_INTRA16x16 : MB_TYPE_INTRA;
1013 r->block_type = r->is16 ? RV34_MB_TYPE_INTRA16x16 : RV34_MB_TYPE_INTRA;
1014 }else{
1015 r->block_type = r->decode_mb_info(r);
1016 if(r->block_type == -1)
1017 return -1;
1018 s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
1019 r->mb_type[mb_pos] = r->block_type;
1020 if(r->block_type == RV34_MB_SKIP){
1021 if(s->pict_type == FF_P_TYPE)
1022 r->mb_type[mb_pos] = RV34_MB_P_16x16;
1023 if(s->pict_type == FF_B_TYPE)
1024 r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
1026 r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
1027 rv34_decode_mv(r, r->block_type);
1028 if(r->block_type == RV34_MB_SKIP){
1029 fill_rectangle(intra_types, 4, 4, s->b4_stride, 0, sizeof(intra_types[0]));
1030 return 0;
1032 r->chroma_vlc = 1;
1033 r->luma_vlc = 0;
1035 if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
1036 if(r->is16){
1037 t = get_bits(gb, 2);
1038 fill_rectangle(intra_types, 4, 4, s->b4_stride, t, sizeof(intra_types[0]));
1039 r->luma_vlc = 2;
1040 }else{
1041 if(r->decode_intra_types(r, gb, intra_types) < 0)
1042 return -1;
1043 r->luma_vlc = 1;
1045 r->chroma_vlc = 0;
1046 r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
1047 }else{
1048 for(i = 0; i < 16; i++)
1049 intra_types[(i & 3) + (i>>2) * s->b4_stride] = 0;
1050 r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
1051 if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
1052 r->is16 = 1;
1053 r->chroma_vlc = 1;
1054 r->luma_vlc = 2;
1055 r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
1059 return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
1063 * @addtogroup recons
1064 * @{
1067 * mask for retrieving all bits in coded block pattern
1068 * corresponding to one 8x8 block
1070 #define LUMA_CBP_BLOCK_MASK 0x33
1072 #define U_CBP_MASK 0x0F0000
1073 #define V_CBP_MASK 0xF00000
1076 static void rv34_apply_differences(RV34DecContext *r, int cbp)
1078 static const int shifts[4] = { 0, 2, 8, 10 };
1079 MpegEncContext *s = &r->s;
1080 int i;
1082 for(i = 0; i < 4; i++)
1083 if((cbp & (LUMA_CBP_BLOCK_MASK << shifts[i])) || r->block_type == RV34_MB_P_MIX16x16)
1084 s->dsp.add_pixels_clamped(s->block[i], s->dest[0] + (i & 1)*8 + (i&2)*4*s->linesize, s->linesize);
1085 if(cbp & U_CBP_MASK)
1086 s->dsp.add_pixels_clamped(s->block[4], s->dest[1], s->uvlinesize);
1087 if(cbp & V_CBP_MASK)
1088 s->dsp.add_pixels_clamped(s->block[5], s->dest[2], s->uvlinesize);
1091 static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
1093 int d;
1094 d = motion_val[0][0] - motion_val[-step][0];
1095 if(d < -3 || d > 3)
1096 return 1;
1097 d = motion_val[0][1] - motion_val[-step][1];
1098 if(d < -3 || d > 3)
1099 return 1;
1100 return 0;
1103 static int rv34_set_deblock_coef(RV34DecContext *r)
1105 MpegEncContext *s = &r->s;
1106 int hmvmask = 0, vmvmask = 0, i, j;
1107 int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
1108 int16_t (*motion_val)[2] = s->current_picture_ptr->motion_val[0][midx];
1109 for(j = 0; j < 16; j += 8){
1110 for(i = 0; i < 2; i++){
1111 if(is_mv_diff_gt_3(motion_val + i, 1))
1112 vmvmask |= 0x11 << (j + i*2);
1113 if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
1114 hmvmask |= 0x03 << (j + i*2);
1116 motion_val += s->b8_stride;
1118 if(s->first_slice_line)
1119 hmvmask &= ~0x000F;
1120 if(!s->mb_x)
1121 vmvmask &= ~0x1111;
1122 if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
1123 vmvmask |= (vmvmask & 0x4444) >> 1;
1124 hmvmask |= (hmvmask & 0x0F00) >> 4;
1125 if(s->mb_x)
1126 r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
1127 if(!s->first_slice_line)
1128 r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
1130 return hmvmask | vmvmask;
1133 static int rv34_decode_macroblock(RV34DecContext *r, int8_t *intra_types)
1135 MpegEncContext *s = &r->s;
1136 GetBitContext *gb = &s->gb;
1137 int cbp, cbp2;
1138 int i, blknum, blkoff;
1139 DCTELEM block16[64];
1140 int luma_dc_quant;
1141 int dist;
1142 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1144 // Calculate which neighbours are available. Maybe it's worth optimizing too.
1145 memset(r->avail_cache, 0, sizeof(r->avail_cache));
1146 fill_rectangle(r->avail_cache + 5, 2, 2, 4, 1, 4);
1147 dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
1148 if(s->mb_x && dist)
1149 r->avail_cache[4] =
1150 r->avail_cache[8] = s->current_picture_ptr->mb_type[mb_pos - 1];
1151 if(dist >= s->mb_width)
1152 r->avail_cache[1] =
1153 r->avail_cache[2] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
1154 if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
1155 r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
1156 if(s->mb_x && dist > s->mb_width)
1157 r->avail_cache[0] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
1159 s->qscale = r->si.quant;
1160 cbp = cbp2 = rv34_decode_mb_header(r, intra_types);
1161 r->cbp_luma [mb_pos] = cbp;
1162 r->cbp_chroma[mb_pos] = cbp >> 16;
1163 if(s->pict_type == FF_I_TYPE)
1164 r->deblock_coefs[mb_pos] = 0xFFFF;
1165 else
1166 r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
1167 s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
1169 if(cbp == -1)
1170 return -1;
1172 luma_dc_quant = r->block_type == RV34_MB_P_MIX16x16 ? r->luma_dc_quant_p[s->qscale] : r->luma_dc_quant_i[s->qscale];
1173 if(r->is16){
1174 memset(block16, 0, sizeof(block16));
1175 rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0);
1176 rv34_dequant4x4_16x16(block16, rv34_qscale_tab[luma_dc_quant],rv34_qscale_tab[s->qscale]);
1177 rv34_inv_transform_noround(block16);
1180 for(i = 0; i < 16; i++, cbp >>= 1){
1181 if(!r->is16 && !(cbp & 1)) continue;
1182 blknum = ((i & 2) >> 1) + ((i & 8) >> 2);
1183 blkoff = ((i & 1) << 2) + ((i & 4) << 3);
1184 if(cbp & 1)
1185 rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->luma_vlc, 0);
1186 rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[s->qscale],rv34_qscale_tab[s->qscale]);
1187 if(r->is16) //FIXME: optimize
1188 s->block[blknum][blkoff] = block16[(i & 3) | ((i & 0xC) << 1)];
1189 rv34_inv_transform(s->block[blknum] + blkoff);
1191 if(r->block_type == RV34_MB_P_MIX16x16)
1192 r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
1193 for(; i < 24; i++, cbp >>= 1){
1194 if(!(cbp & 1)) continue;
1195 blknum = ((i & 4) >> 2) + 4;
1196 blkoff = ((i & 1) << 2) + ((i & 2) << 4);
1197 rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->chroma_vlc, 1);
1198 rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]],rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]]);
1199 rv34_inv_transform(s->block[blknum] + blkoff);
1201 if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos]))
1202 rv34_output_macroblock(r, intra_types, cbp2, r->is16);
1203 else
1204 rv34_apply_differences(r, cbp2);
1206 return 0;
1209 static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
1211 int bits;
1212 if(s->mb_y >= s->mb_height)
1213 return 1;
1214 if(!s->mb_num_left)
1215 return 1;
1216 if(r->s.mb_skip_run > 1)
1217 return 0;
1218 bits = r->bits - get_bits_count(&s->gb);
1219 if(bits < 0 || (bits < 8 && !show_bits(&s->gb, bits)))
1220 return 1;
1221 return 0;
1224 static inline int slice_compare(SliceInfo *si1, SliceInfo *si2)
1226 return si1->type != si2->type ||
1227 si1->start >= si2->start ||
1228 si1->width != si2->width ||
1229 si1->height != si2->height||
1230 si1->pts != si2->pts;
1233 static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
1235 MpegEncContext *s = &r->s;
1236 GetBitContext *gb = &s->gb;
1237 int mb_pos;
1238 int res;
1240 init_get_bits(&r->s.gb, buf, buf_size*8);
1241 res = r->parse_slice_header(r, gb, &r->si);
1242 if(res < 0){
1243 av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
1244 return -1;
1247 if ((s->mb_x == 0 && s->mb_y == 0) || s->current_picture_ptr==NULL) {
1248 if(s->width != r->si.width || s->height != r->si.height){
1249 av_log(s->avctx, AV_LOG_DEBUG, "Changing dimensions to %dx%d\n", r->si.width,r->si.height);
1250 MPV_common_end(s);
1251 s->width = r->si.width;
1252 s->height = r->si.height;
1253 if(MPV_common_init(s) < 0)
1254 return -1;
1255 r->intra_types_hist = av_realloc(r->intra_types_hist, s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
1256 r->intra_types = r->intra_types_hist + s->b4_stride * 4;
1257 r->mb_type = av_realloc(r->mb_type, r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
1258 r->cbp_luma = av_realloc(r->cbp_luma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
1259 r->cbp_chroma = av_realloc(r->cbp_chroma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
1260 r->deblock_coefs = av_realloc(r->deblock_coefs, r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
1262 s->pict_type = r->si.type ? r->si.type : FF_I_TYPE;
1263 if(MPV_frame_start(s, s->avctx) < 0)
1264 return -1;
1265 ff_er_frame_start(s);
1266 r->cur_pts = r->si.pts;
1267 if(s->pict_type != FF_B_TYPE){
1268 r->last_pts = r->next_pts;
1269 r->next_pts = r->cur_pts;
1271 s->mb_x = s->mb_y = 0;
1274 r->si.end = end;
1275 s->qscale = r->si.quant;
1276 r->bits = buf_size*8;
1277 s->mb_num_left = r->si.end - r->si.start;
1278 r->s.mb_skip_run = 0;
1280 mb_pos = s->mb_x + s->mb_y * s->mb_width;
1281 if(r->si.start != mb_pos){
1282 av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
1283 s->mb_x = r->si.start % s->mb_width;
1284 s->mb_y = r->si.start / s->mb_width;
1286 memset(r->intra_types_hist, -1, s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
1287 s->first_slice_line = 1;
1288 s->resync_mb_x= s->mb_x;
1289 s->resync_mb_y= s->mb_y;
1291 ff_init_block_index(s);
1292 while(!check_slice_end(r, s)) {
1293 ff_update_block_index(s);
1294 s->dsp.clear_blocks(s->block[0]);
1296 if(rv34_decode_macroblock(r, r->intra_types + s->mb_x * 4 + 1) < 0){
1297 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_ERROR|DC_ERROR|MV_ERROR);
1298 return -1;
1300 if (++s->mb_x == s->mb_width) {
1301 s->mb_x = 0;
1302 s->mb_y++;
1303 ff_init_block_index(s);
1305 memmove(r->intra_types_hist, r->intra_types, s->b4_stride * 4 * sizeof(*r->intra_types_hist));
1306 memset(r->intra_types, -1, s->b4_stride * 4 * sizeof(*r->intra_types_hist));
1308 if(r->loop_filter && s->mb_y >= 2)
1309 r->loop_filter(r, s->mb_y - 2);
1311 if(s->mb_x == s->resync_mb_x)
1312 s->first_slice_line=0;
1313 s->mb_num_left--;
1315 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_END|DC_END|MV_END);
1317 return s->mb_y == s->mb_height;
1320 /** @} */ // recons group end
1323 * Initialize decoder.
1325 av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
1327 RV34DecContext *r = avctx->priv_data;
1328 MpegEncContext *s = &r->s;
1330 MPV_decode_defaults(s);
1331 s->avctx= avctx;
1332 s->out_format = FMT_H263;
1333 s->codec_id= avctx->codec_id;
1335 s->width = avctx->width;
1336 s->height = avctx->height;
1338 r->s.avctx = avctx;
1339 avctx->flags |= CODEC_FLAG_EMU_EDGE;
1340 r->s.flags |= CODEC_FLAG_EMU_EDGE;
1341 avctx->pix_fmt = PIX_FMT_YUV420P;
1342 avctx->has_b_frames = 1;
1343 s->low_delay = 0;
1345 if (MPV_common_init(s) < 0)
1346 return -1;
1348 ff_h264_pred_init(&r->h, CODEC_ID_RV40);
1350 r->intra_types_hist = av_malloc(s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
1351 r->intra_types = r->intra_types_hist + s->b4_stride * 4;
1353 r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
1355 r->cbp_luma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
1356 r->cbp_chroma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
1357 r->deblock_coefs = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
1359 if(!intra_vlcs[0].cbppattern[0].bits)
1360 rv34_init_tables();
1362 return 0;
1365 static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n)
1367 if(avctx->slice_count) return avctx->slice_offset[n];
1368 else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
1371 int ff_rv34_decode_frame(AVCodecContext *avctx,
1372 void *data, int *data_size,
1373 AVPacket *avpkt)
1375 const uint8_t *buf = avpkt->data;
1376 int buf_size = avpkt->size;
1377 RV34DecContext *r = avctx->priv_data;
1378 MpegEncContext *s = &r->s;
1379 AVFrame *pict = data;
1380 SliceInfo si;
1381 int i;
1382 int slice_count;
1383 const uint8_t *slices_hdr = NULL;
1384 int last = 0;
1386 /* no supplementary picture */
1387 if (buf_size == 0) {
1388 /* special case for last picture */
1389 if (s->low_delay==0 && s->next_picture_ptr) {
1390 *pict= *(AVFrame*)s->next_picture_ptr;
1391 s->next_picture_ptr= NULL;
1393 *data_size = sizeof(AVFrame);
1395 return 0;
1398 if(!avctx->slice_count){
1399 slice_count = (*buf++) + 1;
1400 slices_hdr = buf + 4;
1401 buf += 8 * slice_count;
1402 }else
1403 slice_count = avctx->slice_count;
1405 //parse first slice header to check whether this frame can be decoded
1406 if(get_slice_offset(avctx, slices_hdr, 0) > buf_size){
1407 av_log(avctx, AV_LOG_ERROR, "Slice offset is greater than frame size\n");
1408 return -1;
1410 init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, 0), buf_size-get_slice_offset(avctx, slices_hdr, 0));
1411 if(r->parse_slice_header(r, &r->s.gb, &si) < 0 || si.start){
1412 av_log(avctx, AV_LOG_ERROR, "First slice header is incorrect\n");
1413 return -1;
1415 if((!s->last_picture_ptr || !s->last_picture_ptr->data[0]) && si.type == FF_B_TYPE)
1416 return -1;
1417 /* skip b frames if we are in a hurry */
1418 if(avctx->hurry_up && si.type==FF_B_TYPE) return buf_size;
1419 if( (avctx->skip_frame >= AVDISCARD_NONREF && si.type==FF_B_TYPE)
1420 || (avctx->skip_frame >= AVDISCARD_NONKEY && si.type!=FF_I_TYPE)
1421 || avctx->skip_frame >= AVDISCARD_ALL)
1422 return buf_size;
1423 /* skip everything if we are in a hurry>=5 */
1424 if(avctx->hurry_up>=5)
1425 return buf_size;
1427 for(i=0; i<slice_count; i++){
1428 int offset= get_slice_offset(avctx, slices_hdr, i);
1429 int size;
1430 if(i+1 == slice_count)
1431 size= buf_size - offset;
1432 else
1433 size= get_slice_offset(avctx, slices_hdr, i+1) - offset;
1435 if(offset > buf_size){
1436 av_log(avctx, AV_LOG_ERROR, "Slice offset is greater than frame size\n");
1437 break;
1440 r->si.end = s->mb_width * s->mb_height;
1441 if(i+1 < slice_count){
1442 init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, i+1), (buf_size-get_slice_offset(avctx, slices_hdr, i+1))*8);
1443 if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
1444 if(i+2 < slice_count)
1445 size = get_slice_offset(avctx, slices_hdr, i+2) - offset;
1446 else
1447 size = buf_size - offset;
1448 }else
1449 r->si.end = si.start;
1451 last = rv34_decode_slice(r, r->si.end, buf + offset, size);
1452 s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
1453 if(last)
1454 break;
1457 if(last){
1458 if(r->loop_filter)
1459 r->loop_filter(r, s->mb_height - 1);
1460 ff_er_frame_end(s);
1461 MPV_frame_end(s);
1462 if (s->pict_type == FF_B_TYPE || s->low_delay) {
1463 *pict= *(AVFrame*)s->current_picture_ptr;
1464 } else if (s->last_picture_ptr != NULL) {
1465 *pict= *(AVFrame*)s->last_picture_ptr;
1468 if(s->last_picture_ptr || s->low_delay){
1469 *data_size = sizeof(AVFrame);
1470 ff_print_debug_info(s, pict);
1472 s->current_picture_ptr= NULL; //so we can detect if frame_end wasnt called (find some nicer solution...)
1474 return buf_size;
1477 av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
1479 RV34DecContext *r = avctx->priv_data;
1481 MPV_common_end(&r->s);
1483 av_freep(&r->intra_types_hist);
1484 r->intra_types = NULL;
1485 av_freep(&r->mb_type);
1486 av_freep(&r->cbp_luma);
1487 av_freep(&r->cbp_chroma);
1488 av_freep(&r->deblock_coefs);
1490 return 0;